JPH10239037A - Observation device - Google Patents
Observation deviceInfo
- Publication number
- JPH10239037A JPH10239037A JP9058575A JP5857597A JPH10239037A JP H10239037 A JPH10239037 A JP H10239037A JP 9058575 A JP9058575 A JP 9058575A JP 5857597 A JP5857597 A JP 5857597A JP H10239037 A JPH10239037 A JP H10239037A
- Authority
- JP
- Japan
- Prior art keywords
- optical system
- sample surface
- sample
- objective
- objective lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 122
- 238000005286 illumination Methods 0.000 claims description 38
- 210000001747 pupil Anatomy 0.000 claims description 21
- 238000003384 imaging method Methods 0.000 claims description 16
- 238000001514 detection method Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 abstract description 21
- 230000004907 flux Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 241000276498 Pollachius virens Species 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Microscoopes, Condenser (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は観察装置、特に、液
晶基板上の形成パターン等の段差のあるパターンの寸法
を測定、観察するための観察装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an observation apparatus, and more particularly to an observation apparatus for measuring and observing dimensions of a stepped pattern such as a pattern formed on a liquid crystal substrate.
【0002】[0002]
【従来の技術】図4は従来から知られている寸法測定等
に用いる観察装置の構成の概略を示した図である。図4
に示す観察装置は、試料ホルダ1に保持された試料2に
光を照射する照明光学系3と、試料面からの反射光を集
光する対物レンズ4と、対物レンズ4を透過した光束を
結像する結像光学系5と、結像光学系5により結像され
た試料像を光電変換する撮像手段6とを備えている。か
かる光学系では、光路分割手段7、8により、照明光学
系3と結像光学系5とが、対物レンズ4に関して、共通
の光軸を有するように構成されている。2. Description of the Related Art FIG. 4 is a view schematically showing a configuration of an observation apparatus conventionally used for dimension measurement and the like. FIG.
The observation apparatus shown in FIG. 1 combines an illumination optical system 3 for irradiating a sample 2 held on a sample holder 1 with light, an objective lens 4 for condensing light reflected from the sample surface, and a light beam transmitted through the objective lens 4. An imaging optical system 5 for forming an image and an imaging unit 6 for photoelectrically converting the sample image formed by the imaging optical system 5 are provided. In such an optical system, the illumination optical system 3 and the imaging optical system 5 are configured to have a common optical axis with respect to the objective lens 4 by the optical path splitting means 7 and 8.
【0003】また、オートフォーカス手段9は、試料面
と対物レンズ4の焦点面とのずれを検出し、不図示の駆
動手段を介して対物レンズ4または試料ホルダ1を移動
させる事により、試料2の測定面に対物レンズ4の焦点
を自動的に合焦させることが可能である。実際の寸法測
定においては、順次、試料2が試料ホルダ1に保持さ
れ、対物レンズ4の焦点位置にセットされる。そして、
試料2に施されたパターンを撮像手段6にて観察し、撮
像素子上でのパターンの大きさ、結像倍率などに基づい
て、実際の試料上のパターンの寸法を求めるものであ
る。The auto-focusing means 9 detects a deviation between the sample surface and the focal plane of the objective lens 4 and moves the objective lens 4 or the sample holder 1 via a driving means (not shown), thereby obtaining the sample 2. The focus of the objective lens 4 can be automatically focused on the measurement surface of (1). In actual dimension measurement, the sample 2 is sequentially held in the sample holder 1 and set at the focal position of the objective lens 4. And
The pattern applied to the sample 2 is observed by the imaging means 6, and the actual size of the pattern on the sample is determined based on the size of the pattern on the image sensor, the imaging magnification, and the like.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
観察装置では、試料が試料ステージ上あるいは試料ホル
ダー上で、傾いて取り付けられると、基板上の形成パタ
ーンを斜め方向から観察することとなり、正確な寸法測
定を行うことが出来ない。However, in the conventional observation apparatus, when the sample is mounted on the sample stage or on the sample holder at an angle, the pattern formed on the substrate is observed from an oblique direction. Dimension measurement cannot be performed.
【0005】また、寸法測定等に用いる観察装置では、
試料上での長さが観察面上で正確に測定されなければな
らない。換言すると、試料面での等間隔パターンを測定
した場合に、観察面においても、等間隔のパターンが結
像していなければ正確な寸法測定をすることが不可能で
ある。さらに、試料の位置が光軸に対して多少前後して
も、正確に寸法を測定できることも必要である。このた
め、寸法測定等に用いる観察装置では、瞳が無限大位置
にある(無限大の位置で主光線が光軸と交わる、つまり
平行で交わらない)、いわゆるテレセントリック光学系
を採用している。In an observation device used for dimension measurement, etc.,
The length on the sample must be accurately measured on the observation surface. In other words, when measuring the equally-spaced pattern on the sample surface, it is impossible to measure the dimension accurately even on the observation surface unless the equally-spaced pattern is imaged. Further, it is necessary that the dimensions can be accurately measured even if the position of the sample is slightly before or after the optical axis. For this reason, a so-called telecentric optical system in which the pupil is located at an infinite position (the principal ray intersects the optical axis at the infinite position, that is, does not intersect in parallel) is employed in an observation device used for dimension measurement or the like.
