[go: up one dir, main page]

JPH10244617A - Thin film with gas barrier properties - Google Patents

Thin film with gas barrier properties

Info

Publication number
JPH10244617A
JPH10244617A JP5198297A JP5198297A JPH10244617A JP H10244617 A JPH10244617 A JP H10244617A JP 5198297 A JP5198297 A JP 5198297A JP 5198297 A JP5198297 A JP 5198297A JP H10244617 A JPH10244617 A JP H10244617A
Authority
JP
Japan
Prior art keywords
thin film
film
gas barrier
particles
barrier properties
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5198297A
Other languages
Japanese (ja)
Other versions
JP3564919B2 (en
Inventor
Chiharu Okawara
千春 大川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP05198297A priority Critical patent/JP3564919B2/en
Publication of JPH10244617A publication Critical patent/JPH10244617A/en
Application granted granted Critical
Publication of JP3564919B2 publication Critical patent/JP3564919B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize the remarkable enhancement of gas barrier properties even when the thickness of a thin film is further reduced by specifying the average particulate diameter of a particle making up the thin film of an inorganic oxide to be formed at least, on one of the faces of a plastic film and the degree of flatness of the particle. SOLUTION: This thin film with gas barrier properties comprises a film and a thin film of an inorganic oxide. The inorganic oxide forming a thin film layer is a silicon oxide or an aluminum oxide which has high oxygen gas barrier properties, vapor barrier properties and transparency, and is low- priced from an industrial point of view. Therefore, these oxides are particularly preferable. The average particulate diameter of the particle constituting the thin film should be 20nm or less, and the degree of flatness of the particle should be 0.10 or less. This degree of flatness is an indicator showing the high flattening degree of the particle, so that when the degree of flatness is 0.10 or less, the particle tends to be easily packed more densely into the thin film without a gap and the oxygen gas and vapor barrier properties are enhanced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基材プラスチック
フィルム面に無機酸化物の薄膜を形成してなる、酸素ガ
スバリア性及び水蒸気バリア性に優れた透明な薄膜ガス
バリア性フィルムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent thin film gas barrier film having excellent oxygen gas barrier properties and water vapor barrier properties formed by forming a thin film of an inorganic oxide on the surface of a base plastic film.

【0002】[0002]

【従来の技術】従来より、プラスチックフィルムを基材
とし、その表面に酸化アルミニウム、酸化マグネシウ
ム、酸化珪素等の無機酸化物の薄膜を形成した薄膜ガス
バリア性フィルムは、水蒸気や酸素等の各種ガスの遮断
を必要とする物品の包装、食品や工業用品及び医薬品等
の変質を防止するため包装用途に広く利用されている。
また、薄膜ガスバリア性フィルムは、包装用途以外に
も、近年、液晶表示素子、太陽電池、電磁波シールド、
タッチパネル、EL用基板、カラーフィルター等で使用
する透明導電シートの一部などの新しい用途にも注目さ
れている。
2. Description of the Related Art Conventionally, a thin film gas barrier film comprising a plastic film as a base material and a thin film of an inorganic oxide such as aluminum oxide, magnesium oxide, or silicon oxide formed on the surface thereof has been used for forming various gases such as water vapor and oxygen. It is widely used for packaging of articles that need to be shut off and for preventing deterioration of foods, industrial supplies, pharmaceuticals, and the like.
In addition, thin film gas barrier films have recently been used for packaging, but also in recent years, liquid crystal display devices, solar cells, electromagnetic wave shielding,
Attention is also being paid to new uses such as a part of a transparent conductive sheet used for a touch panel, an EL substrate, a color filter, and the like.

【0003】そして、かかる薄膜ガスバリア性フィルム
に関し、ガスバリア性の向上などを目的とした種々の改
良検討がなされており、例えば、液晶性ポリエステルフ
ィルムの幅方向の平均粗さを規定したもの(特開平3−
176123)、二軸延伸ポリプロピレンフィルムの両
面の濡れ張力及び片面の面粗さを規定したフィルム(特
開平4−216829)、珪素酸化物が基材のプラスチ
ックフィルムの組織と混在させたフィルム(特開平4−
115940)、蒸着原料の比重及び平均粒径を規定し
たフィルム(特開平6−57417、特開平7−342
24)などが提案されている。また、薄膜ガスバリア性
フィルムでの主に基材フィルムと薄膜との密着性改良と
して、基材フィルムに樹脂コート又はアンカーコートを
したもの(特開平3−86539、特開平3−2318
38、特開平3−278946等)も多く提案されてい
る。
[0003] Various thin film gas barrier films have been studied for improvement for the purpose of improving gas barrier properties, and for example, those in which the average roughness in the width direction of a liquid crystalline polyester film is specified (Japanese Patent Laid-Open Publication No. 3-
176123), a film in which the wetting tension and the surface roughness of one side of a biaxially stretched polypropylene film are defined (Japanese Patent Laid-Open No. 4-216829), and a film in which silicon oxide is mixed with the structure of a plastic film as a base material (Japanese Patent Laid-Open No. 4-
115940), a film in which the specific gravity and the average particle size of the vapor deposition raw material are specified (JP-A-6-57417, JP-A-7-342)
24) has been proposed. In order to improve the adhesion between the base film and the thin film mainly in the thin film gas barrier film, a resin film or an anchor coat is applied to the base film (JP-A-3-86539, JP-A-3-2318).
38, JP-A-3-278946, etc.).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
ような方法で改良されたフィルムでも、食料品等の常温
での長期保存が十分といえる酸素ガスバリア性及び水蒸
気バリア性を有するフィルムを得るためには薄膜部分が
厚くなる傾向があり、その結果として、薄膜のクラック
発生、密着性低下、透明性、外観の低下、フィルムのカ
ール等の問題が生じたり、また、コスト高にもなり、実
用性の面でなお十分でない。また、薄膜の厚さを厚くし
ても、酸素ガスバリア性及び水蒸気バリア性の向上には
限度があり、同じ膜厚でも更に高度なガスバリア性を有
するフィルムが望まれていた。
However, even with a film improved by the above method, it is necessary to obtain a film having an oxygen gas barrier property and a water vapor barrier property, which can be said to be sufficient for long-term storage at room temperature of foodstuffs and the like. Has a tendency to thicken the thin film portion, and as a result, problems such as crack generation of the thin film, reduced adhesion, transparency, reduced appearance, curl of the film, and the like, and also increased cost, Is still not enough. Further, even if the thickness of the thin film is increased, there is a limit in improving the oxygen gas barrier property and the water vapor barrier property, and a film having a higher gas barrier property with the same film thickness has been desired.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を行った結果、薄膜ガスバリア
性フィルムの薄膜部分を構成する粒子がより緻密に充填
することで薄膜の厚さを薄くてもガスバリア性が顕著に
向上することを見いだし、本発明に到達した。即ち、本
発明は、プラスチックフィルムの少なくとも片面に無機
酸化物から成る薄膜を形成した薄膜ガスバリア性フィル
ムにおいて、薄膜を構成する粒子の平均粒子径が20n
m以下であり、かつ、該粒子の偏平率が0.10以下で
あることを特徴とする薄膜ガスバリア性フィルムに存す
る。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the particles constituting the thin film portion of the thin film gas barrier film are more densely packed, thereby increasing the thickness of the thin film. The inventors have found that the gas barrier properties are significantly improved even if the thickness is reduced, and have reached the present invention. That is, the present invention relates to a thin film gas barrier film in which a thin film made of an inorganic oxide is formed on at least one surface of a plastic film, wherein the average particle diameter of the particles constituting the thin film is 20 n
m or less, and the flatness of the particles is 0.10 or less.

