JPH10247523A - Lithium secondary battery - Google Patents
Lithium secondary batteryInfo
- Publication number
- JPH10247523A JPH10247523A JP9049963A JP4996397A JPH10247523A JP H10247523 A JPH10247523 A JP H10247523A JP 9049963 A JP9049963 A JP 9049963A JP 4996397 A JP4996397 A JP 4996397A JP H10247523 A JPH10247523 A JP H10247523A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- electrode active
- active material
- charged
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
(57)【要約】
【課題】充電状態で高温時になったリチウム二次電池の
安全性を確保する。
【解決手段】60℃を越える温度で充電状態にある正極
活物質を還元する材料と、60℃を超える温度で充電状
態にある負極活物質を酸化する材料の少なくとも一方の
材料を電池内に含有させる。
(57) [Summary] [PROBLEMS] To ensure the safety of a lithium secondary battery that has been heated at a high temperature in a charged state. A battery contains at least one of a material that reduces a positive electrode active material that is charged at a temperature exceeding 60 ° C. and a material that oxidizes a negative electrode active material that is charged at a temperature exceeding 60 ° C. Let it.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、リチウム二次電池
の改良に関し、殊に安全性の向上に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a lithium secondary battery, and more particularly to an improvement in safety.
【0002】[0002]
【従来の技術】電子技術の進歩により、電子機器の性能
が向上し、小型、ポータブル化が進み、その電源として
高エネルギー密度の電池が望まれている。従来の二次電
池としては、鉛蓄電池、ニッケル−カドミウム電池が挙
げられるが、エネルギー密度の高さという点では未だ不
十分である。そこで、これらの電池に代わるものとし
て、高エネルギー密度のリチウム二次電池が開発され、
急速に普及している。しかし、リチウム二次電池は通
常、電解液に可燃性の有機溶媒を使用している。従って
電池が短絡したとき、電池を過充電または火中投下した
ときなど、電池温度を上昇させる操作をしてしまった場
合は電解液が燃焼し、電池が激しく爆発するおそれがあ
る。そのため、特開平4−184870号公報では、電
解液に自己消化性のあるリン酸エステル類を含有させる
技術が、特開平8−88023号公報では、電解液に自
己消化性のあるハロゲン原子置換リン酸エステル化合物
を含有させる技術が提案されている。また、特開平8−
45544号公報では、電解液そのものにおいて、塩素
置換エステル化合物を用いることで、引火点を高くして
安全性を確保する技術が提案されている。2. Description of the Related Art With the advance of electronic technology, the performance of electronic equipment has been improved, and its size and portability have been advanced. Conventional secondary batteries include a lead storage battery and a nickel-cadmium battery, but they are still insufficient in terms of high energy density. Therefore, as an alternative to these batteries, lithium secondary batteries with high energy density have been developed,
Spreading rapidly. However, lithium secondary batteries usually use flammable organic solvents for the electrolyte. Therefore, when an operation for raising the battery temperature is performed, for example, when the battery is short-circuited or when the battery is overcharged or dropped into a fire, the electrolyte may burn and the battery may explode violently. For this reason, Japanese Patent Application Laid-Open No. 4-184870 discloses a technique for incorporating a phosphate ester having a self-digesting property into an electrolytic solution. Techniques for containing an acid ester compound have been proposed. Further, Japanese Unexamined Patent Publication No.
Japanese Patent No. 45544 proposes a technique in which a chlorine-substituted ester compound is used in an electrolytic solution itself to increase the flash point and ensure safety.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記従
来の自己消化性のある物質や、引火点の高い物質を電解
液に含有させると、電解液のイオン伝導度が低下するた
め、電池の高率放電特性や低温特性が低下してしまう。
また、このような手法を用いても、充電状態(特に過充
電状態)で電池を火中投下すると、爆発することがわか
った。つまり電解液を難燃化する技術を採用しても、充
電状態で電池を極端に加熱した場合、激しい爆発を防止
することは困難である。本発明が解決しようとする課題
は、電解液のイオン伝導度を低下させず、かつ、電池が
実質的に満充電状態で極端な高温にさらされても激しい
爆発が起こるのを抑制したリチウム二次電池を提供する
ことである。However, if the above-mentioned conventional self-digestible substance or a substance having a high flash point is contained in the electrolytic solution, the ionic conductivity of the electrolytic solution is reduced. Discharge characteristics and low-temperature characteristics are reduced.
