JPH10242797A - Balanced type ultrathin plate multimode filter - Google Patents
Balanced type ultrathin plate multimode filterInfo
- Publication number
- JPH10242797A JPH10242797A JP5697397A JP5697397A JPH10242797A JP H10242797 A JPH10242797 A JP H10242797A JP 5697397 A JP5697397 A JP 5697397A JP 5697397 A JP5697397 A JP 5697397A JP H10242797 A JPH10242797 A JP H10242797A
- Authority
- JP
- Japan
- Prior art keywords
- mcf
- electrodes
- electrode
- ultra
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は携帯型無線機等に用
いられる多重モード圧電フィルタ(以下MCFと称す
る)に関し、特に入出力を平衡型とした超薄板多重モー
ドフィルタ関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-mode piezoelectric filter (hereinafter, referred to as MCF) used for a portable radio device and the like, and particularly to an ultra-thin multi-mode filter having balanced inputs and outputs.
【0002】[0002]
【従来の技術】従来のMCFは小型性、堅牢性および低
コストという優れた点を有し、携帯型無線機に多く用い
られてきた。アナログ方式携帯電話等の急速な普及、拡
大に伴い、通信容量を増大するため通信帯域幅の狭帯域
化、通信方式のデジタル化と共に、キャリア周波数の高
周波化等が図られてきた。これらの方式変更に伴いMC
Fの帯域幅の圧縮が要求され、更にキャリアの高周波化
に伴いフィルタの中心周波数の高周波化が要求されてき
た。温度特性の良好なATカット水晶基板を用いて高周
波を実現するには前記基板の板厚を薄くする必要がある
が、機械加工上、あるいは基板の強度上基板の薄さには
限界があった。この薄板化を解決するため基板の中央に
凹陥部を設け、該凹陥部を振動部としたMCFが提案さ
れた。2. Description of the Related Art Conventional MCFs have the advantages of small size, robustness and low cost, and have been widely used in portable radios. With the rapid spread and expansion of analog mobile phones and the like, the communication bandwidth has been narrowed to increase the communication capacity, the communication system has been digitized, and the carrier frequency has been increased. With these system changes, MC
The bandwidth of F has been required to be compressed, and the center frequency of the filter has been required to be higher with the higher frequency of the carrier. To realize high frequency using an AT-cut quartz substrate with good temperature characteristics, it is necessary to reduce the thickness of the substrate, but there is a limit to the thickness of the substrate due to mechanical processing or strength of the substrate. . In order to solve this thinning, there has been proposed an MCF in which a concave portion is provided in the center of the substrate and the concave portion is a vibrating portion.
【0003】しかし、従来にように幅の狭いリード電極
を介して分割電極に接続する方法では、前記凹陥部の段
差部で前記リード電極が切断し易いという欠点があるた
め、分割電極を基板の平面側に設け、凹陥部側は全面電
極とし段差部による電極の切断を防ぎ、製造歩留まりの
向上と高周波デバイスの信頼性の向上を図ってきた。図
4はこのような従来の超薄板MCFを示す図であって、
同(a)は平面側の斜視図、同(b)は同(a)のA−
Aにおける断面図、同(c)は凹面側の斜視図である。
従来の超薄板MCFは平行平板の圧電基板21、例えば
ATカット水晶基板の一方の主面の一部にエッチング等
の手段を用いて凹陥部を形成し、その底面を対向する他
方の面と平行な薄板状の超薄肉部(振動部)22を形成
すると共に超薄肉部22の周囲を支持する厚肉の環状囲
繞部23を一体的に形成する。図4(c)に示すように
前記凹陥部側(裏面側と称す)に蒸着等の手段を用いて
導電膜の全面電極24を形成すると共に、これと対向す
る平坦面(表面側と称す)の振動部22のほぼ中央にそ
れぞれ等寸法の電極25、26を間隙Gをおいて配設
し、該電極からそれぞれ圧電基板端部に向けてリード電
極27、28とそれぞれの先端にボンディングパッド部
29、30を設けて超薄板MCF素子Eを形成する。However, the conventional method of connecting to a split electrode via a narrow lead electrode has a drawback that the lead electrode is easily cut at the step of the recess, so that the split electrode is connected to the substrate. It is provided on the flat surface side, and the concave side is used as the entire surface electrode to prevent the electrode from being cut by the step, thereby improving the manufacturing yield and the reliability of the high-frequency device. FIG. 4 is a diagram showing such a conventional ultra-thin plate MCF.