【0006】[0006]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の薄膜ガスバリア性フィルムの基材フィルムの原
料としては、フィルムとして利用されるようなプラスチ
ック原料であれば特に制限はない。具体的な例として
は、エチレン、プロピレン、ブテン等の単独重合体又は
共重合体等のポリオレフィン(PO)系樹脂、環状ポリ
オレフィン等の非晶質ポリオレフィン樹脂(APO)、
ポリエチレンテレフタレート(PET)、ポリエチレン
−2,6−ナフタレート、(PEN)等のポリエステル
系樹脂、ナイロン6、ナイロン12、共重合ナイロン等
のポリアミド(PA)系樹脂、ポリビニルアルコール
(PVA)樹脂、エチレン−ビニルアルコール共重合体
(EVOH)等のポリビニルアルコール系樹脂、ポリイ
ミド(PI)樹脂、ポリエーテルイミド(PEI)樹
脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン
(PES)樹脂、ポリエーテルエーテルケトン(PEE
K)樹脂、ポリカーボネート(PC)樹脂、ポリビニル
ブチラール(PVB)樹脂、ポリアリレート(PAR)
樹脂、エチレン−四フッ化エチレン共重合体(ETF
E)、三フッ化塩化エチレン(PFA)、四フッ化エチ
レン−パーフルオロアルキルビニルエーテル共重合体
(FEP)、フッ化ビニリデン(PVDF)、フッ化ビ
ニル(PVF)、パーフルオロエチレン−パーフロロプ
ロピレン−パーフロロビニルエーテル三元共重合体(E
PE)等のフッ素系樹脂、ラジカル反応性不飽和化合物
を有するアクリレート化合物より成る樹脂組成物、この
アクリレー化合物とチオール基を有するメルカプト化合
物より成る樹脂組成物、エポキシアクリレート、ウレタ
ンアクリレート、ポリエステルアクリレート、ポリエー
テルアクリレート等のオリゴマーを多官能アクリレート
モノマーに溶融せしめた樹脂組成物等の光硬化性樹脂、
及びこれらの混合物などが挙げられる。なお、以上のプ
ラスチック原料中には、公知の添加剤、例えば、帯電防
止剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤
等を添加することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
The raw material of the base film of the thin film gas barrier film of the present invention is not particularly limited as long as it is a plastic raw material used as a film. Specific examples include polyolefin (PO) resins such as homopolymers or copolymers such as ethylene, propylene, and butene; amorphous polyolefin resins (APO) such as cyclic polyolefins;
Polyester resins such as polyethylene terephthalate (PET), polyethylene-2,6-naphthalate and (PEN); polyamide (PA) resins such as nylon 6, nylon 12, and copolymerized nylon; polyvinyl alcohol (PVA) resins; Polyvinyl alcohol-based resin such as vinyl alcohol copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin, polyetheretherketone (PEE)
K) Resin, polycarbonate (PC) resin, polyvinyl butyral (PVB) resin, polyarylate (PAR)
Resin, ethylene-tetrafluoroethylene copolymer (ETF
E), ethylene trifluoride chloride (PFA), ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (PVF), perfluoroethylene-perfluoropropylene- Perfluorovinyl ether terpolymer (E
A resin composition comprising a fluororesin such as PE), an acrylate compound having a radically reactive unsaturated compound, a resin composition comprising the acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate, polyester acrylate, poly Photocurable resins such as resin compositions in which oligomers such as ether acrylate are melted into polyfunctional acrylate monomers,
And mixtures thereof. Known additives such as an antistatic agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, and a coloring agent can be added to the above-mentioned plastic raw materials.

【0007】以上のプラスチック原料から得られるフィ
ルムは、未延伸フィルムでもよいし延伸フィルムでもよ
い。また、他のプラスチックフィルムと積層されていて
もよい。かかるプラスチックフィルムは、従来公知の一
般的な方法により製造することができる。例えば、原料
樹脂を押し出し機により溶融し、環状ダイやTダイによ
り押し出して、急冷することにより実質的に無定型で配
向していない未延伸フィルムを製造することができる。
また、延伸フィルムは、この未延伸フィルムを一軸延
伸、テンター式逐次二軸延伸、テンター式同時二軸延
伸、チューブラー式同時二軸延伸などの従来公知の一般
的な方法により、フィルムの流れ(縦軸)方向又はフィ
ルムの流れ方向とそれに直角な(横軸)方向に延伸する
ことにより製造することができる。延伸倍率は、適宜原
料のプラスチックにより選択することができるが、縦軸
方向及び横軸方向にそれぞれ2〜10倍が好ましい。
[0007] The film obtained from the above plastic raw material may be an unstretched film or a stretched film. Further, it may be laminated with another plastic film. Such a plastic film can be manufactured by a conventionally known general method. For example, a raw resin is melted by an extruder, extruded by an annular die or T die, and quenched to produce a substantially amorphous unoriented film.
Further, the stretched film is obtained by subjecting the unstretched film to a film flow (hereinafter, referred to as a film flow) by a conventionally known general method such as uniaxial stretching, tenter-type sequential biaxial stretching, tenter-type simultaneous biaxial stretching, or tubular simultaneous biaxial stretching. It can be produced by stretching in the direction of the vertical axis) or in the direction perpendicular to the flow direction of the film (horizontal axis). The stretching ratio can be appropriately selected depending on the plastic used as a raw material, but is preferably 2 to 10 times in each of the vertical and horizontal axes.