【0006】さらに、従来の観察装置の観察光学系にお
いて、対物レンズ4を高倍率にすると、対物レンズを構
成するレンズ枚数が多くなるため、瞳はレンズ群の中に
形成されることとなってしまう。かかる現象は、対物レ
ンズの倍率が高倍率になればなるほど顕著になる。この
結果、瞳がレンズ系内に形成されているので、対物レン
ズ4を通って撮像手段に到達する光束の大きさを決める
ための開口絞りを、実際の瞳の位置とは異なる位置に配
置しなければならない。Further, in the observation optical system of the conventional observation apparatus, when the objective lens 4 is set to a high magnification, the number of lenses constituting the objective lens increases, so that the pupil is formed in the lens group. I will. Such a phenomenon becomes more remarkable as the magnification of the objective lens becomes higher. As a result, since the pupil is formed in the lens system, the aperture stop for determining the size of the light beam that reaches the imaging means through the objective lens 4 is arranged at a position different from the actual pupil position. There must be.
【0007】瞳位置と絞り位置が異なると、主光線が光
軸に対して平行ではなく、傾いてくるので、いわゆるテ
レセントリシティが悪化する。主光線が傾くと、段差の
あるパターンを測定する際に、像高により試料面に対し
取り込む光束の中心が傾いてしまい、測定値が実際の値
とは異なる値として測定されてしまい、正確な寸法測定
を行うことができなくなり問題である。If the pupil position and the stop position are different, the chief ray is not parallel to the optical axis but tilts, so that the so-called telecentricity deteriorates. If the chief ray is inclined, the center of the luminous flux to be captured with respect to the sample surface will be inclined due to the image height when measuring a pattern with a step, and the measured value will be measured as a value different from the actual value, and accurate This is a problem because dimension measurement cannot be performed.
【0008】かかる、テレセントリシティの悪化は、観
察・結像光学系だけではなく、照明光学系についても、
同様に起きる現象である。すなわち、照明光学系につい
て、瞳位置と絞り位置が異なると、試料を照明する光が
光軸に対して傾くこととなる。この結果、たとえ、試料
が正確に設置されていたとしても、試料を斜めから照明
することとなり、段差のあるパターンなどでは、斜め照
明に起因する影を生じてしまい、正確な寸法測定を行う
ことができないという問題が生ずる。The deterioration of the telecentricity is caused not only by the observation / imaging optical system but also by the illumination optical system.
It is a phenomenon that occurs similarly. That is, in the illumination optical system, if the pupil position and the stop position are different, the light illuminating the sample is inclined with respect to the optical axis. As a result, even if the sample is correctly set, the sample will be illuminated obliquely, and in a pattern with a step, etc., a shadow due to oblique illumination will occur, and accurate dimensional measurement must be performed. A problem arises that it cannot be performed.
【0009】そこで、本発明は、かかる問題について鑑
みてなされたものであり、順次セットされる試料が傾い
た場合でも、正確に試料上のパターンの寸法、特に、段
差のパターンの寸法等を測定する事が可能な観察装置を
提供することにある。Therefore, the present invention has been made in view of such a problem, and accurately measures the size of a pattern on a sample, particularly, the size of a stepped pattern, even when a sequentially set sample is inclined. It is an object of the present invention to provide an observation device capable of performing such operations.
【0010】[0010]
【課題を解決するための手段】前述の課題を解決するた
めに、本発明は、試料面を照明する照明光学系と、前記
試料面からの光束を集光して、試料面の像を形成する対
物光学系と、前記試料面の像を光電検出する撮像手段
と、前記対物光学系の少なくとも一部を介して前記試料
面からの光束を光電検出して、前記対物光学系の試料面
側の焦点面と前記試料面との整合状態を検出する焦点検
出系とを備えた観察装置において、前記試料面の傾きを
検出する傾斜検出手段と、前記傾斜検出手段にて検出さ
れた前記試料面の傾きに応じて、前記対物光学系の光軸
を調整する調整手段とを有することを特徴としている。In order to solve the above-mentioned problems, the present invention provides an illumination optical system for illuminating a sample surface, and a method for forming an image of the sample surface by condensing a light beam from the sample surface. An objective optical system, an imaging unit for photoelectrically detecting an image of the sample surface, and photoelectrically detecting a light beam from the sample surface via at least a part of the objective optical system, and a sample surface side of the objective optical system. A focus detection system for detecting a state of alignment between the focal plane of the sample and the sample surface; a tilt detection unit for detecting a tilt of the sample surface; and the sample surface detected by the tilt detection unit. Adjusting means for adjusting the optical axis of the objective optical system according to the inclination of the objective optical system.