In addition, even when such a method was used, it was found that the battery exploded when dropped into a fire in a charged state (particularly an overcharged state). That is, even if a technique for making the electrolyte solution nonflammable is employed, it is difficult to prevent a violent explosion when the battery is extremely heated in a charged state. An object of the present invention is to provide a lithium battery that does not reduce the ionic conductivity of the electrolyte and that suppresses a violent explosion even when the battery is exposed to an extremely high temperature in a substantially fully charged state. It is to provide a secondary battery.
【0004】[0004]
【課題を解決するための手段】上記課題を解決するため
に本発明は、60℃を越える温度で充電状態にある正極
活物質を還元する材料と60℃を超える温度で充電状態
にある負極活物質を酸化する材料の少なくとも一方の材
料を電池内に含有することを特徴とする。上記材料を電
池内に含有させることで安全性を確保できる理由は、充
電状態の正極活物質を還元剤で還元させると電位が卑な
方向に進み(放電する)、また、充電状態の負極活物質
を酸化剤で酸化させると電位が貴な方向に進む(放電す
る)ことで、正、負極活物質のエネルギーが減少するか
らである。電池が加熱されると、前記のようにして事前
に活物質にエネルギーがなくなるので、激しい爆発が起
こらなくなるのである。また、上記酸化剤、還元剤は電
解液へ溶解しない物質を適宜選択可能であるため、従来
の難燃性剤のように電解液のイオン伝導度を低下させな
い。電池の一般的作動温度は−20℃〜60℃であるた
め、酸化、正極活物質の還元反応を開始させる温度は6
0℃を超える適宜の温度である必要性がある。In order to solve the above-mentioned problems, the present invention provides a material for reducing a positive electrode active material which is charged at a temperature exceeding 60 ° C. and a negative electrode active material which is charged at a temperature exceeding 60 ° C. The battery is characterized in that at least one of materials that oxidize a substance is contained in the battery. The reason that the safety can be ensured by incorporating the above materials into the battery is that when the positive electrode active material in the charged state is reduced with a reducing agent, the potential advances in a negative direction (discharges) and the negative electrode active in the charged state is discharged. This is because, when a substance is oxidized with an oxidizing agent, the potential advances (discharges) in a noble direction, so that the energy of the positive and negative electrode active materials decreases. When the battery is heated, a violent explosion does not occur because the active material has no energy in advance as described above. In addition, since the oxidizing agent and the reducing agent can be appropriately selected from substances that do not dissolve in the electrolytic solution, they do not lower the ionic conductivity of the electrolytic solution unlike the conventional flame retardant. Since the general operating temperature of the battery is −20 ° C. to 60 ° C., the temperature at which oxidation and reduction reaction of the positive electrode active material are started is 6 ° C.
It is necessary that the temperature be appropriately higher than 0 ° C.
【0005】[0005]
【発明の実施の形態】以下に本発明の実施の形態の一例
を、円筒形リチウムイオン二次電池(18650タイ
プ)を例に図1、2を参照しながら説明する。先ず、極
板内に添加する還元剤と酸化剤を説明する。還元剤にス
ズ粉末、酸化剤に塩化鉄粉末を用いて、これらの表面に
以下に示す方法で低密度ポリエチレンの被覆層を形成す
る。粒径5μmのスズ粉末と粒径0.5μmの低密度ポ
リエチレン粉末を奈良機械製のハイブリダイゼーション
システムに投入する。図1に示すように、ポリエチレン
の被覆工程では、スズ粉末2の表面にポリエチレン粉末
1を付け、次に成膜処理を行うことでスズ粉末2表面に
低密度ポリエチレン層3が形成される。また、塩化鉄粉
末も上記方法で低密度ポリエチレン層3を粉末表面に形
成できる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2 using a cylindrical lithium ion secondary battery (18650 type) as an example. First, the reducing agent and the oxidizing agent added to the electrode plate will be described. Using tin powder as the reducing agent and iron chloride powder as the oxidizing agent, a coating layer of low-density polyethylene is formed on these surfaces by the following method. A tin powder having a particle size of 5 μm and a low-density polyethylene powder having a particle size of 0.5 μm are charged into a hybridization system manufactured by Nara Machinery. As shown in FIG. 1, in the step of coating the polyethylene, the polyethylene powder 1 is applied to the surface of the tin powder 2, and then a film forming process is performed to form the low-density polyethylene layer 3 on the surface of the tin powder 2. The iron chloride powder can also form the low-density polyethylene layer 3 on the surface of the powder by the above method.