【0008】プラスチックフィルムの厚さは、薄膜ガス
バリア性フィルムの基材としての機械強度、可撓性、透
明性等、用途に応じ、通常5〜500μm、好ましくは
10〜200μmの範囲で選択される。また、フィルム
の幅や長さは特に制限はなく、適宜用途に応じて選択す
ることができる。更に、該フィルムには、コロナ放電処
理、火炎処理、プラズマ処理、グロー放電処理、粗面化
処理、薬品処理等の従来公知の方法による表面処理や、
薄膜とフィルムとの密着性を向上させるためにアンカー
コート処理などを行うことができる。かかる処理は、フ
ィルムの製造途中又は製造された後の二次加工処理等に
より行うことができる。
[0008] The thickness of the plastic film is selected in the range of usually 5 to 500 µm, preferably 10 to 200 µm, depending on the application such as mechanical strength, flexibility and transparency as a base material of the thin film gas barrier film. . Further, the width and length of the film are not particularly limited, and can be appropriately selected depending on the application. Further, the film, corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, surface treatment, surface treatment by a conventionally known method such as chemical treatment,
An anchor coat treatment or the like can be performed to improve the adhesion between the thin film and the film. Such a treatment can be performed during the production of the film or by a secondary processing after the production.

【0009】アンカーコート処理によれば、薄膜とフィ
ルムとの密着性を向上させることができるが、その結果
として良好なガスバリア性が発現しやすくなるという点
でも望ましいといえる。アンカーコート層の厚さは、使
用するフィルムの表面凹凸に合わせ、0.005〜5μ
mの範囲とするのが好ましい。0.005μm未満で
は、塗布むらが生じやすく、一方、5μmを越えると基
材フィルムとアンカーコート層との密着性が悪くなる傾
向があるのであまり好ましくない。アンカーコート剤と
しては、ポリエステル樹脂、イソシアネート樹脂、ウレ
タン樹脂、アクリル樹脂、エチレンビニルアルコール樹
脂、ビニル変性樹脂、エポキシ樹脂、変性スチレン樹
脂、変性シリコン樹脂及びアルキルチタネート等を単独
あるいいは2種以上を併せて使用することができる。ま
た、これらには従来公知の添加剤を加えることもでき
る。
According to the anchor coating treatment, it is possible to improve the adhesion between the thin film and the film, but as a result, it can be said that good gas barrier properties are easily developed. The thickness of the anchor coat layer is 0.005 to 5 μm according to the surface irregularities of the film to be used.
It is preferred to be within the range of m. If it is less than 0.005 μm, coating unevenness is likely to occur, while if it exceeds 5 μm, the adhesiveness between the base film and the anchor coat layer tends to deteriorate, which is not so preferable. As the anchor coating agent, a polyester resin, an isocyanate resin, a urethane resin, an acrylic resin, an ethylene vinyl alcohol resin, a vinyl modified resin, an epoxy resin, a modified styrene resin, a modified silicon resin, an alkyl titanate, or a mixture of two or more of them. They can be used together. Further, conventionally known additives can be added to these.

【0010】一方、本発明の薄膜ガスバリア性フィルム
の薄膜層を形成する無機酸化物は、金属、非金属、亜金
属の酸化物であり、具体例としては、酸化アルミニウ
ム、酸化亜鉛、酸化アンチモン、酸化インジウム、酸化
カルシウム、酸化カドミウム、酸化銀、酸化金、酸化ク
ロム、珪素酸化物、酸化コバルト、酸化ジルコニウム、
酸化スズ、酸化チタン、酸化鉄、酸化銅、酸化ニッケ
ル、酸化白金、酸化パラジウム、酸化ビスマス、酸化マ
グネシウム、酸化マンガン、酸化モリブデン、酸化バナ
ジウム、酸化バリウム等が挙げられるが、珪素酸化物、
酸化アルミニウムが、高度な酸素ガスバリア性、水蒸気
バリア性及び透明性とを兼ね備え、かつ、工業的に安価
であるので特に好ましい。かかる珪素酸化物、酸化アル
ミニウムは各々単独で使用してもよいし、混合物として
使用してもよい。なお、無機酸化物には、微量の金属、
非金属、亜金属単体やそれらの水酸化物、また、可撓性
を向上させるために適宜炭素又はフッ素が含まれていて
もよい。
On the other hand, the inorganic oxide forming the thin film layer of the thin film gas barrier film of the present invention is an oxide of a metal, a nonmetal or a submetal, and specific examples thereof include aluminum oxide, zinc oxide, antimony oxide, Indium oxide, calcium oxide, cadmium oxide, silver oxide, gold oxide, chromium oxide, silicon oxide, cobalt oxide, zirconium oxide,
Tin oxide, titanium oxide, iron oxide, copper oxide, nickel oxide, platinum oxide, palladium oxide, bismuth oxide, magnesium oxide, manganese oxide, molybdenum oxide, vanadium oxide, barium oxide, and the like.
Aluminum oxide is particularly preferred because it has high oxygen gas barrier properties, high water vapor barrier properties and transparency, and is industrially inexpensive. Such silicon oxide and aluminum oxide may be used alone or as a mixture. In addition, a small amount of metal,
Non-metals, sub-metals or hydroxides thereof, and carbon or fluorine may be appropriately contained in order to improve flexibility.

【0011】本発明の薄膜ガスバリア性フィルムは、以
上のようなフィルムと無機酸化物の薄膜とから成るが、
その薄膜を構成する粒子の平均粒子径が20nm以下で
あることを要する。粒径が20nm以下になると酸素ガ
スバリア性及び水蒸気バリア性が向上するが、その理由
として、薄膜中で粒子が高密度で充填し、また基材フィ
ルムの表面凹凸を隙間なく効率的に被覆できるようにな
るためと推定される。本発明における薄膜の粒子の粒径
とは、薄膜を形成する平均的粒子の粒子径を意味するも
のであり、その下限は特に限定はないが、平均粒径は小
さいほど望ましく、好ましくは15nm以下、特に好ま
しくは10nm以下である。なお、ここでの薄膜を構成
する粒子の平均粒径とは、基材のフィルム上に形成され
た薄膜を構成する無機酸化物の各粒子の平均粒径を意味
し、蒸着前の無機粒子の平均粒径を意味するものではな
い。
The thin film gas barrier film of the present invention comprises the above film and a thin film of an inorganic oxide.
It is necessary that the average particle diameter of the particles constituting the thin film is 20 nm or less. When the particle size is 20 nm or less, the oxygen gas barrier property and the water vapor barrier property are improved. The reason is that the particles are filled at a high density in the thin film, and the surface unevenness of the base film can be efficiently covered without gaps. It is estimated that The particle size of the particles of the thin film in the present invention means the particle size of the average particles forming the thin film, the lower limit is not particularly limited, but the smaller the average particle size, the more desirable, preferably 15 nm or less And particularly preferably 10 nm or less. Here, the average particle size of the particles constituting the thin film means the average particle size of each particle of the inorganic oxide constituting the thin film formed on the substrate film, and the inorganic particles before the vapor deposition. It does not mean the average particle size.