【0011】本発明では、かかる構成により、試料ホル
ダにセットされた試料の傾きを検出して、そのデータを
基に対物光学系の光軸を調整すること、すなわち主光線
を傾けることができるので、試料が傾いていても寸法測
定等を良好に行うことが出来る。また、次々とセットさ
れる試料に対しても、迅速に測定又は観察を行うことが
可能である。According to the present invention, the tilt of the sample set in the sample holder can be detected and the optical axis of the objective optical system can be adjusted based on the data, that is, the chief ray can be tilted. In addition, even if the sample is inclined, dimensional measurement and the like can be performed satisfactorily. In addition, it is possible to quickly measure or observe samples that are set one after another.
【0012】[0012]
【発明の実施の形態】以下、本発明にかかる実施例を添
付した図面に基づいて説明する。図1は本発明の実施例
の構成を示す図である。本実施例の観察装置は、試料ホ
ルダ11に保持された液晶基板などの試料12を照明す
るための照明光学系13と、試料面からの反射光を集光
する対物レンズ14と、対物レンズの瞳20をリレーす
るためのリレー光学系15aと、試料12で反射し対物
レンズ14およびリレー光学系15aとを透過した光束
を結像する結像光学系15bと、結像光学系15bによ
り結像された試料像を光電変換するためのCCDなどの
撮像手段16とを備えている。Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing a configuration of an embodiment of the present invention. The observation apparatus of the present embodiment includes an illumination optical system 13 for illuminating a sample 12 such as a liquid crystal substrate held by a sample holder 11, an objective lens 14 for condensing light reflected from the sample surface, and an objective lens An image is formed by a relay optical system 15a for relaying the pupil 20, an image forming optical system 15b for forming an image of a light beam reflected by the sample 12 and transmitted through the objective lens 14 and the relay optical system 15a, and an image forming optical system 15b. And imaging means 16 such as a CCD for photoelectrically converting the sample image thus obtained.
【0013】また、ハーフミラーなどの光路分割手段1
7、18を用いて、照明光学系13とリレー光学系15
aと結像光学系15bとが共通の光軸を持つように構成
しているので、照明光と試料からの反射光は共に対物レ
ンズ14を透過することとなる。ここで、対物レンズ1
4の瞳20と観察側(結像系)開口絞り22が、試料面
12と観察側視野絞り21がそれぞれ光学的に共役な関
係になっている。かかる共役関係を保つということは、
換言すると、対物レンズ14の瞳20をリレーレンズ系
15aでリレーして、リレーした位置へ開口絞り22を
置くことができる、ということを意味する。すなわち、
対物レンズ14が高倍率になって、瞳位置が対物レンズ
の光学系内に入ってしまい、実際の瞳位置に開口絞りを
配置する事ができない場合でも、リレーされた瞳位置に
開口絞りを置くことができるので、光学系のテレセント
リシティを保つことが可能である。この結果、高倍の対
物レンズを用いても、正確な寸法測定を行うことができ
る。An optical path splitting means 1 such as a half mirror
7 and 18, the illumination optical system 13 and the relay optical system 15 are used.
Since a and the imaging optical system 15b are configured to have a common optical axis, both the illumination light and the reflected light from the sample pass through the objective lens. Here, the objective lens 1
The fourth pupil 20 and the observation-side (imaging system) aperture stop 22 are in an optically conjugate relationship with the sample surface 12 and the observation-side field stop 21, respectively. Maintaining such a conjugate relationship means that
In other words, it means that the pupil 20 of the objective lens 14 can be relayed by the relay lens system 15a and the aperture stop 22 can be placed at the relayed position. That is,
Even when the objective lens 14 has a high magnification and the pupil position enters the optical system of the objective lens and the aperture stop cannot be arranged at the actual pupil position, the aperture stop is placed at the relayed pupil position. Therefore, it is possible to maintain the telecentricity of the optical system. As a result, accurate dimension measurement can be performed even with a high-magnification objective lens.
【0014】一方、オートフォーカス装置19は、対物
レンズ14の焦点面を試料面12に合致させるように、
その整合状態をハーフミラー18及び対物レンズ14を
介して検出している。On the other hand, the auto-focusing device 19 adjusts the focal plane of the objective lens 14 so as to coincide with the sample plane 12.
The alignment state is detected via the half mirror 18 and the objective lens 14.
【0015】そして、オートフォーカス装置19は、光
電検出された情報に基づき、不図示の駆動系を介して対
物レンズ14または試料ホルダ11を上下方向(対物レ
ンズ14の光軸方向)に移動させて、対物レンズ14の
焦点面と試料面12とが合致するように合焦をおこな
う。また、ハーフミラー17の反射方向に設けられてい
る照明光学系は、照明光を供給する光源LSと、光源L
Sからの照明光を集光する集光レンズL1と、その集光
レンズL1の集光位置に配置された照明側開口絞り24
と、この開口絞りの像を対物レンズ14の瞳に形成する
コンデンサー光学系(L2,L3)とを有している。そ
して、コンデンサー光学系中には、視野絞り23が設け
られている。The autofocus device 19 moves the objective lens 14 or the sample holder 11 in the vertical direction (the optical axis direction of the objective lens 14) via a drive system (not shown) based on the information detected by the photoelectric detection. Focusing is performed so that the focal plane of the objective lens 14 and the sample plane 12 match. The illumination optical system provided in the reflection direction of the half mirror 17 includes a light source LS for supplying illumination light and a light source L.