(A) is a perspective view of the plane side, (b) is A- of FIG.
FIG. 2A is a sectional view, and FIG. 2C is a perspective view on the concave surface side.
A conventional ultra-thin MCF is formed by forming a recess in a part of one main surface of a parallel-plate piezoelectric substrate 21, for example, an AT-cut quartz substrate, by means of etching or the like, and setting the bottom surface of the concave portion to the opposite surface. A parallel thin ultra-thin portion (vibrating portion) 22 is formed, and a thick annular surrounding portion 23 that supports the periphery of the ultra-thin portion 22 is integrally formed. As shown in FIG. 4C, the entire surface electrode 24 of the conductive film is formed on the concave side (referred to as the back side) by means of vapor deposition or the like, and a flat surface (referred to as the front side) opposed thereto. The electrodes 25 and 26 of the same size are arranged at the center of the vibrating part 22 with a gap G therebetween, and lead electrodes 27 and 28 are respectively provided from the electrodes toward the ends of the piezoelectric substrate and the bonding pads are provided on the respective tips. 29 and 30 are provided to form an ultra-thin MCF element E.
【0004】上記のように形成した超薄板MCF素子E
を図5(a)に示すパッケージ31に収容し、前記素子
Eの裏面側の厚肉部に導電性接着剤32を塗布し、該面
を前記パッケージ31の底部に形成したアース電極33
に接着固定すると同時に素子Eの電極24との導通を図
る。前記アース電極33は金属リード電極を介してパッ
ケージの外部アース端子と気密的に接続されている。さ
らに、表面側の電極25、26とパッケージ31に設け
た入出力電極34、35とをそれぞれボンディングワイ
ヤー36を用いてボンディング接続し、超薄板圧電フィ
ルタを構成する。入出力電極34、35は金属リード電
極を介してパッケージの外部入出力端子と気密的に接続
されている。[0004] The ultra-thin sheet MCF element E formed as described above
5A, a conductive adhesive 32 is applied to the thick portion on the back side of the element E, and the ground electrode 33 is formed on the bottom of the package 31.
To the electrode 24 of the element E at the same time. The ground electrode 33 is hermetically connected to an external ground terminal of the package via a metal lead electrode. Furthermore, the electrodes 25 and 26 on the front surface and the input / output electrodes 34 and 35 provided on the package 31 are bonded to each other by using bonding wires 36 to form an ultra-thin piezoelectric filter. The input / output electrodes 34 and 35 are hermetically connected to external input / output terminals of the package via metal lead electrodes.
【0005】前記超薄板の振動部22の裏面側には全面
電極24を、表面側には電極25、26を間隙Gをおい
て配設することにより、振動エネルギーが電極25、2
6の部分に閉じ込められ音響的に結合することにより、
2つのモードが強勢に励起され、該2つのモードを用い
て超薄板MCFを構成することができる。[0005] By arranging a full-surface electrode 24 on the back side of the vibrating part 22 of the ultra-thin plate and electrodes 25 and 26 on the front side with a gap G therebetween, vibration energy can be reduced.
By being confined in part 6 and acoustically coupled,
Two modes are strongly excited, and an ultra-thin MCF can be formed using the two modes.
【0006】上記の超薄板MCFの電気的等価回路は、
周知のように図6(a)に示すように2つの共振回路が
互いに逆相で接続される等価回路で表され、これに二等
分定理を適用することにより同図(b)の格子型回路に
変換することができる。従って共振周波数から十分離れ
た周波数においてはその等価回路は静電容量C0による
バランス回路となる。通常、電極25、26は同一形状
に形成するため静電容量C0はそれぞれ等しく、中心周
波数から離れるに従い大きな阻止減衰量が確保できる特
徴がある。この伝送特性を利用して携帯無線機等に多く
用いられている。[0006] The electrical equivalent circuit of the above ultra-thin plate MCF is:
As is well known, as shown in FIG. 6A, two resonance circuits are represented by an equivalent circuit connected in opposite phases, and by applying the bisecting theorem to this, the lattice type shown in FIG. It can be converted to a circuit. Thus the equivalent circuit thereof in sufficiently far frequency from the resonance frequency is balanced circuit due to electrostatic capacitance C 0. Usually, since the electrodes 25 and 26 are formed in the same shape, the capacitances C 0 are equal to each other, and the feature is that a larger amount of blocking attenuation can be secured as the distance from the center frequency increases. Utilizing this transmission characteristic, it is widely used in portable radios and the like.