【0012】また、本発明の薄膜ガスバリア性フィルム
を規定する重要な要件として、粒子偏平率が0.10以
下、好ましくは0.08以下であることを必要である。
かかる偏平率とは、粒子の偏平化の度合いが大きいを示
す指標であって、偏平率が0.10以下より小さいと、
薄膜中の粒子がより隙間なく緻密に充填され易いため、
より高度な酸素ガスバリア性及び水蒸気バリア性を発現
するものと推定される。
An important requirement for defining the thin film gas barrier film of the present invention is that the particle flatness is 0.10 or less, preferably 0.08 or less.
Such a flattening ratio is an index indicating that the degree of flattening of the particles is large, and when the flattening ratio is smaller than 0.10 or less,
Because the particles in the thin film are more likely to be densely packed without gaps,
It is presumed that they exhibit higher oxygen gas barrier properties and water vapor barrier properties.

【0013】以上の本発明の薄膜ガスバリア性フィルム
で規定する薄膜を構成する粒子の平均粒子径と偏平率
は、原子間力顕微鏡(以下「AFM」という。)により
測定したAFM凹凸像を解析することにより求めること
ができる。AFMとしては、Digital Inst
ruments社、セイコー電子工業社、Topome
trix社等から市販されている装置をそのまま使用す
ることができる。この場合、Q.Zong,D.Inn
is,K.Kjoller and V.B.Elin
gs、 Surf.Sci.Letter,(199
3) Vol.290,p688〜692に説明のある
共振モードに相当する測定モードが採用される。例え
ば、Digital Instruments社製の装
置NanoScope(c)を使用した場合にはタッピン
グモードで、また、セイコー電子工業社製SPI370
0を使用した場合にはダイナミックフォースモードで測
定を実施するとよい。
The average particle size and flatness of the particles constituting the thin film defined by the thin film gas barrier film of the present invention are analyzed by analyzing an AFM unevenness image measured by an atomic force microscope (hereinafter, referred to as "AFM"). Can be obtained by As AFM, Digital Inst
instruments, Seiko Electronic Industries, Topome
A device commercially available from trix or the like can be used as it is. In this case, Q. Zong, D .; Inn
is, K .; Kjoller and V.S. B. Elin
gs, Surf. Sci. Letter, (199
3) Vol. 290, pages 688 to 692, a measurement mode corresponding to the resonance mode described is employed. For example, when a device NanoScope (c) manufactured by Digital Instruments is used, a tapping mode is used, and an SPI370 manufactured by Seiko Denshi Kogyo is used.
When 0 is used, the measurement should be performed in the dynamic force mode.

【0014】薄膜表面の粒子の偏平率は、例えば、セイ
コー電子工業製SPI3700を使用した場合は、それ
により測定したAFM凹凸像について、基材のプラスチ
ックフィルムに由来する大きな凹凸やうねりを平滑化す
る処理として、該AFM装置に付属のソフトウエアで3
次の傾斜自動補正処理を行い、次いで、任意に選択した
1〜数個の粒子について、装置付属のソフトウエアでラ
イン解析を行い、粒子の断面データから、粒子の底面半
径rと粒子の高さzを求め、z/rを計算する。本願で
は、同様にして解析した粒子100個分のz/rの平均
値を持って、特に薄膜ガスバリア性フィルムの粒子の偏
平率と定義した。また、上記で解析した粒子100個分
の粒子の底面半径rの平均値を持って、薄膜を構成する
粒子の平均粒径と定義した。
The flatness of the particles on the surface of the thin film is determined, for example, by using the SPI3700 manufactured by Seiko Denshi Kogyo to smooth the large irregularities and undulations derived from the plastic film of the substrate in the AFM irregularity image measured thereby. As processing, 3 software using the software attached to the AFM device
The following automatic inclination correction processing is performed, and then, for one to several particles arbitrarily selected, line analysis is performed using software attached to the apparatus, and from the cross-sectional data of the particles, the bottom radius r of the particles and the height of the particles are obtained. Find z and calculate z / r. In the present application, the average value of z / r for 100 particles analyzed in the same manner is defined as the flatness of the particles of the thin film gas barrier film. In addition, the average value of the bottom radius r of 100 particles analyzed above was defined as the average particle size of the particles constituting the thin film.

【0015】上記のライン解析において、任意の粒子を
選択するときは、異常に大きく又は小さく見える粒子は
省き、且つ、選択する粒子の直径を通すように、即ちそ
れら粒子の頂点と粒子の端を含むようにして解析する線
分を設定する。以下図面を用いて説明するに、図1にラ
イン解析する際のx−y画面の粒子の拡大模式図を、図
2にライン解析の線分の断面図を示す。測定点は、それ
ぞれ(xi,yi,zi)値を持っており、図1において
粒子の頂点をB(x2,y2,z2)と粒子の端の点をA
(x1,y1,z1)及びC(x3,y3,z3)とすると、
解析する粒子の線分は、下記の式(1)、(2)満たす
断面像を与えるものでなければならない。但し、選択す
る線分のベースにうねりが存在する場合は、うねりのカ
ットオフ値(λc)以下のデータを落とした表示を用い
てもよい。
In the line analysis described above, when selecting arbitrary particles, particles that appear abnormally large or small are omitted, and the diameters of the selected particles are passed through, that is, the apexes of the particles and the ends of the particles are set. Set the line segment to be analyzed so as to include it. Hereinafter, with reference to the drawings, FIG. 1 is an enlarged schematic diagram of particles on an xy screen when performing line analysis, and FIG. 2 is a cross-sectional view of a line segment of line analysis. Measurement points, respectively (x i, y i, z i) has a value, the vertices of the particles B in FIG. 1 (x 2, y 2, z 2) and a point at the end of the particle A
(X 1 , y 1 , z 1 ) and C (x 3 , y 3 , z 3 ),
The line segment of the particle to be analyzed must provide a cross-sectional image satisfying the following equations (1) and (2). However, if the swell exists at the base of the selected line segment, a display in which data equal to or less than the swell cutoff value (λc) is dropped may be used.

【0016】[0016]

【数1】 |z1−z3|≦0.05z2 ・・・(1)[Number 1] | z 1 -z 3 | ≦ 0.05z 2 ··· (1)

【数2】 0.9r2≦r1≦1.1r2 ・・・(2)## EQU2 ## 0.9r 2 ≦ r 1 ≦ 1.1r 2 (2)

【0017】ここで、薄膜表面の粒子の底面半径rと粒
子の高さzは、点Aと点B、または点Cと点Bの2点間
のどちらかを選択し、解析する。ここでは点Aと点Bを
用いて説明するに、薄膜表面の粒子の底面半径rは、点
Aと点Bの距離であり、下記式(3)で表される値(n
m)である。また、薄膜表面の粒子の高さzは、点Aと
点B、または点Cと点Bの2点間の高低差であり、下記
式(4)で表される値(nm)である。
Here, the bottom radius r of the particles on the surface of the thin film and the height z of the particles are selected from the two points A and B or C and B and analyzed. Here, the description will be made using the points A and B. The bottom radius r of the particles on the surface of the thin film is the distance between the points A and B, and the value (n) represented by the following equation (3)
m). The height z of the particles on the surface of the thin film is a height difference between two points A and B or C and B, and is a value (nm) represented by the following equation (4).