A condensing lens L1 for condensing the illumination light from S, and an illumination-side aperture stop 24 disposed at a condensing position of the condensing lens L1.
And a condenser optical system (L2, L3) for forming an image of the aperture stop on the pupil of the objective lens 14. A field stop 23 is provided in the condenser optical system.
【0016】照明光学系13は、対物レンズ14の瞳2
0と照明系開口絞り24が、試料面12と照明系視野絞
り23がそれぞれ共役となるケーラー照明となってい
る。上記観察側光学系と同様に、高倍の対物レンズを使
用した場合でも、照明光学系におけるテレセントリシテ
ィ、すなわち、試料に対する垂直な照明が可能である。
したがって、段差のあるパターン等を測定したときで
も、斜め照明による影などが発生せずに、正確な寸法測
定を行うことができる。The illumination optical system 13 includes a pupil 2 of the objective lens 14.
0 and the illumination system aperture stop 24 constitute Koehler illumination in which the sample surface 12 and the illumination system field stop 23 are respectively conjugate. As with the observation side optical system, even when a high-magnification objective lens is used, telecentricity in the illumination optical system, that is, vertical illumination of the sample is possible.
Therefore, even when a pattern or the like having a step is measured, accurate dimension measurement can be performed without a shadow or the like due to oblique illumination.
【0017】次に、測定手順を説明する。順次、試料ホ
ルダ11に保持された試料12が対物レンズ14の焦点
位置にセットされると、図示しない傾斜検出手段により
試料12の傾きが検出される。得られた傾きに関するデ
ータを基にして、観察側開口絞り22を光軸に垂直な面
内で移動させ対物光学系(20,15a、15b)の光
軸を調整する。Next, the measurement procedure will be described. When the sample 12 held in the sample holder 11 is sequentially set at the focal position of the objective lens 14, the tilt of the sample 12 is detected by tilt detection means (not shown). Based on the obtained data on the tilt, the observation-side aperture stop 22 is moved in a plane perpendicular to the optical axis to adjust the optical axis of the objective optical system (20, 15a, 15b).
【0018】かかる光軸の調整について、図5に基づい
てさらに詳しく説明する。光学系のテレセントリシティ
を維持し、正確な寸法測定等を行うためには、観察側の
光学系Lを考えた場合、図5(a)で示すように主光線
CRが試料面Oに対して垂直であることが必要である。
主光線CRは開口絞りASの中心を通る光線であり、テ
レセントリックな光学系では、光学系Lの光軸AXに対
して平行である。The adjustment of the optical axis will be described in more detail with reference to FIG. In order to maintain the telecentricity of the optical system and perform accurate dimension measurement and the like, when considering the optical system L on the observation side, as shown in FIG. And must be vertical.
The principal ray CR is a ray passing through the center of the aperture stop AS, and is parallel to the optical axis AX of the optical system L in a telecentric optical system.
【0019】なお、図5に示す光学系Lは、図1におけ
る対物レンズ14とリレー光学系15aとの合成系に相
当する。また、図5に示す光学系Lを後述する照明光学
系の一部として見たときには、図1における対物レンズ
14とコンデンサー光学系(L2,L3)との合成系に
相当する。The optical system L shown in FIG. 5 corresponds to a combined system of the objective lens 14 and the relay optical system 15a in FIG. When the optical system L shown in FIG. 5 is viewed as a part of an illumination optical system described later, it corresponds to a combined system of the objective lens 14 and the condenser optical systems (L2, L3) in FIG.
【0020】ところが、図5(b)で示すように試料面
Oが傾くと、主光線CRと傾いた試料面O’の法線との
間に角度ズレθが生じてしまい正確な寸法測定等が出来
なくなる。そこで、開口絞りASをAS’の位置へ移動
させると、主光線はAS’の中心を通る光線であるので
CR’になる。このとき、試料Oの傾きθに応じて、開
口絞りASの中心を通るレンズ系Lの光軸AXは、図5
(b)のAX’に示すように傾斜するが、開口絞りAS
のΔmの移動によって、これの中心を通る光軸AX’
は、開口絞りASの移動前の光軸AXと平行になる。However, as shown in FIG. 5B, when the sample surface O is tilted, an angle shift θ occurs between the principal ray CR and the normal of the tilted sample surface O ′, and accurate dimension measurement and the like are performed. Can not be done. Then, when the aperture stop AS is moved to the position of AS ', the chief ray is a ray passing through the center of AS' and becomes CR '. At this time, according to the inclination θ of the sample O, the optical axis AX of the lens system L passing through the center of the aperture stop AS is as shown in FIG.
The aperture stop AS is tilted as shown by AX ′ in FIG.
Of the optical axis AX 'passing through the center of
Is parallel to the optical axis AX before the movement of the aperture stop AS.