【0006】このポリエチレンの融点は、約115℃、
分子量は約4800である。当然ながら、ポリエチレン
は結晶性、分子量、枝分かれ、及び密度などにより融点
はある範囲内で変更可能である。極板内に添加したこれ
ら還元剤、酸化剤は、電池が加熱され低密度ポリエチレ
ン層が溶融して、還元剤、酸化剤の表面が露出したとき
に初めてその作用を開始する。従って、電池使用条件に
より適した融点のポリエチレンを使い分ける。The melting point of this polyethylene is about 115 ° C.
The molecular weight is about 4800. Naturally, the melting point of polyethylene can be changed within a certain range depending on crystallinity, molecular weight, branching, density and the like. The reducing agent and the oxidizing agent added to the electrode plate start to work only when the battery is heated and the low-density polyethylene layer is melted to expose the surfaces of the reducing agent and the oxidizing agent. Therefore, polyethylene having a melting point more suitable for the battery use conditions is properly used.
【0007】次に、正、負極の作製を説明する。正極
は、直径20μmのコバルト酸リチウムと直径3μmの
炭素粉末とポリフッ化ビニリデンと上記に示したスズ粉
末表面をポリエチレンで被覆した還元剤を80:5:
5:10wt%の比率でN−メチルピロリドンに投入混
合して、スラリを作製する。そして、20μmのアルミ
ニウム箔の両面にこのスラリを塗布、乾燥、圧延して、
正極合剤電極を作製し、その後54mm幅に切断して短
冊状にする。また、負極は粒径20μmの炭素材とポリ
フッ化ビニリデンと上記に示した塩化鉄粉末を80:1
0:10wt%の比率でN−メチルピロリドンに投入混
合して、スラリを作製する。そして、10μmの銅箔の
両面にこのスラリを塗布、乾燥、圧延して、負極合剤電
極を作製し、その後56mm幅に切断して短冊状にす
る。Next, the fabrication of the positive and negative electrodes will be described. The positive electrode was made of a lithium cobaltate having a diameter of 20 μm, a carbon powder having a diameter of 3 μm, polyvinylidene fluoride, and a reducing agent having the above-described tin powder coated with polyethylene at 80: 5:
A slurry is prepared by adding and mixing N-methylpyrrolidone at a ratio of 5:10 wt%. Then, this slurry is applied to both sides of a 20 μm aluminum foil, dried and rolled,
A positive electrode mixture electrode is prepared, and then cut into a width of 54 mm to form a strip. The negative electrode was composed of a carbon material having a particle diameter of 20 μm, polyvinylidene fluoride, and the above-described iron chloride powder at a ratio of 80: 1.
A slurry is prepared by charging and mixing with N-methylpyrrolidone at a ratio of 0:10 wt%. This slurry is applied to both sides of a 10 μm copper foil, dried and rolled to produce a negative electrode mixture electrode, and then cut into a width of 56 mm to form a strip.
【0008】次に、図2に示すように正極4と負極5と
を厚さ25μm幅58mmのポリエチレン微多孔膜から
なるセパレータ6を介して捲回し、スパイラル状の電極
群を作製する。この捲回電極群を電池容器に挿入し、予
め負極集電体の銅箔に溶接しておいたニッケルタブ端子
を容器の底に溶接する。次にプロピレンカーボネートと
ジメチルカーボネートを体積比で1:1に混合した溶液
にLiPF6を1mol/lの濃度で溶解した電解液を
電池容器に3.7ml注入した。次に、予め正極集電体
のアルミニウム箔に溶接したアルミニウムタブ端子を上
蓋に溶接して、上蓋を絶縁性のガスケットを介して電池
容器の上部に配置させ、この部分をかしめて電池を密閉
化した。作製した電池の初期容量は、1400mAhで
ある。Next, as shown in FIG. 2, the positive electrode 4 and the negative electrode 5 are wound through a separator 6 made of a polyethylene microporous film having a thickness of 25 μm and a width of 58 mm to form a spiral electrode group. The wound electrode group is inserted into a battery container, and a nickel tab terminal that has been welded to the copper foil of the negative electrode current collector in advance is welded to the bottom of the container. Next, 3.7 ml of an electrolyte obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solution in which propylene carbonate and dimethyl carbonate were mixed at a volume ratio of 1: 1 was injected into the battery container. Next, the aluminum tab terminal, which was previously welded to the aluminum foil of the positive electrode current collector, was welded to the upper lid, and the upper lid was placed at the top of the battery container via an insulating gasket. did. The initial capacity of the manufactured battery is 1400 mAh.