【0018】[0018]

【数3】 r=[(x1−x22+(y1−y221/2 ・・・(3)R = [(x 1 −x 2 ) 2 + (y 1 −y 2 ) 2 ] 1/2 (3)

【数4】 z=|z1−z2| ・・・(4)(4) z = | z 1 −z 2 | (4)

【0019】以上の本発明の薄膜ガスバリア性フィルム
の薄膜の厚さは特に制限はなく、無機酸化物の種類等に
よっても異なるが、酸素ガスバリア性及び水蒸気バリア
性、更には経済性を考慮すると、薄膜の厚さは5〜50
nmが好ましい。更に高度な酸素ガスバリア性や水蒸気
バリア性を得るためには薄膜の厚さを厚くすればよい
が、薄膜の厚さが5nm未満では薄膜が島状になって薄
膜が形成されない箇所が生ずる可能性があり均一な膜が
得られない傾向があるので余り好ましくない。また、包
材に用いる薄膜ガスバリア性フィルムは一般に透明性が
高いことが望まれる。この場合のフィルムの全光線透過
率は通常85%以上、好ましくは90%以上のものが要
求されるが、本発明の薄膜ガスバリア性フィルムは、薄
膜の厚さを上記の5〜50nmの範囲においてかかる基
準を容易に満たすことができる。
Although the thickness of the thin film of the thin film gas barrier film of the present invention is not particularly limited and varies depending on the kind of the inorganic oxide, etc., considering the oxygen gas barrier property and the water vapor barrier property, and further considering the economic efficiency, The thickness of the thin film is 5-50
nm is preferred. In order to obtain more advanced oxygen gas barrier properties and water vapor barrier properties, the thickness of the thin film may be increased. However, if the thickness of the thin film is less than 5 nm, there is a possibility that the thin film becomes island-shaped and a portion where the thin film is not formed may occur. This is not preferable because there is a tendency that a uniform film cannot be obtained. It is generally desired that the thin film gas barrier film used for the packaging material has high transparency. In this case, the film is required to have a total light transmittance of usually 85% or more, preferably 90% or more. However, the thin film gas barrier film of the present invention has a thickness of the thin film within the above range of 5 to 50 nm. Such criteria can be easily satisfied.

【0020】本発明の薄膜ガスバリア性フィルムにおい
て、基材のプラスチックフィルムに薄膜を形成する方法
としては、得られた薄膜ガスバリア性フィルムの薄膜を
構成する粒子の平均粒子径が20nm以下であり、か
つ、該粒子の偏平率が0.08以下であるように公知の
蒸着方法の条件を最適化すればよい。具体的な蒸着方法
としては、抵抗加熱法、高周波誘導加熱法、電子ビーム
照射加熱法又はレーザー加熱法による真空蒸着法、イオ
ンプレーティング法、スパッタリング法、CVD法等が
採用できる。また、薄膜を形成する蒸着材料としては、
金属単体や無機酸化物又はそれらの混合物が使用でき、
金属単体の場合は、酸素ガスを導入することにより、形
成された薄膜が無機酸化物となる。
In the thin film gas barrier film of the present invention, as a method of forming a thin film on a base plastic film, the thin film of the obtained thin film gas barrier film has an average particle diameter of 20 nm or less, and The conditions of the known vapor deposition method may be optimized so that the flatness of the particles is 0.08 or less. Specific examples of the deposition method include a resistance heating method, a high-frequency induction heating method, a vacuum deposition method using an electron beam irradiation heating method or a laser heating method, an ion plating method, a sputtering method, and a CVD method. In addition, as a deposition material for forming a thin film,
Simple metals or inorganic oxides or mixtures thereof can be used,
In the case of a simple metal, the formed thin film becomes an inorganic oxide by introducing oxygen gas.

【0021】[0021]

【実施例】以下、本発明の内容及び効果を実施例により
更に詳細に説明するが、本発明はその要旨を越えない限
り以下の例に限定されるものではない。なお、以下の実
施例におけるフィルムの測定及び評価の方法は以下の通
りである。 <薄膜表面の粒子の偏平率>原子間力顕微鏡(AFM)
として、セイコー電子工業製SPI3700を使用し、
ダイナミックフォースモードで、実施例及び比較例で得
られた薄膜ガスバリア性フィルムの薄膜面を1μm×1
μmの面積をx、y方向とも512分割で測定したAF
M凹凸像について、3次の傾斜自動補正処理を行った
後、任意の粒子を選択し、ライン解析を行って、薄膜表
面の粒子の断面像から粒子の高さzと粒子半径rを解析
し、z/rを求めた。そして、粒子100個分のz/r
の平均値を、薄膜ガスバリア性フィルムを構成する粒子
の偏平率の値とした。この際、測定に用いるカンチレバ
ーは、磨耗や汚れのない状態のものを用いた。また、測
定する箇所は、フィルム中の滑剤やフィラー等による高
さ数10nmの突起及び深さ数10nmの窪みのない箇
所とした。
EXAMPLES Hereinafter, the contents and effects of the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist. In addition, the method of the measurement and evaluation of the film in the following Examples is as follows. <Flatness of particles on thin film surface> Atomic force microscope (AFM)
As the SPI3700 manufactured by Seiko Denshi Kogyo,
In the dynamic force mode, the thin film surface of the thin film gas barrier film obtained in Examples and Comparative Examples was 1 μm × 1
AF where the area of μm was measured in 512 divisions in both the x and y directions.
After performing the tertiary tilt automatic correction process on the M unevenness image, select an arbitrary particle, perform line analysis, and analyze the particle height z and particle radius r from the cross-sectional image of the particle on the thin film surface. , Z / r were determined. And z / r for 100 particles
Was defined as the value of the flatness of the particles constituting the thin film gas barrier film. At this time, the cantilever used for the measurement had no wear or dirt. In addition, the location to be measured was a location without protrusions of several tens nm in height and dents of several tens nm in depth due to lubricants, fillers and the like in the film.