【0021】従って、図5(b)のように試料面Oの傾
きθに応じて、開口絞りASを光軸AXに対して垂直な
方向へΔmだけ動かして光軸を調整してやれば、傾いた
試料面O’に対して主光線CR’が垂直になり、テレセ
ントリックな系となり、正確な寸法測定等を行うことが
出来る。Therefore, as shown in FIG. 5 (b), if the optical axis is adjusted by moving the aperture stop AS by .DELTA.m in the direction perpendicular to the optical axis AX in accordance with the inclination .theta. The principal ray CR 'is perpendicular to the sample surface O', and becomes a telecentric system, enabling accurate dimension measurement and the like.
【0022】以上、観察側の光学系について述べたが、
照明側の光学系につても同様のことがいえる。すなわ
ち、照明光学系に設けられた開口絞り24を照明光学系
の光軸に対して垂直に動かし光軸を調整することで、照
明側の主光線と試料面のなす角度を任意に調整する事が
可能である。The optical system on the observation side has been described above.
The same can be said for the optical system on the illumination side. That is, by moving the aperture stop 24 provided in the illumination optical system perpendicular to the optical axis of the illumination optical system and adjusting the optical axis, the angle between the principal ray on the illumination side and the sample surface can be arbitrarily adjusted. Is possible.
【0023】従って、開口絞りの移動により、試料面1
2上を観察及び計測するための対物レンズ14の光軸及
び、照明光学系の光軸と、試料面12に垂直に交わる傾
斜した軸(傾斜した光軸)との角度ズレを無くすること
が出来る。Accordingly, the movement of the aperture stop causes the sample surface 1
It is possible to eliminate the angular deviation between the optical axis of the objective lens 14 for observing and measuring the surface and the optical axis of the illumination optical system, and the inclined axis (tilted optical axis) perpendicular to the sample surface 12. I can do it.
【0024】次に、傾斜検出手段の例を図2に示す。図
2において、試料面32に試料のパターン寸法を計測す
るための照明光源とは別に、半導体レーザ等の光源31
を設け、光源31からの光束を試料32に照射し、その
反射光を集光させて位置検出センサなどの位置検出手段
33により集光位置を検出している。このとき、位置検
出センサ33上の集光点の位置の移動から、試料32の
傾きを検出することができる。Next, an example of the inclination detecting means is shown in FIG. In FIG. 2, a light source 31 such as a semiconductor laser is provided on a sample surface 32 separately from an illumination light source for measuring a pattern size of the sample.
Is provided, the light beam from the light source 31 is irradiated on the sample 32, and the reflected light is condensed, and the condensing position is detected by the position detecting means 33 such as a position detecting sensor. At this time, the inclination of the sample 32 can be detected from the movement of the position of the condensing point on the position detection sensor 33.
【0025】かかる傾斜検出手段を用いた本発明の観察
装置の他の例を図3に基づいて説明する。図3において
は、図2で説明した傾斜検出手段とは別に、さらに加え
て、照明光源からの光束の試料面12からの反射光束を
利用して、傾斜検出光学系34及び位置検出センサ35
により試料面12の傾きを検出する事も可能である。こ
れらの傾斜検出手段は単一で装置に組み込んでもよい
が、組み合わせて使用すればより正確に試料の傾斜を検
出することが出来る。Another example of the observation apparatus of the present invention using such a tilt detecting means will be described with reference to FIG. In FIG. 3, apart from the tilt detecting means described with reference to FIG. 2, in addition to the tilt detecting optical system 34 and the position detecting sensor 35, the reflected light from the sample surface 12 of the light from the illumination light source is used.
, It is also possible to detect the inclination of the sample surface 12. These tilt detecting means may be incorporated in the apparatus singly, but when used in combination, the tilt of the sample can be detected more accurately.
【0026】傾斜検出部からの試料の傾きに関するデー
タは、光学系のテレセントリシティを制御するテレセン
トリシティ制御部37に取り込まれ、駆動部38により
観察側、照明側の各開口絞り22、24を駆動する。照
明光学系の開口絞り24を移動させることで、照明側の
主光線を傾かせることができ、観察側の開口絞り22を
移動させることで、結像光(試料から反射してきた光で
観察側光学系に取り込まれるもの)の主光線を傾かせる
ことが出来る。このため、試料12が傾いている場合で
も、主光線を傾けることにより、傾いた試料に対して、
光学系のテレセントリシティを保つことが出来、正確な
寸法測定を行うことが出来る。なお、主光線を傾かせる
ためには、開口絞りの移動に限らず、他の光学部品を移
動させることにより行ってもよい。Data relating to the tilt of the sample from the tilt detector is taken into a telecentricity controller 37 for controlling the telecentricity of the optical system, and a drive unit 38 controls the aperture stops 22 and 24 on the observation side and the illumination side. Drive. By moving the aperture stop 24 of the illumination optical system, the chief ray on the illumination side can be tilted, and by moving the aperture stop 22 on the observation side, the imaging light (light reflected from the sample on the observation side The principal ray of light that is taken into the optical system can be tilted. For this reason, even when the sample 12 is tilted, by tilting the chief ray,
The telecentricity of the optical system can be maintained, and accurate dimension measurement can be performed. The tilt of the principal ray is not limited to the movement of the aperture stop, but may be performed by moving other optical components.