【0007】[0007]
【発明が解決しようとする課題】しかしながら上記した
従来の超薄板MCFおいては電極24はパッケージ31
のアース電極33と接続した、所謂不平衡型超薄板MC
Fであり、このような不平衡型フィルタの場合、外部か
らノイズ等が入り込んだ際に前記ノイズを除去する手段
が無いため、外部ノイズを遮蔽するために十分なシール
ドを行うことが必須であり、その結果無線装置が大型に
なり、コストが上昇するという問題があった。また、最
近、IC技術の進歩により携帯無線機のIF周辺回路を
平衡型構成とし、たとえ外部よりノイズの入ったとして
もIFフィルタの後段に差動アンプを配置し、容易にノ
イズを除去する新しい回路構成が開発された。しかし、
従来の超薄板MCFでは上述したように、凹陥部側の電
極を全面電極とせざるを得ず、必然的に不平衡型のフィ
ルタしか構成できなかったため、平衡型フィルタの利点
を享受できないという問題があった。本発明は従来の電
極構成のMCFを改めて設計し直すことなく、容易に平
衡型超薄板MCFを形成する方法を提供することを目的
とする。However, in the above-mentioned conventional ultra-thin sheet MCF, the electrodes 24 are provided in the package 31.
So-called unbalanced ultra-thin sheet MC connected to earth electrode 33
F, and in the case of such an unbalanced filter, there is no means for removing the noise when noise or the like enters from the outside. Therefore, it is essential to perform sufficient shielding to shield external noise. As a result, there is a problem that the size of the wireless device is increased and the cost is increased. Recently, with the advance of IC technology, the IF peripheral circuit of a portable wireless device has a balanced configuration, and even if noise is input from outside, a differential amplifier is arranged after the IF filter to easily remove noise. A circuit configuration was developed. But,
As described above, in the conventional ultra-thin plate MCF, the electrode on the concave side has to be the entire surface electrode, and only the unbalanced filter can be configured inevitably, so that the advantage of the balanced filter cannot be enjoyed. was there. An object of the present invention is to provide a method for easily forming a balanced ultra-thin plate MCF without redesigning a conventional MCF having an electrode configuration.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
に本発明に係るの請求項1記載の発明は、圧電基板の一
方の主面に凹陥を形成することにより薄肉の振動部と該
振動部の周囲を支持する厚肉の環状囲繞部とを一体的に
形成し、前記凹陥側に全面電極を付着すると共に対向す
る他方の面に分割電極を配設して構成する超薄板多重モ
ードフィルタにおいて、前記全面電極をこれと対向する
分割電極と対応する位置で分割したことを特徴とする平
衡型超薄板多重モードフィルタある。請求項2記載の発
明は、前記全面電極をレーザ加工により分割したことを
特徴とする請求項1記載の平衡型超薄板多重モードフィ
ルタである。In order to achieve the above object, according to the present invention, a thin vibrating portion is formed by forming a recess in one main surface of a piezoelectric substrate. Ultra-thin plate multiple mode in which a thick annular surrounding portion for supporting the periphery of the portion is integrally formed, a full-surface electrode is attached to the concave side, and a split electrode is arranged on the other surface facing the concave portion. In the filter, there is provided a balanced ultrathin multi-mode filter, wherein the whole surface electrode is divided at a position corresponding to a divisional electrode facing the whole surface electrode. The invention according to claim 2 is the balanced ultra-thin plate multi-mode filter according to claim 1, wherein the entire surface electrode is divided by laser processing.