【0022】<薄膜を構成する粒子の平均粒径>上記の
薄膜表面の粒子の偏平率のライン解析の際に測定した粒
子100個分のrの平均値として求めた。 <薄膜の厚さ>実施例及び比較例により得られた薄膜ガ
スバリア性フィルムの断面を透過型電子顕微鏡(日立製
作所製、H−600型)で観察し、薄膜の厚さを測定し
た。 <酸素透過率>ASTMD−3985に準拠して、酸素
透過率測定装置(モダンコントロール社製、OX−TR
AN100)を使用し、温度25℃、相対湿度95%の
条件下で測定した。
<Average Particle Size of Particles Constituting Thin Film> The average value of r of 100 particles measured during the line analysis of the flatness of the particles on the surface of the thin film was obtained. <Thin Film Thickness> The cross section of the thin film gas barrier film obtained in each of Examples and Comparative Examples was observed with a transmission electron microscope (H-600, manufactured by Hitachi, Ltd.), and the thickness of the thin film was measured. <Oxygen permeability> According to ASTM D-3985, an oxygen permeability measuring device (OX-TR, manufactured by Modern Control Co., Ltd.)
The measurement was performed under the conditions of a temperature of 25 ° C. and a relative humidity of 95% using AN100).

【0023】<水蒸気透過率>水蒸気透過率測定装置
(モダンコントロール社製、Permatran−W
1)を使用して、温度40℃、相対湿度90%の条件下
で測定した。 <透明性>光度計(NIPPON DENSHOKU社
製NDH−300A)により全光線透過率を測定した。
<Water vapor transmission rate> A water vapor transmission rate measuring apparatus (Permatran-W manufactured by Modern Control Co., Ltd.)
Using 1), the measurement was performed under the conditions of a temperature of 40 ° C. and a relative humidity of 90%. <Transparency> The total light transmittance was measured with a photometer (NDH-300A manufactured by NIPPON DENSHOKU).

【0024】実施例1 二軸延伸ポリエチレンテレフタレートフィルム(ダイア
ホイルヘキスト(株)製、H−500、厚さ12μm)
のコロナ処理面に、イソシアネート化合物(日本ポリウ
レタン工業(株)製コロネートL)と飽和ポリエステル
(東洋紡績(株)製バイロン300)を混合し、塗布層
の平均厚さ約0.1μmで塗布して、アンカーコートを
施した。このフィルムの塗布面に、巻取り式真空蒸着装
置を使用し、蒸着材料としてSiO(住友シチックス
(株)製)を高周波誘導加熱源(日本真空技術(株)製
最大出力5.04KVA)を用い、加熱出力55%で蒸
発させ、圧力2x10-5Torr、蒸着間距離300m
mの条件下で、膜厚20nmの珪素酸化物の薄膜が形成
された薄膜ガスバリア性フィルムを得た。得られた薄膜
ガスバリア性フィルムの物性結果を表−1に示す。
Example 1 Biaxially stretched polyethylene terephthalate film (H-500, manufactured by Diafoil Hoechst Co., Ltd., thickness 12 μm)
Is mixed with an isocyanate compound (Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.) and a saturated polyester (Byron 300 manufactured by Toyobo Co., Ltd.), and coated with an average coating layer thickness of about 0.1 μm. And an anchor coat. On the coating surface of this film, a winding type vacuum evaporation apparatus was used, and SiO (manufactured by Sumitomo Citix Co., Ltd.) was used as an evaporation material using a high frequency induction heating source (maximum output: 5.04 KVA manufactured by Nippon Vacuum Engineering Co., Ltd.) , Evaporated at a heating output of 55%, pressure 2 × 10 −5 Torr, distance between depositions 300 m
Under the conditions of m, a thin film gas barrier film on which a silicon oxide thin film having a thickness of 20 nm was formed was obtained. Table 1 shows the physical property results of the obtained thin film gas barrier film.

【0025】実施例2 実施例1において、加熱出力を80%に代えた他は、同
様な方法で珪素酸化物の薄膜が形成された薄膜ガスバリ
ア性フィルムを得た。得られた薄膜ガスバリア性フィル
ムの物性結果を表−1に示す。 実施例3 実施例1において、蒸着間距離を450mmに代えた他
は、同様な方法で珪素酸化物の薄膜が形成された薄膜ガ
スバリア性フィルムを得た。得られた薄膜ガスバリア性
フィルムの物性結果を表−1に示す。 実施例4 実施例1において、酸素ガスを導入し圧力を1x10-4
Torrに代えた他は、同様な方法で珪素酸化物の薄膜
が形成された薄膜ガスバリア性フィルムを得た。得られ
た薄膜ガスバリア性フィルムの物性結果を表−1に示
す。
Example 2 A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner as in Example 1 except that the heating output was changed to 80%. Table 1 shows the physical property results of the obtained thin film gas barrier film. Example 3 A thin-film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner as in Example 1, except that the distance between vapor depositions was changed to 450 mm. Table 1 shows the physical property results of the obtained thin film gas barrier film. Example 4 In Example 1, oxygen gas was introduced to reduce the pressure to 1 × 10 −4.
A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner except that Torr was used. Table 1 shows the physical property results of the obtained thin film gas barrier film.

【0026】実施例5 実施例1において、加熱を抵抗加熱方式に代え、ルツボ
温度を1350℃にし蒸着を行った他は、同様な方法で
珪素酸化物の薄膜が形成された薄膜ガスバリア性フィル
ムを得た。得られた薄膜ガスバリア性フィルムの物性結
果を表−1に示す。 実施例6 実施例1において、アンカーコート剤を、ジカルボン酸
成分としてテレフタル酸92モル%、ソジウムスルホイ
ソフタル酸8モル%、グリコール成分としてエチレング
リコール75モル%、ジエチレングリコール25モル%
から成る水分散性100部と水1900部から成る水性
のコート剤に代えた他は、同様な方法で珪素酸化物の薄
膜が形成された薄膜ガスバリア性フィルムを得た。得ら
れた薄膜ガスバリア性フィルムの物性結果を表−1に示
す。
Example 5 A thin film gas barrier film on which a silicon oxide thin film was formed in the same manner as in Example 1 except that evaporation was performed at a crucible temperature of 1350 ° C. in place of heating by a resistance heating method. Obtained. Table 1 shows the physical property results of the obtained thin film gas barrier film. Example 6 In Example 1, the anchor coating agent was changed to 92 mol% of terephthalic acid as a dicarboxylic acid component, 8 mol% of sodium sulfoisophthalic acid, 75 mol% of ethylene glycol as a glycol component, and 25 mol% of diethylene glycol.
A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner except that an aqueous coating agent comprising 100 parts of water dispersible and 1900 parts of water was used. Table 1 shows the physical property results of the obtained thin film gas barrier film.