【0027】また、テレセントリシティ制御部37から
のデータに基づいて、ステージ傾き調整手段39によ
り、試料12自体の傾きを補正することも可能である。
すなわち、試料12自体の傾きの補正と、開口絞りの移
動による主光線を傾ける補正を同時に行うこともでき
る。かかる場合には、試料12自体の傾きの補正は粗調
整に、絞り移動による光束を傾ける補正は微調整に使う
ことが好ましい。The tilt of the sample 12 itself can be corrected by the stage tilt adjusting means 39 based on the data from the telecentricity control section 37.
That is, the correction of the tilt of the sample 12 itself and the correction of tilting the principal ray by moving the aperture stop can be performed simultaneously. In such a case, it is preferable to use the correction of the tilt of the sample 12 itself for coarse adjustment and the correction of tilting the light beam by moving the diaphragm for fine adjustment.
【0028】なお、本発明では、試料の傾きを検出し、
それを補正することができれば、光学系の配置、傾斜検
出手段、オートフォーカス装置等は実施例に限定される
ものではない。また、本発明の光路分割手段はハーフミ
ラーの他に、ハーフプリズム、ダイクロイックミラー、
ダイクロイックプリズム等を、要求される波長、光量等
に合わせて適宜選択する事が可能である。さらに、線幅
測定装置、重ね合わせ測定装置等の寸法を測定する目的
の装置、顕微鏡や露光装置のアライメント装置であれ
ば、本発明を実施することが可能なことは言うまでもな
い。In the present invention, the inclination of the sample is detected,
If this can be corrected, the arrangement of the optical system, the inclination detecting means, the autofocus device, and the like are not limited to the embodiments. Further, the optical path splitting means of the present invention may include a half prism, a dichroic mirror,
The dichroic prism and the like can be appropriately selected according to the required wavelength, light amount, and the like. Further, it goes without saying that the present invention can be implemented with any device for measuring dimensions, such as a line width measuring device and an overlay measuring device, or an alignment device for a microscope or an exposure device.
【発明の効果】以上述べたように本発明によれば、次々
とセットされる試料面の傾きを検出し、対物光学系の光
軸を調整し、試料の傾きに応じて観察側の主光線を傾け
ているので、常に正確な寸法測定を行うことが出来る。
また、測定、計測時間の短縮化が可能である。As described above, according to the present invention, the inclination of the sample surface set one after another is detected, the optical axis of the objective optical system is adjusted, and the principal ray on the observation side is adjusted according to the inclination of the sample. Since it is inclined, accurate dimension measurement can always be performed.
In addition, measurement and measurement time can be reduced.
【図1】本発明にかかる観察装置の実施例の概略を示す
図である。FIG. 1 is a view schematically showing an embodiment of an observation apparatus according to the present invention.
【図2】本発明にかかる傾斜検出装置を示す図である。FIG. 2 is a diagram showing a tilt detection device according to the present invention.
【図3】本発明にかかる観察装置の他の実施例を示す図
である。FIG. 3 is a view showing another embodiment of the observation device according to the present invention.
【図4】従来の観察装置を示す図である。FIG. 4 is a diagram showing a conventional observation device.
【図5】主光線と開口絞りの関係を示す図である。FIG. 5 is a diagram showing a relationship between a principal ray and an aperture stop.
1,11……試料ホルダ 2,12……
試料 3,13……照明光学系 4,14……
対物レンズ 5……結像光学系 6……撮像素
子 7,8,17,18,36……ハーフミラー 9,19……オートフォーカス部 15a……リレー光学系 15b……結
像光学系 16……撮像素子 20……対物
レンズ瞳 21……観察側視野絞り 22……観察
側開口絞り 23……照明側視野絞り 24……照明
側開口絞り 31……光源 32……試料 33、35……位置検出センサ 34……位置
検出光学系 37……テレセントリシティ制御部 38……駆動部 39……ステ
ージ傾き調整部 O、O’……試料 AX、AX’
……光軸 CR、CR’……主光線 AS、AS’
……開口絞り L……レンズ LS……光源 L1……集光レンズ L2、L3…
…コンデンサー光学系1,11 ... Sample holder 2,12 ...
Sample 3,13 ... Illumination optical system 4,14 ...
Objective lens 5 Image forming optical system 6 Image pickup device 7, 8, 17, 18, 36 Half mirror 9, 19 Auto focus unit 15a Relay optical system 15b Image forming optical system 16 ... Image pickup device 20... Objective lens pupil 21... Observation-side field stop 22... Observation-side aperture stop 23... Illumination-side aperture stop 31. Position detection sensor 34 Position detection optical system 37 Telecentricity control unit 38 Drive unit 39 Stage tilt adjustment unit O, O 'Sample AX, AX'
…… Optical axis CR, CR ′ …… Principal ray AS, AS ′
... Aperture stop L ... Lens LS ... Light source L1 ... Condenser lens L2, L3 ...