【0009】[0009]
【発明の実施の形態】以下本発明を図面に示した実施の
形態に基づいて詳細に説明する。図1は本発明に係る平
衡型超薄板MCFの実施例を示す図であって、同(a)
は平面側の斜視図、同(b)は(a)のA−Aにおける
断面図、同(c)は凹陥部側の斜視図である。本発明に
係る平衡型超薄板MCFは平行平板の圧電基板1、例え
ばATカット水晶基板の一方の主面の一部にエッチング
等の手段によって凹陥部を形成し、その底面を薄板状の
超薄肉部2に形成すると共に超薄肉部2の周囲を支持す
る厚肉の環状囲繞部3を一体的に形成する。超薄板部
(振動部)2の機械的強度を保持した超薄板基板1に蒸
着等の手段を用いて一方の凹陥部側(裏面側)に導電膜
による全面電極4(4a、4b)を形成し、他方の平面
側(表面側)の振動部2のほぼ中央にそれぞれ同一寸法
の電極5、6を間隙G1をおいて配設する。該電極5、
6から圧電基板端部に向けてそれぞれリード電極7、8
を配置し、それぞれの先端にボンディングパッド部9、
10を設ける。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail based on an embodiment shown in the drawings. FIG. 1 is a view showing an embodiment of a balanced ultra-thin sheet MCF according to the present invention, wherein FIG.
Is a perspective view on a plane side, (b) is a cross-sectional view taken along the line AA in (a), and (c) is a perspective view on a concave side. In the balanced ultra-thin plate MCF according to the present invention, a concave portion is formed on a part of one main surface of a parallel-plate piezoelectric substrate 1, for example, an AT-cut quartz substrate, by etching or the like, and the bottom surface is formed in a thin plate-like shape. A thick annular surrounding portion 3 formed on the thin portion 2 and supporting the periphery of the ultra-thin portion 2 is integrally formed. The whole surface electrode 4 (4a, 4b) of a conductive film is formed on one of the concave portions (back surface side) on the ultra-thin plate substrate 1 holding the mechanical strength of the ultra-thin plate portion (vibrating portion) 2 by means such as vapor deposition. Are formed, and electrodes 5 and 6 having the same dimensions are arranged at the center of the vibrating portion 2 on the other flat surface side (front surface side) with a gap G1 therebetween. The electrode 5,
6 to the ends of the piezoelectric substrate, respectively.
Are arranged, and a bonding pad portion 9 is provided at each end.
10 is provided.
【0010】その後、表面側の電極5、6の間隙G1に
対向し、且つこれと平行にレーザ等を用いて裏面の全面
電極4を電極4aと4bとに切断し、該電極間の間隙を
G2とする。間隙G2と超薄板MCFの帯域幅の関係
は、間隙G2を大きくすると2つのモード間の結合が弱
まって通過帯域幅は狭くなり、間隙G2を狭めると結合
が強くなり帯域幅は広くなる関係にある。また、レーザ
はそのエネルギーで圧電基板上に付着した金属等の物質
を昇華し除去するが、水晶等の材料はレーザを透過する
ためその結晶を破壊することはない。After that, the whole surface electrode 4 on the back surface is cut into electrodes 4a and 4b by using a laser or the like to face the gap G1 between the electrodes 5 and 6 on the front side and in parallel with the gap G1. G2. The relation between the gap G2 and the bandwidth of the ultra-thin plate MCF is such that when the gap G2 is increased, the coupling between the two modes is weakened and the pass bandwidth is narrowed, and when the gap G2 is narrowed, the coupling is strengthened and the bandwidth is widened. It is in. In addition, the laser sublimates and removes a substance such as a metal attached to the piezoelectric substrate with its energy, but a material such as a crystal transmits the laser and does not destroy the crystal.
【0011】図2(a)は本発明の平衡型超薄板MCF
素子Eを収容するパッケージ11の斜視図であり、その
底面には4個の電極12、13、15、16が焼き付け
印刷等の手法で形成されている。平衡型超薄板MCF素
子Eの間隙G2を隔てて対向する電極4a、4bとパッ
ケージ11の一方の入出力端子12、13とをそれぞれ
導電性接着剤14を用いて接着固定すると同時に電気的
接続を行う。さらに、素子Eの表面側に設けたボンディ
ングパッド部9、10とパッケージ11の他方の入出力
端子15、16とをそれぞれワイヤーボンディング17
を用いてボンディング接続し、平衡型超薄板多重モード
フィルタを形成する。FIG. 2 (a) shows a balanced ultra-thin MCF of the present invention.
FIG. 3 is a perspective view of a package 11 that accommodates an element E, and has four electrodes 12, 13, 15, 16 formed on the bottom surface thereof by printing or the like. The electrodes 4a and 4b facing each other across the gap G2 of the balanced ultra-thin plate MCF element E and one of the input / output terminals 12 and 13 of the package 11 are bonded and fixed using a conductive adhesive 14, respectively, and are simultaneously electrically connected. I do. Further, the bonding pad portions 9 and 10 provided on the front surface side of the element E and the other input / output terminals 15 and 16 of the package 11 are connected by wire bonding 17 respectively.