【0027】比較例1 実施例1において、加熱出力を30%に代えた他は、同
様な方法で珪素酸化物の薄膜が形成された薄膜ガスバリ
ア性フィルムを得た。得られた薄膜ガスバリア性フィル
ムの物性結果を表−1に示す。 比較例2 実施例1において、蒸着間距離を250mmに代えた他
は、同様な方法で珪素酸化物の薄膜が形成された薄膜ガ
スバリア性フィルムを得た。得られた薄膜ガスバリア性
フィルムの物性結果を表−1に示す。 比較例3 実施例1において、酸素ガスを導入し圧力を7x10-4
Torrに代えた他は、同様な方法で珪素酸化物の薄膜
が形成された薄膜ガスバリア性フィルムを得た。得られ
た薄膜ガスバリア性フィルムの物性結果を表−1に示
す。
Comparative Example 1 A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner as in Example 1 except that the heating output was changed to 30%. Table 1 shows the physical property results of the obtained thin film gas barrier film. Comparative Example 2 A thin-film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner as in Example 1, except that the distance between vapor depositions was changed to 250 mm. Table 1 shows the physical property results of the obtained thin film gas barrier film. Comparative Example 3 In Example 1, oxygen gas was introduced and the pressure was increased to 7 × 10 −4.
A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner except that Torr was used. Table 1 shows the physical property results of the obtained thin film gas barrier film.

【0028】[0028]

【表1】 注)上記表−1において、酸素透過率の単位は(cc/m2・24hr ・atm)、水蒸気透過 率の単位は(g/m2・24hr ・atm)である。[Table 1] Note) In Table -1, the unit of the oxygen permeability (cc / m 2 · 24hr · atm), the unit of water vapor transmission rate is (g / m 2 · 24hr · atm).

【0029】実施例7 実施例1において、蒸着材料をAl(三菱化学(株)
製)、加熱を電子ビーム方式に代え、酸素ガスを導入し
圧力2x10-4Torrに代えた他は、同様な方法で酸
化アルミニウムの薄膜が形成された薄膜ガスバリア性フ
ィルムを得た。得られた薄膜ガスバリア性フィルムの薄
膜を構成する粒子の平均粒子径は7.5nm、粒子の偏
平率は0.065、酸素透過率は0.3cc/m2 ・24hr ・
atm 、水蒸気透過率は3.5g/m2 ・24hr ・ atm 及び全
光線透過率は90%であった。
Example 7 In Example 1, the deposition material was Al (Mitsubishi Chemical Corporation).
A thin film gas barrier film on which an aluminum oxide thin film was formed was obtained in the same manner except that the heating was changed to an electron beam method, oxygen gas was introduced, and the pressure was changed to 2 × 10 −4 Torr. The average particle diameter of the particles constituting the thin film of the obtained thin film gas barrier film is 7.5 nm, the flatness of the particles is 0.065, and the oxygen permeability is 0.3 cc / m 2 · 24 hr ·
Atm, water vapor transmission rate was 3.5 g / m 2 · 24 hr · atm, and total light transmission rate was 90%.

【0030】実施例8 実施例1において、基材のプラスチックフィルムをポリ
エーテルサルホン(PES)フィルム(住友ベークライ
ト製、スミライトFS、厚さ50μm)に代え、膜厚4
0nmの薄膜を形成させた他は、同様な方法で珪素酸化
物の薄膜が形成された薄膜ガスバリア性フィルムを得
た。得られた薄膜ガスバリア性フィルムの薄膜を構成す
る粒子の平均粒子径は11.8nm、粒子の偏平率は
0.075、酸素透過率は0.2cc/m2 ・24hr ・ atm 、
水蒸気透過率は0.3g/m2 ・24hr ・ atm 及び全光線透
過率は88%であった。
Example 8 In Example 1, the plastic film as the base material was changed to a polyether sulfone (PES) film (Sumitomo Bakelite, Sumilite FS, thickness 50 μm),
A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner except that a 0 nm thin film was formed. The average particle diameter of the particles constituting the thin film of the obtained thin film gas barrier film is 11.8 nm, the flatness of the particles is 0.075, the oxygen permeability is 0.2 cc / m 2 · 24 hr · atm,
The water vapor transmittance was 0.3 g / m 2 · 24 hr · atm, and the total light transmittance was 88%.

【0031】実施例9 実施例1において、基材のプラスチックフィルムをポリ
フッ化ビニル(PVF)フィルム(デュポンジャパン製
テドラー100BG30UT、厚さ25μm)に代え、
膜厚50nmの薄膜を形成させた他は、同様な方法で珪
素酸化物の薄膜が形成された薄膜ガスバリア性フィルム
を得た。得られた薄膜ガスバリア性フィルムの薄膜を構
成する粒子の平均粒子径は12.2nm、粒子の偏平率
は0.055、酸素透過率は0.1cc/m2 ・24hr ・ atm
、水蒸気透過率は0.1g/m2 ・24hr ・ atm及び全光線
透過率は89%であった。得られた薄膜ガスバリア性フ
ィルムについて、前記した方法による薄膜表面の粒子の
偏平率、酸素透過率、水蒸気透過率及び透明性を測定及
び評価し、表1に示した。
Example 9 In Example 1, the plastic film as the substrate was changed to a polyvinyl fluoride (PVF) film (Tedlar 100BG30UT manufactured by DuPont Japan, thickness 25 μm).
A thin film gas barrier film having a silicon oxide thin film formed thereon was obtained in the same manner except that a thin film having a thickness of 50 nm was formed. The average particle diameter of the particles constituting the thin film of the obtained thin film gas barrier film is 12.2 nm, the flatness of the particles is 0.055, and the oxygen permeability is 0.1 cc / m 2 · 24 hr · atm.
The water vapor transmission rate was 0.1 g / m 2 · 24 hr · atm, and the total light transmission rate was 89%. With respect to the obtained thin film gas barrier film, the flatness, oxygen permeability, water vapor permeability and transparency of the particles on the surface of the thin film were measured and evaluated by the method described above.

【0032】[0032]

【発明の効果】本発明の薄膜ガスバリア性フィルムは、
水蒸気や酸素等に対するガスバリア性に優れており、内
容物が水分や酸素による変質を嫌う食品、医薬品、薬
品、香料などを密封する容器、包装用途として様々な形
態に加工して使用することができる。また、本発明の薄
膜ガスバリア性フィルムは、他のプラスチックフィルム
や紙等と積層して使用したり、薄膜の上に硬化膜層をつ
けて使用することができ、上記の用途の他にも透明導電
シート等にも応用できる。
The thin film gas barrier film of the present invention is
It has excellent gas barrier properties against water vapor and oxygen, and can be processed and used in various forms as containers and packaging for sealing foods, pharmaceuticals, medicines, fragrances, etc. whose contents do not like deterioration due to moisture or oxygen. . Further, the thin film gas barrier film of the present invention can be used by laminating it with other plastic films or paper, or can be used by attaching a cured film layer on a thin film. It can also be applied to conductive sheets and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 薄膜ガスバリア性フィルムの薄膜を構成する
粒子をライン解析する際のx−y画面の粒子の拡大模式
図を示す。
FIG. 1 is an enlarged schematic view of particles on an xy screen when a particle constituting a thin film of a thin film gas barrier film is subjected to line analysis.