… Condenser optical system
Claims (4)
る対物光学系と、 前記試料面の像を光電検出する撮像手段と、 前記対物光学系の少なくとも一部を介して前記試料面か
らの光束を光電検出して、前記対物光学系の試料面側の
焦点面と前記試料面との整合状態を検出する焦点検出系
とを備えた観察装置において、 前記試料面の傾きを検出する傾斜検出手段と、 前記傾斜検出手段にて検出された前記試料面の傾きに応
じて、前記対物光学系の光軸を調整する調整手段とを有
することを特徴とする観察装置。An illumination optical system for illuminating a sample surface, an objective optical system for condensing a light beam from the sample surface to form an image of the sample surface, and an imaging unit for photoelectrically detecting the image of the sample surface A focus detection system that photoelectrically detects a light beam from the sample surface via at least a part of the objective optical system and detects a matching state between the sample surface-side focal surface of the objective optical system and the sample surface; A tilt detecting means for detecting the tilt of the sample surface; and adjusting the optical axis of the objective optical system according to the tilt of the sample surface detected by the tilt detecting means. And an observation device.
検出された前記試料面の傾きに応じて、さらに、前記照
明光学系の光軸を調整することを特徴とする請求項1記
載の観察装置。2. The apparatus according to claim 1, wherein said adjusting means further adjusts an optical axis of said illumination optical system in accordance with a tilt of said sample surface detected by said tilt detecting means. Observation device.
いて前記対物光学系の瞳と光学的に共役な位置に配置さ
れて、前記照明光学系の光軸と直交する方向に移動可能
な照明側開口絞りと、前記対物光学系内において前記対
物光学系の瞳または該瞳と光学的に共役な位置に配置さ
れて、前記対物光学系の光軸と直交する方向に移動可能
な観察側開口絞りとを有することを特徴とする請求項2
に記載の観察装置。3. The illumination device is arranged in the illumination optical system at a position optically conjugate with a pupil of the objective optical system, and is movable in a direction orthogonal to an optical axis of the illumination optical system. A side aperture stop, and an observation side aperture that is disposed in the objective optical system at a pupil of the objective optical system or at a position optically conjugate with the pupil and is movable in a direction orthogonal to the optical axis of the objective optical system. 3. The apparatus according to claim 2, further comprising an aperture.
2. The observation device according to 1.
再結像するリレー光学系と、 該リレー光学系により再結像された瞳からの光を集光し
て前記試料面の像を形成する結像レンズ系と、 前記対物レンズ系と前記リレー光学系との間に配置され
た光分割部材とを有し、 前記光分割部材は、前記照明光学系からの照明光を前記
対物レンズを介して前記試料面へ導くと共に、該試料面
からの光を前記対物レンズ系を介して前記リレー光学系
へ導く機能を有し、 前記観察側開口絞りは、前記リレー光学系により形成さ
れる対物レンズ瞳の像位置に配置されることを特徴とす
る請求項3に記載の観察装置。4. The objective optical system includes: an objective lens system for condensing light from the sample surface; and a relay optical system for receiving a light beam from the objective lens system and re-imaging a pupil of the objective lens. An imaging lens system for condensing light from a pupil re-imaged by the relay optical system to form an image of the sample surface, and being disposed between the objective lens system and the relay optical system. A light splitting member, wherein the light splitting member guides illumination light from the illumination optical system to the sample surface via the objective lens, and directs light from the sample surface through the objective lens system. The observation apparatus according to claim 3, wherein the observation apparatus has a function of leading to the relay optical system, and the observation-side aperture stop is arranged at an image position of an objective lens pupil formed by the relay optical system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9058575A JPH10239037A (en) | 1997-02-27 | 1997-02-27 | Observation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9058575A JPH10239037A (en) | 1997-02-27 | 1997-02-27 | Observation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10239037A true JPH10239037A (en) | 1998-09-11 |
Family
ID=13088251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9058575A Withdrawn JPH10239037A (en) | 1997-02-27 | 1997-02-27 | Observation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10239037A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021787A (en) * | 2001-07-06 | 2003-01-24 | Nikon Corp | Observation device |
JP2003149559A (en) * | 2001-09-07 | 2003-05-21 | Leica Microsystems (Schweiz) Ag | Microscope with illumination insertion incidence part |
JP2007036038A (en) * | 2005-07-28 | 2007-02-08 | Nano System Solutions:Kk | Automatic optical axis correction method of telecentric optical system, automatic optical axis correction telecentric optical device, and exposing device |
JP2007058199A (en) * | 2005-07-28 | 2007-03-08 | Kazunori Senta | Observation device |
JP2007101578A (en) * | 2005-09-30 | 2007-04-19 | Olympus Corp | Microscopic focus maintenance device and microscope device |