To form a balanced ultra-thin multi-mode filter.
【0012】前記平衡型超薄板MCFの動作は不平衡型
超薄板MCFの動作と同様であり、電極5、6下に閉じ
込められた振動エネルギーが音響的に結合して2つのモ
ードを強勢に励起し、この2つのモードを利用して帯域
フィルタを構成する。異なる点は従来の不平衡型超薄板
MCFの通過帯域幅は電極5と6の間隙G1とその膜厚
に大きく依存していたが、本発明の平衡型超薄板MCF
は電極4aと4bとの間隙G2もフィルタの通過帯域幅
に関係する。電極間隙G2の作用は前記G1と同様であ
り帯域幅に対する効果は同じである。従って、電極間隙
G2の幅により通過帯域幅を制御することが可能であ
る。The operation of the balanced ultra-thin plate MCF is the same as that of the unbalanced ultra-thin plate MCF. Vibration energy confined under the electrodes 5 and 6 is acoustically coupled to force the two modes. , And a bandpass filter is constructed using these two modes. The difference is that the pass band width of the conventional unbalanced ultra-thin MCF greatly depends on the gap G1 between the electrodes 5 and 6 and its film thickness.
The gap G2 between the electrodes 4a and 4b is also related to the pass bandwidth of the filter. The function of the electrode gap G2 is the same as that of G1, and the effect on the bandwidth is the same. Therefore, the pass band width can be controlled by the width of the electrode gap G2.
【0013】図3は、欧州のディジタル電話システム
(GSM)の端末機用第1IFフィルタに本発明を適用
して平衡型超薄板MCF試作した特性例であって、試作
条件はいかの通りである。厚さ80μmの水晶圧電基板
の一部にエッチング手法を用いて凹陥部を形成し、その
超薄板部2、即ち振動部の周波数を約71MHz(厚さ
23.5μm )とした。表面側の電極5、6の寸法は
互いに同一とし、0.7mm×0.35mm、G1=2
8μm、G2=15μm、電極膜厚は1000ナとし
た。図3(a)は通過域特性αと群遅延時間特性βを示
したものであり、同(b)は減衰域特性で、±5MHz
に亘る減衰域特性αと±1MHzの特性βを示したもの
である。また、同(c)は前記データを測定した時の測
定回路である。FIG. 3 shows a characteristic example of a prototype of a balanced ultra-thin plate MCF applied to the first IF filter for a terminal of a European digital telephone system (GSM) by applying the present invention. is there. A concave portion was formed in a part of the quartz piezoelectric substrate having a thickness of 80 μm by using an etching technique, and the frequency of the ultra-thin plate portion 2, that is, the vibrating portion was set to about 71 MHz (thickness: 23.5 μm). The dimensions of the electrodes 5 and 6 on the front side are the same, 0.7 mm × 0.35 mm, G1 = 2
8 μm, G2 = 15 μm, and the electrode film thickness was 1000 pm. FIG. 3A shows a pass band characteristic α and a group delay time characteristic β, and FIG. 3B shows an attenuation band characteristic, ± 5 MHz.
, And a characteristic β of ± 1 MHz. (C) is a measurement circuit when the data is measured.
【0014】更に、本発明を用いて構成した平衡型超薄
板MCFを複数個多段縦続接続することによってより急
峻な減衰特性を有する平衡型超薄板MCFが構成できる
ことは云うまでもない。あるいは、要求に応じて平衡型
超薄板MCFと不平衡型超薄板MCFを縦続接続したフ
ィルタを構成してもよい。また、2分割のみならず、3
分割以上のものに適用してもよい。更に、本発明は水晶
基板以外の圧電材料、例えばLiTaO3、LiNbO
3、LBO、ランガサイト等の圧電材料に適用できるこ
とは自明である。Further, needless to say, a balanced ultra-thin sheet MCF having a steeper attenuation characteristic can be constituted by cascade-connecting a plurality of balanced ultra-thin sheet MCFs constructed by using the present invention. Alternatively, a filter in which the balanced ultra-thin plate MCF and the unbalanced ultra-thin plate MCF are cascade-connected may be configured as required. Also, not only two divisions,
You may apply to what is more than division. Further, the present invention relates to a piezoelectric material other than a quartz substrate, for example, LiTaO3, LiNbO.