【0009】還元剤は、前記した材料のほかに塩化ス
ズ、鉄粉末、硫酸鉄、マグネシウム、アルミニウムアマ
ルガム、アルミニウムニッケル合金、水素化アルミニウ
ムリチウムなどの酸化反応を起こす材料であれば良い。
酸化剤は、前記した材料のほかに酸化銀、酢酸銅、酸化
銅、二酸化マンガン、二酸化鉛などの還元反応を起こす
材料であればよい。特に、緩やかな反応を起こす材料が
望ましい。また、電池反応に影響がなく、60℃以下で
は酸化、還元反応を起こさない材料がもっとも好まし
い。一方、酸化、還元反応を起こす温度は、電池使用温
度により決まるもので、通常は60℃を越える時点で反
応が進んで良いが、電池が高温雰囲気で使用される場
合、100℃を越える時点で反応が進んだ方がよい。The reducing agent may be any material that causes an oxidation reaction, such as tin chloride, iron powder, iron sulfate, magnesium, aluminum amalgam, aluminum nickel alloy, lithium aluminum hydride, etc., in addition to the above-mentioned materials.
The oxidizing agent may be any material that causes a reduction reaction, such as silver oxide, copper acetate, copper oxide, manganese dioxide, and lead dioxide, in addition to the above-described materials. In particular, a material that causes a mild reaction is desirable. A material that does not affect the battery reaction and does not cause an oxidation or reduction reaction at 60 ° C. or lower is most preferable. On the other hand, the temperature at which the oxidation and reduction reactions take place is determined by the battery operating temperature. Usually, the reaction may proceed at a temperature exceeding 60 ° C., but when the battery is used in a high-temperature atmosphere, the reaction proceeds at a temperature exceeding 100 ° C. The reaction should be better.
【0010】[0010]
【実施例】上記発明の実施の形態に記載した製法による
リチウムイオン二次電池(実施例1)と正極に還元剤の
み含有している電池(実施例2)と負極に酸化剤のみ含
有している電池(実施例3)と正、負極に還元剤、酸化
剤とも含有していない電池(従来例)を実施の形態に記
載した製法と同様に作製した。そして、充電を1400
mA、4.2V、2.5h、放電を1400mA、終止
電圧2.5Vして容量確認した後、充電を1400m
A、4.2V、3hと1250mA、4.4V、3h行
い、UL規格に準じた投射(電池の火中投下)試験を実
施した。各例とも10個の電池で試験を行い、その結果
を表1に示す。合格した個数を表中に示す。EXAMPLE A lithium ion secondary battery (Example 1), a battery containing only a reducing agent in the positive electrode (Example 2), and a oxidizing agent containing only the oxidizing agent in the negative electrode according to the above-described embodiment of the present invention. Battery (Example 3) and a battery (conventional example) in which the positive and negative electrodes contained neither a reducing agent nor an oxidizing agent were manufactured in the same manner as in the manufacturing method described in the embodiment. And charge 1400
mA, 4.2V, 2.5h, discharge 1400mA, final voltage 2.5V, check the capacity, then charge 1400m
A, 4.2 V, 3 h and 1250 mA, 4.4 V, 3 h were performed, and a projection test (battery drop-in into the fire) according to UL standard was performed. In each case, the test was performed with 10 batteries, and the results are shown in Table 1. The passed number is shown in the table.