JP2009092596A (en) * | 2007-10-11 | 2009-04-30 | Denso Corp | System and method for inspecting dimensions |
JP2012113188A (en) * | 2010-11-26 | 2012-06-14 | Olympus Corp | Light intensity measuring unit and microscope including the same |
JP2014109615A (en) * | 2012-11-30 | 2014-06-12 | Keyence Corp | Optical microscope |
WO2015133176A1 (en) * | 2014-03-05 | 2015-09-11 | 株式会社 日立ハイテクノロジーズ | Microspectroscopy device |
WO2017154895A1 (en) * | 2016-03-09 | 2017-09-14 | 浜松ホトニクス株式会社 | Measuring device, observing device and measuring method |
-
1997
- 1997-02-27 JP JP9058575A patent/JPH10239037A/en not_active Withdrawn
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003021787A (en) * | 2001-07-06 | 2003-01-24 | Nikon Corp | Observation device |
JP2003149559A (en) * | 2001-09-07 | 2003-05-21 | Leica Microsystems (Schweiz) Ag | Microscope with illumination insertion incidence part |
JP2007036038A (en) * | 2005-07-28 | 2007-02-08 | Nano System Solutions:Kk | Automatic optical axis correction method of telecentric optical system, automatic optical axis correction telecentric optical device, and exposing device |
JP2007058199A (en) * | 2005-07-28 | 2007-03-08 | Kazunori Senta | Observation device |
JP2007101578A (en) * | 2005-09-30 | 2007-04-19 | Olympus Corp | Microscopic focus maintenance device and microscope device |
JP2009092596A (en) * | 2007-10-11 | 2009-04-30 | Denso Corp | System and method for inspecting dimensions |
JP2012113188A (en) * | 2010-11-26 | 2012-06-14 | Olympus Corp | Light intensity measuring unit and microscope including the same |
JP2014109615A (en) * | 2012-11-30 | 2014-06-12 | Keyence Corp | Optical microscope |
WO2015133176A1 (en) * | 2014-03-05 | 2015-09-11 | 株式会社 日立ハイテクノロジーズ | Microspectroscopy device |
GB2537786A (en) * | 2014-03-05 | 2016-10-26 | Hitachi High Tech Corp | Microspectroscopy device |
US9804029B2 (en) | 2014-03-05 | 2017-10-31 | Hitachi High-Technologies Corporation | Microspectroscopy device |
GB2537786B (en) * | 2014-03-05 | 2021-03-03 | Hitachi High Tech Corp | Microspectroscopy device |
WO2017154895A1 (en) * | 2016-03-09 | 2017-09-14 | 浜松ホトニクス株式会社 | Measuring device, observing device and measuring method |
CN108700411A (en) * | 2016-03-09 | 2018-10-23 | 浜松光子学株式会社 | Measurement device, observation device and assay method |
KR20180121878A (en) * | 2016-03-09 | 2018-11-09 | 하마마츠 포토닉스 가부시키가이샤 | Measuring devices, observation devices and measuring methods |
JPWO2017154895A1 (en) * | 2016-03-09 | 2019-01-10 | 浜松ホトニクス株式会社 | Measuring device, observation device and measuring method |
US11402200B2 (en) | 2016-03-09 | 2022-08-02 | Hamamatsu Photonics K.K. | Measuring device, observing device and measuring method |
CN108700411B (en) * | 2016-03-09 | 2023-04-21 | 浜松光子学株式会社 | Measuring device, observation device, and measuring method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2890882B2 (en) | Positioning method, semiconductor device manufacturing method, and projection exposure apparatus using the same | |
JP4613357B2 (en) | Apparatus and method for adjusting optical misregistration measuring apparatus | |
JP4097761B2 (en) | Autofocus microscope and autofocus detection device | |
US4952970A (en) | Autofocusing system for a projecting exposure apparatus | |
KR100833701B1 (en) | Method for adjusting a lamp relative to an illumination beam path of a microscope and microscope suitable for carrying out the method | |
JPH0623808B2 (en) | Automatic focusing device for optical instruments | |
JPH10239037A (en) | Observation device | |
JPH10161195A (en) | Autofocusing method and device | |
JPH1195091A (en) | Autofocusing microscope | |
JP3794670B2 (en) | Microscope autofocus method and apparatus | |
US6875972B2 (en) | Autofocus module for microscope-based systems | |
JP2006184777A (en) | Focus detector | |
JP4388298B2 (en) | Microscope system | |
US7580121B2 (en) | Focal point detection apparatus | |
US20040145816A1 (en) | Microscope lens arrangement | |
JPH0762604B2 (en) | Alignment device | |
JPH07142346A (en) | Projection aligner | |
JP3275268B2 (en) | Position detection method and apparatus, and exposure method and apparatus | |
JP2002277729A (en) | Device and method for automatic focusing of microscope | |
JP2002341234A (en) | Automatic focusing device for microscope | |
JPH05343292A (en) | Exposure apparatus | |
US11774740B2 (en) | Apparatus for monitoring a focal state of microscope | |
KR100414575B1 (en) | Projection exposure equipment | |
JP3163803B2 (en) | Focus position detector | |
JPH06349708A (en) | Projection exposure device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040511 |