3. It is obvious that the present invention can be applied to piezoelectric materials such as LBO and langasite.
【0015】[0015]
【発明の効果】本発明は以上説明したように構成したの
で、レーザ等による裏面電極の加工とMCFを収容する
パッケージのわずかな変更のみであり、他の工程はほぼ
従来通りの製造工程で、容易に平衡型超薄板MCFを構
成でき、外界からのノイズに強いという平衡型フィルタ
の利点を超薄板MCFにおいても享受できるようにした
という著しい効果を発揮する。Since the present invention is constructed as described above, the back electrode is processed by a laser or the like and the package for accommodating the MCF is only slightly changed. The other steps are almost the same as the conventional manufacturing steps. The balanced ultra-thin plate MCF can be easily formed, and a remarkable effect that the advantage of the balanced type filter that is resistant to external noise can be enjoyed in the ultra-thin plate MCF is also exhibited.
【図1】(a)は本発明の一実施例である平衡型超薄板
MCFの表面側を示す斜視図、(b)はA−Aにおける
断面図、(c)は裏面側を示す斜視図である。FIG. 1A is a perspective view showing a front surface side of a balanced ultra-thin plate MCF according to one embodiment of the present invention, FIG. 1B is a cross-sectional view taken along AA, and FIG. FIG.
【図2】(a)は本発明の平衡型超薄板MCFを収納す
るパッケージを示す斜視図、(b)は本発明の平衡型超
薄板MCFを実装した場合の断面図である。2A is a perspective view showing a package for accommodating a balanced ultra-thin plate MCF of the present invention, and FIG. 2B is a cross-sectional view when the balanced ultra-thin plate MCF of the present invention is mounted.
【図3】本発明の平衡型超薄板MCFの実測例で、
(a)は通過域特性α、群遅延時間特性β、(b)は減
衰域特性でαは±5MHZ、βは±1MHZの特性、
(c)は平衡型MCFの測定回路である。FIG. 3 is an actual measurement example of the balanced ultra-thin sheet MCF of the present invention,
(A) is a pass band characteristic α, a group delay time characteristic β, (b) is an attenuation band characteristic, α is a characteristic of ± 5 MHZ, β is a characteristic of ± 1 MHZ,
(C) is a measurement circuit of the balanced MCF.
【図4】(a)は従来の超薄板MCFの表面側を示す斜
視図、(b)A−Aにおける断面図、(c)は超薄板M
CFの裏面側を示す斜視図である。4A is a perspective view showing the front side of a conventional ultra-thin sheet MCF, FIG. 4B is a cross-sectional view along AA, and FIG.
It is a perspective view showing the back side of CF.
【図5】(a)は従来の超薄板MCF用のパッケージを
示す斜視図、(b)は従来の超薄板MCFをパッケージ
に実装した場合の断面図である。FIG. 5A is a perspective view showing a conventional package for an ultra-thin MCF, and FIG. 5B is a cross-sectional view when a conventional ultra-thin MCF is mounted on the package.
【図6】(a)はMCFの電気的等価回路、(b)は格
子型で表した等価回路である。6A is an electrical equivalent circuit of the MCF, and FIG. 6B is an equivalent circuit represented by a lattice type.
1・・水晶基板 2・・超薄肉部(振動部) 3・・環状囲繞部 4a、4b・・裏面側電極 5、 6・・電極 7、8・・リード電極 9、 10・・ボンディングパッド部 11・・パッケージ 12、 13、15、16・・出力端子 14・・接着剤 17・・ボンディングワイヤー E・・平衡型超薄板素子 G1、G2・・電極間隙 1. Quartz substrate 2. Ultra-thin portion (vibrating portion) 3. Annular surrounding portion 4a, 4b Back surface electrode 5, 6, Electrode 7, 8, Lead electrode 9, 10, Bonding pad Part 11: Package 12, 13, 15, 16, Output terminal 14: Adhesive 17: Bonding wire E: Balanced ultra-thin plate element G1, G2: Electrode gap
─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───
【手続補正書】[Procedure amendment]
【提出日】平成9年5月6日[Submission date] May 6, 1997
【手続補正1】[Procedure amendment 1]
【補正対象書類名】図面[Document name to be amended] Drawing
【補正対象項目名】図1[Correction target item name] Fig. 1
【補正方法】変更[Correction method] Change
【補正内容】[Correction contents]
【図1】 FIG.