【図2】 薄膜ガスバリア性フィルムの薄膜を構成する
粒子をライン解析する際の線分の断面図を示す。
FIG. 2 is a cross-sectional view of a line segment used for line analysis of particles constituting a thin film of a thin film gas barrier film.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08J 7/04 CFD C08J 7/04 CFDJ 7/06 CFD 7/06 CFDZ C23C 14/08 C23C 14/08 A 14/10 14/10 14/20 14/20 A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08J 7/04 CFD C08J 7/04 CFDJ 7/06 CFD 7/06 CFDZ C23C 14/08 C23C 14/08 A 14/10 14 / 10 14/20 14/20 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 プラスチックフィルムの少なくとも片面
に無機酸化物から成る薄膜を形成した薄膜ガスバリア性
フィルムにおいて、薄膜を構成する粒子の平均粒子径が
20nm以下であり、かつ、該粒子の偏平率が0.10
以下であることを特徴とする薄膜ガスバリア性フィル
ム。
1. A thin film gas barrier film having a thin film made of an inorganic oxide formed on at least one surface of a plastic film, wherein the particles constituting the thin film have an average particle diameter of 20 nm or less, and the flatness of the particles is 0 or less. .10
A thin film gas barrier film characterized by the following.
【請求項2】 粒子の偏平率が0.08以下であること
を特徴とする請求項1の薄膜ガスバリア性フィルム。
2. The thin film gas barrier film according to claim 1, wherein the flatness of the particles is 0.08 or less.
【請求項3】 プラスチックフィルムがポリエステルフ
ィルムであることを特徴とする請求項1又は2の薄膜ガ
スバリア性フィルム。
3. The thin film gas barrier film according to claim 1, wherein the plastic film is a polyester film.
【請求項4】 薄膜の厚さが10〜50nmであること
を特徴とする請求項1ないし3のいずれかの薄膜ガスバ
リア性フィルム。
4. The thin film gas barrier film according to claim 1, wherein the thin film has a thickness of 10 to 50 nm.
【請求項5】 全光線透過率が85%以上であることを
特徴とする請求項1ないし4のいずれかの薄膜ガスバリ
ア性フィルム。
5. The thin film gas barrier film according to claim 1, wherein the total light transmittance is 85% or more.
【請求項6】 アンカーコート処理したプラスチックフ
ィルム面に無機酸化物から成る薄膜が形成されているこ
とを特徴とする請求項1ないし5のいずれかの薄膜ガス
バリア性フィルム。
6. The thin film gas barrier film according to claim 1, wherein a thin film made of an inorganic oxide is formed on the surface of the plastic film subjected to the anchor coating.
JP05198297A 1997-03-06 1997-03-06 Thin gas barrier film Expired - Lifetime JP3564919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05198297A JP3564919B2 (en) 1997-03-06 1997-03-06 Thin gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05198297A JP3564919B2 (en) 1997-03-06 1997-03-06 Thin gas barrier film

Publications (2)

Publication Number Publication Date
JPH10244617A true JPH10244617A (en) 1998-09-14
JP3564919B2 JP3564919B2 (en) 2004-09-15

Family

ID=12902075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05198297A Expired - Lifetime JP3564919B2 (en) 1997-03-06 1997-03-06 Thin gas barrier film

Country Status (1)

Country Link
JP (1) JP3564919B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016272A (en) * 2005-07-06 2007-01-25 Ge Speciality Materials Japan Kk Protective film covered on substrate, and its manufacturing method
WO2012036092A1 (en) * 2010-09-17 2012-03-22 住友化学株式会社 Laminated film, laminated film having electrode, and organic el element
JP2017222926A (en) * 2016-06-17 2017-12-21 ▲くい▼甲奈米科技股▲ふん▼有限公司 Device coating method and device having nano-coating layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016272A (en) * 2005-07-06 2007-01-25 Ge Speciality Materials Japan Kk Protective film covered on substrate, and its manufacturing method
WO2012036092A1 (en) * 2010-09-17 2012-03-22 住友化学株式会社 Laminated film, laminated film having electrode, and organic el element
JP2017222926A (en) * 2016-06-17 2017-12-21 ▲くい▼甲奈米科技股▲ふん▼有限公司 Device coating method and device having nano-coating layer
KR20170142863A (en) * 2016-06-17 2017-12-28 나노 쉴드 테크놀로지 씨오., 엘티디. Method for coating a device and devices having nanofilm thereon

Also Published As

Publication number Publication date
JP3564919B2 (en) 2004-09-15

Similar Documents

Publication Publication Date Title
JP4052021B2 (en) Oriented polyester film and laminated film using the same
EP2236548B1 (en) Aliphatic polyester film and gas barrier film
EP1640154B1 (en) Heat-stabilised Poly(Ethylene Naphthalate) film for flexible electronic and opt-electronic devices
EP0663286B2 (en) Biaxially oriented laminated polyester film
WO2015178390A1 (en) Biaxially stretched polybutylene terephthalate film, manufacturing method therefor, and gas barrier laminate film
GB2151262A (en) Methods for improving the gas barrier properties of polymeric containers
CN111511814A (en) Organic-inorganic hybrid membrane
JP4834923B2 (en) Deposition polyester film and deposition polyester film
JPH10330916A (en) Electrically conductive laminated body
JP2007268711A (en) Laminated polyester film for flexible display substrates
JP2004130811A (en) Biaxially stretched polyester film, its manufacturing process and its use
JP5664341B2 (en) Gas barrier film
JP3564919B2 (en) Thin gas barrier film
JPH10305542A (en) Gas barrier polyester film
JPH10244601A (en) Manufacture of base material plastic film for thin gas-barrier film
JP2005105255A (en) Biaxially oriented polyester film
JP3943304B2 (en) Laminated structure with excellent gas barrier properties
JPWO2004000920A1 (en) Laminated film
JPH0976400A (en) Thin film with gas barrier property
JP2003342735A (en) Gas barrier film
CN216014837U (en) Conductive film
JP2000185375A (en) Gas barrier laminated film
JP3841507B2 (en) Thin film gas barrier polypropylene film
JP2005305801A (en) Antistatic gas-barrier laminate
JP4783983B2 (en) Transparent gas barrier laminate film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080618

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100618

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110618

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term