【0011】[0011]
【表1】 [Table 1]
【0012】表1から判るように、本発明に係る電池
は、通常の電圧(4.2V)による充電後の投射試験は
言うまでもなく高い電圧による電圧(4.4V)による
過充電後の投射試験においても、ほとんどが合格してお
り、激しい爆発を抑制し安全性を高めている。特に、今
回の電池構成においては、正極に還元剤を添加した方が
安全性を高めていた。また、60℃までの充放電特性や
サイクル特性などのその他の電池特性には、本発明品と
従来品とで同様の結果が得られた。このように本発明品
が安全性を高めた理由は、以下に説明する結果と考えら
れる。通常の電池使用範囲では、正、負極合剤電極内に
含有の還元剤、酸化剤ともポリエチレン層に覆われてい
るため、電池反応に何ら影響を与えない。しかし、電池
が高温状態になったとき、電池内の温度が115℃以上
になるとポリエチレン層が溶融して、これで包まれてい
た還元剤、酸化剤が電池の活物質と接触し、酸化、還元
反応を起こす。そのため、正、負極活物質とも放電状態
に近づき、エネルギーが減少するため、高温時における
激しい爆発を抑制できるのである。As can be seen from Table 1, the battery according to the present invention has a projection test after charging with a normal voltage (4.2 V) and a projection test after overcharging with a voltage (4.4 V) with a high voltage. In most cases, it has passed, suppressing severe explosions and improving safety. In particular, in this battery configuration, the safety was enhanced by adding a reducing agent to the positive electrode. Further, with respect to other battery characteristics such as charge / discharge characteristics up to 60 ° C. and cycle characteristics, similar results were obtained between the product of the present invention and the conventional product. The reason why the product of the present invention has improved safety is considered to be the result described below. In a normal battery use range, both the reducing agent and the oxidizing agent contained in the positive and negative electrode mixture electrodes are covered with the polyethylene layer, so that the battery reaction is not affected at all. However, when the temperature of the battery rises to 115 ° C. or higher, the polyethylene layer melts, and the reducing agent and the oxidizing agent wrapped in the polyethylene layer come into contact with the active material of the battery, thereby oxidizing the battery. Causes a reduction reaction. For this reason, both the positive and negative electrode active materials approach a discharged state and the energy is reduced, so that a violent explosion at a high temperature can be suppressed.
【0013】上記実施例においては、還元剤、酸化剤を
ポリエチレンで覆った例を示したが、ポリエチレンでな
くても、電解液に不溶で60℃を越える適宜の温度で溶
融する材料であればどのような材料で被覆してもよく、
被覆を施さなくても還元剤、酸化剤自体が高温になった
とき初めて還元剤、酸化剤として作用する特性を有して
いるのならそれでも構わない。また、ひとつの材料で上
記の特性を有していればさらに好ましい。In the above embodiment, an example in which the reducing agent and the oxidizing agent are covered with polyethylene is shown. However, even if the material is not polyethylene, it is insoluble in the electrolytic solution and can be melted at an appropriate temperature exceeding 60 ° C. It may be coated with any material,
Even if no coating is applied, the reducing agent and the oxidizing agent may be used as long as they have the property of acting as the reducing agent and the oxidizing agent only when the temperature of the reducing agent and the oxidizing agent itself becomes high. It is more preferable that one material has the above characteristics.
【0014】[0014]
【発明の効果】本発明は、電池温度が60℃を越える適
宜の温度で充電状態の正極活物質を還元する材料、もし
くは充電状態の負極活物質を酸化する材料、もしくはこ
れら二つの材料を電池内に含有させることを特徴とする
ため、満充電状態の電池が高温において激しい爆発を起
こすのを抑制することができる。電池が満充電状態にな
い場合であっても、一定の高温になると充電状態にある
活物質は事前に放電状態に導くことができるのであるか
ら、極めて安全性の高いリチウム二次電池にすることが
できる。The present invention relates to a material for reducing a charged positive electrode active material, a material for oxidizing a charged negative electrode active material at an appropriate temperature where the battery temperature exceeds 60.degree. Since it is characterized in that it is contained in the battery, it is possible to suppress a violent explosion of a fully charged battery at a high temperature. Even if the battery is not in a fully charged state, the active material in a charged state can be brought into a discharged state in advance at a certain high temperature. Can be.
【図1】本発明に係る還元剤の調製の一例を説明する図
である。FIG. 1 is a diagram illustrating an example of preparation of a reducing agent according to the present invention.
【図2】本発明の実施例の電池の構成を示す説明図であ
る。FIG. 2 is an explanatory diagram showing a configuration of a battery according to an example of the present invention.