Claims (2)
ことにより薄肉の振動部と該振動部の周囲を支持する厚
肉の環状囲繞部とを一体的に形成し、前記凹陥側に全面
電極を付着すると共に対向する他方の面に分割電極を配
設して構成する超薄板多重モードフィルタにおいて、前
記全面電極をこれと対向する分割電極と対応する位置で
分割したことを特徴とする平衡型超薄板多重モードフィ
ルタ。1. A thin vibrating portion and a thick annular surrounding portion for supporting the periphery of the vibrating portion are integrally formed by forming a concave portion on one main surface of the piezoelectric substrate, and the concave portion is formed on the concave side. In an ultra-thin multi-mode filter configured by attaching a full-surface electrode and arranging a division electrode on the other surface opposite thereto, the full-surface electrode is divided at a position corresponding to the division electrode opposed thereto. Balanced ultra-thin multi-mode filter.
たことを特徴とする請求項1記載の平衡型超薄板多重モ
ードフィルタ。2. The multi-mode filter according to claim 1, wherein the whole surface electrode is divided by laser processing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5697397A JPH10242797A (en) | 1997-02-25 | 1997-02-25 | Balanced type ultrathin plate multimode filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5697397A JPH10242797A (en) | 1997-02-25 | 1997-02-25 | Balanced type ultrathin plate multimode filter |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10242797A true JPH10242797A (en) | 1998-09-11 |
Family
ID=13042475
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5697397A Pending JPH10242797A (en) | 1997-02-25 | 1997-02-25 | Balanced type ultrathin plate multimode filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10242797A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030073843A (en) * | 2002-03-13 | 2003-09-19 | 엘지이노텍 주식회사 | Film bulk acoustic resonator filter and manufacturing method for the same |
US7414497B2 (en) | 2005-06-20 | 2008-08-19 | Murata Manufacturing Co., Ltd. | Piezoelectric thin-film filter |
-
1997
- 1997-02-25 JP JP5697397A patent/JPH10242797A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030073843A (en) * | 2002-03-13 | 2003-09-19 | 엘지이노텍 주식회사 | Film bulk acoustic resonator filter and manufacturing method for the same |
US7414497B2 (en) | 2005-06-20 | 2008-08-19 | Murata Manufacturing Co., Ltd. | Piezoelectric thin-film filter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3953554B2 (en) | Monolithic thin film resonator grating filter and manufacturing method thereof | |
JP3781435B2 (en) | Boundary acoustic wave device and manufacturing method thereof | |
EP1519484A2 (en) | Piezoelectric device, cellular phone system using the piezoelectric device, and electronic equipment using the piezoelectric device | |
US5436523A (en) | High frequency crystal resonator | |
JPH02261210A (en) | Crystal oscillator | |
US6054793A (en) | Piezoelectric resonator method for adjusting frequency of piezoelectric resonator and communication apparatus including piezoelectric resonator | |
JPH10242797A (en) | Balanced type ultrathin plate multimode filter | |
JPH036912A (en) | Surface acoustic wave element | |
JPH1084247A (en) | Acoustic boundary wave device | |
JP3779389B2 (en) | Boundary acoustic wave device and manufacturing method thereof | |
JP3876474B2 (en) | Surface mount type piezoelectric device package | |
JP2006245990A (en) | Surface acoustic wave element and manufacturing method thereof | |
JP4857491B2 (en) | Manufacturing method of surface mount type piezoelectric vibrator | |
JP3389530B2 (en) | Semiconductor device | |
JP2001326554A (en) | Piezoelectric vibrator | |
JPH0575377A (en) | Combined device of surface acoustic wave device and quartz resonator | |
JPH10341131A (en) | Structure for piezoelectric device | |
JP2000295073A (en) | Piezoelectric filter and its manufacture | |
JP2682221B2 (en) | Discriminator | |
JP2001196890A (en) | High frequency piezo-resonator | |
JPH09284092A (en) | Super-thin plate multimode piezoelectric filter element | |
JPH11251863A (en) | Piezoelectric vibrator | |
JPH07147526A (en) | Vibrator utilizing width spread mode, resonator and resonator component | |
JPH09199980A (en) | Ultrathin plate multiple mode filter | |
JPH10126199A (en) | Piezoelectric resonator |