1.ポリエチレン粉末 2.スズ粉末 3.ポリエチレン層 4.正極 5.負極 6.セパレータ 1. 1. polyethylene powder 2. Tin powder 3. polyethylene layer Positive electrode 5. Negative electrode 6. Separator
Claims (2)
物質と有機電解液からなるリチウム二次電池において、
60℃を越える温度で充電状態にある正極活物質を還元
する材料と、60℃を超える温度で充電状態にある負極
活物質を酸化する材料の少なくとも一方の材料を電池内
に含有することを特徴とするリチウム二次電池。1. A lithium secondary battery comprising a positive electrode, a negative electrode active material and an organic electrolyte which can be repeatedly charged and discharged,
The battery contains at least one of a material that reduces a positive electrode active material that is charged at a temperature higher than 60 ° C. and a material that oxidizes a negative electrode active material that is charged at a temperature higher than 60 ° C. Lithium secondary battery.
る所定の温度で溶融する被覆層をもつ還元剤、負極活物
質を酸化する材料が60℃を越える所定の温度で溶融す
る被覆層をもつ酸化剤である請求項1記載のリチウム二
次電池。2. A reducing agent having a coating layer in which a material for reducing a positive electrode active material melts at a predetermined temperature exceeding 60 ° C., and a coating layer in which a material for oxidizing a negative electrode active material melts at a predetermined temperature exceeding 60 ° C. The lithium secondary battery according to claim 1, which is an oxidant having the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04996397A JP3358482B2 (en) | 1997-03-05 | 1997-03-05 | Lithium secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04996397A JP3358482B2 (en) | 1997-03-05 | 1997-03-05 | Lithium secondary battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10247523A true JPH10247523A (en) | 1998-09-14 |
JP3358482B2 JP3358482B2 (en) | 2002-12-16 |
Family
ID=12845689
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04996397A Expired - Fee Related JP3358482B2 (en) | 1997-03-05 | 1997-03-05 | Lithium secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3358482B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012719A (en) * | 2004-06-29 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte solution secondary battery |
JP2010539289A (en) * | 2007-09-14 | 2010-12-16 | ダウ グローバル テクノロジーズ インコーポレイティド | Coated fine polymer particles and method for coating fine polymer particles |
CN105449263A (en) * | 2014-08-22 | 2016-03-30 | 宁德时代新能源科技股份有限公司 | Lithium ion secondary battery |
-
1997
- 1997-03-05 JP JP04996397A patent/JP3358482B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006012719A (en) * | 2004-06-29 | 2006-01-12 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte solution secondary battery |
JP2010539289A (en) * | 2007-09-14 | 2010-12-16 | ダウ グローバル テクノロジーズ インコーポレイティド | Coated fine polymer particles and method for coating fine polymer particles |
CN105449263A (en) * | 2014-08-22 | 2016-03-30 | 宁德时代新能源科技股份有限公司 | Lithium ion secondary battery |
Also Published As
Publication number | Publication date |
---|---|
JP3358482B2 (en) | 2002-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3358478B2 (en) | Organic electrolyte secondary battery | |
JP3480190B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH09115523A (en) | Nonaqueous electrolytic secondary battery | |
JP2002110225A (en) | Non-aqueous electrolyte lithium secondary battery | |
JPH11176470A (en) | Organic electrolyte secondary battery | |
JP2003142078A (en) | Nonaqueous electrolyte secondary battery | |
JP3468015B2 (en) | Lithium secondary battery | |
JPH10125327A (en) | Organic electrolyte secondary battery | |
JP4907996B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2002298850A (en) | Battery | |
JPH11260349A (en) | Lithium secondary battery and positive electrode mixture used therefor | |
JP3358482B2 (en) | Lithium secondary battery | |
JP2004087226A (en) | Lithium secondary battery | |
JP3185273B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH11185809A (en) | Lithium secondary battery | |
JP2924329B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3383454B2 (en) | Lithium secondary battery | |
JP3371713B2 (en) | Organic electrolyte secondary battery | |
JP2730641B2 (en) | Lithium secondary battery | |
JP4752126B2 (en) | Non-aqueous electrolyte secondary battery | |
JP2000188132A (en) | Nonaqueous electrode secondary battery | |
JPH097602A (en) | Nonaqueous electrolyte secondary battery | |
JP3043175B2 (en) | Lithium secondary battery | |
JP2775754B2 (en) | Non-aqueous electrolyte secondary battery | |
JP3402233B2 (en) | Non-aqueous electrolyte secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081011 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |