[go: up one dir, main page]

JPH10236842A - Sealing glass for nitride ceramic material - Google Patents

Sealing glass for nitride ceramic material

Info

Publication number
JPH10236842A
JPH10236842A JP5710597A JP5710597A JPH10236842A JP H10236842 A JPH10236842 A JP H10236842A JP 5710597 A JP5710597 A JP 5710597A JP 5710597 A JP5710597 A JP 5710597A JP H10236842 A JPH10236842 A JP H10236842A
Authority
JP
Japan
Prior art keywords
glass
nitride
sealing
ceramic material
nitride ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5710597A
Other languages
Japanese (ja)
Other versions
JP4618653B2 (en
Inventor
Fumiyuki Shimizu
史幸 清水
Takashi Endo
隆 遠藤
Naoto Shindo
直人 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
S II C KK
Original Assignee
S II C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by S II C KK filed Critical S II C KK
Priority to JP05710597A priority Critical patent/JP4618653B2/en
Publication of JPH10236842A publication Critical patent/JPH10236842A/en
Application granted granted Critical
Publication of JP4618653B2 publication Critical patent/JP4618653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sealing glass which has good wettability with a nitride ceramic material, contains no lead oxide and can tightly seal a nitride ceramic material at low temp. even in an oxidizing atmosphere, inert atmosphere, reducing atmosphere or vacuum by mixing ZnO and B2 O3 and fusing and vitrifying the mixture. SOLUTION: ZnO by 55 to 63mol% and B2 O3 by 45 to 37mol% are mixed, fused by heating to vitrify, and then kept at 580 to 800 deg.C for 10 to 120min to slowly crystallize to obtain a sealing glass for a nitride ceramic material. The obtd. sealing glass has 580 to 620 deg.C softening point and 650 to 780 deg.C peak temp. (DTA) of crystallization. A powder of the sealing glass is dispersed in a vehicle to obtain a glass paste, which is then applied on a nitride ceramic material, dried and heat treated at a temp. over the softening point and <=780 deg.C to seal the nitride ceramic material. Thereby, the obtd. sealed part of the nitride ceramic material has excellent sealing property, heat resistance and thermal shock resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化物系セラミッ
クスの封着や封止に用いられるガラス材料、及びこれを
用いた窒化物系セラミックスの封着方法に関する。
The present invention relates to a glass material used for sealing and sealing nitride-based ceramics, and a method for sealing nitride-based ceramics using the same.

【0002】[0002]

【従来の技術】窒化珪素、窒化アルミニウム、窒化硼
素、窒化チタンなどの窒化物系セラミックスは、機械的
強度、耐熱性、耐酸化性等に優れているため、高温用構
造材料、絶縁材料、機械部品材料等のエンジニアリング
セラミックスとして、又セラミックスヒーターや各種エ
レクトロニスク用基板材料として注目されている。特に
高ヤング率、高熱伝導性で、耐熱衝撃性の優れた窒化珪
素は、ガスタービン、自動車エンジン用部品等の高温で
使用される機械部品に使用される。窒化物系セラミック
ス同士、あるいは窒化物系セラミックスと金属等他の材
料との接着、封着にはホットプレス法、活性金属法など
を用いるのが主流であるが、いずれも高温での熱処理を
必要とする。
2. Description of the Related Art Since nitride-based ceramics such as silicon nitride, aluminum nitride, boron nitride, and titanium nitride have excellent mechanical strength, heat resistance, oxidation resistance, and the like, high-temperature structural materials, insulating materials, and mechanical materials. Attention has been paid to engineering ceramics such as component materials, and substrate materials for ceramic heaters and various electronic devices. Particularly, silicon nitride having high Young's modulus, high thermal conductivity and excellent thermal shock resistance is used for mechanical parts used at high temperatures such as gas turbines and parts for automobile engines. Hot press method, active metal method, etc. are mainly used for bonding and sealing between nitride-based ceramics or between nitride-based ceramics and other materials such as metals, but all require heat treatment at high temperature. And

【0003】従来、酸化物系セラミックスやガラスを比
較的低温で封着、封止するためには、低融点ガラスが用
いられている。これは低融点ガラス粉末やこれを樹脂、
溶剤等からなるビヒクル中に分散させたガラスペースト
を被封着材に塗布し、焼成してガラスを軟化させ、気密
に接着するものである。この目的に使用されるガラスと
しては、各種の非晶質又は結晶性の半田ガラス、あるい
は非晶質半田ガラスに酸化物フィラーを添加した複合材
料が代表的である。
Conventionally, low-melting glass has been used to seal and seal oxide-based ceramics and glass at a relatively low temperature. This is low melting glass powder and this is resin,
A glass paste dispersed in a vehicle made of a solvent or the like is applied to a material to be sealed, and is baked to soften the glass and adhere hermetically. Typical examples of the glass used for this purpose include various types of amorphous or crystalline solder glass, or a composite material obtained by adding an oxide filler to amorphous solder glass.

【0004】ところが、一般に窒化物系セラミックスは
ガラスとの濡れが極めて悪いことが知られており、全く
接着しなかったり、焼成時に収縮して被着材との間に隙
間を生じたりする。又ガラス材料と反応してアンモニア
ガスや窒素ガスを発生し、発泡、剥離を起こす場合もあ
る。更に窒化物系セラミックスは、酸化物系セラミック
スに比べて熱膨張係数が低く、例えば室温から300℃
の範囲においては、窒化珪素で30〜35×10-7/℃
程度、窒化アルミニウムで45〜60×10-7/℃程度
である。このため、通常の酸化物セラミックス用のガラ
スで封着を行うと、封着時の熱歪に起因して剥れ、クラ
ックを生じ、気密性、信頼性が損われる。従って、酸化
物系セラミックスやガラスの封着に用いられているよう
なガラスを、同様に窒化物系に使用することはできず、
窒化物系セラミックスの低温封着は極めて困難とされて
いた。このような窒化物系セラミックスの低温封着用と
して、エポキシ系やポリイミド系などの樹脂材料が検討
されている。しかし樹脂材料は耐熱性が劣り、封着後の
繰返し熱処理が不可能で、高温部品等には使用できな
い。
[0004] However, it is generally known that nitride-based ceramics have extremely poor wettability with glass, and they do not adhere at all or shrink during firing to produce a gap between the ceramic and the adherend. Further, it reacts with a glass material to generate ammonia gas or nitrogen gas, which may cause foaming and peeling. Furthermore, nitride-based ceramics have a lower coefficient of thermal expansion than oxide-based ceramics.
In the range of 30 to 35 × 10 −7 / ° C. with silicon nitride.
About 45 to 60 × 10 −7 / ° C. for aluminum nitride. For this reason, when sealing is performed with ordinary glass for oxide ceramics, peeling and cracking occur due to thermal strain at the time of sealing, resulting in impaired airtightness and reliability. Therefore, glass used for sealing oxide-based ceramics and glass cannot be used for nitride-based glass as well.
Low-temperature sealing of nitride ceramics has been extremely difficult. As a low-temperature sealing of such a nitride ceramic, a resin material such as an epoxy resin or a polyimide resin has been studied. However, resin materials have poor heat resistance, cannot be subjected to repeated heat treatment after sealing, and cannot be used for high-temperature parts and the like.

【0005】そこで本発明者等は、熱膨張係数の低いガ
ラス材料で封着することを検討した。低熱膨張ガラスと
しては、非晶質ガラスでは硼珪酸鉛系、硼酸亜鉛系な
ど、結晶性ガラスでは硼酸鉛亜鉛系、硼珪酸亜鉛系、硼
酸亜鉛系などが知られている。このうち非晶質ガラス
は、窒化物系セラミックスとの濡れ性や接着性が悪いも
のが多い。又耐熱性が比較的小さく、封着後に更に軟化
点以上の温度で高温処理を行う必要がある場合には軟化
流動してしまうので使用できない。耐熱性を上げようと
すると封着温度も上昇し、低温で封着できなくなる。封
着後の耐熱性を上げるために酸化物フィラーを添加する
と、フィラーとガラスとの濡れが悪く、又接合時の液相
が少なくなるので、接着性が悪い。
Accordingly, the present inventors have studied sealing with a glass material having a low coefficient of thermal expansion. As the low thermal expansion glass, lead borosilicate, zinc borate and the like are known as amorphous glass, and lead zinc borate, zinc borosilicate and zinc borate are known as crystalline glass. Of these, amorphous glass often has poor wettability and adhesion to nitride ceramics. Further, when the heat resistance is relatively low and high-temperature treatment at a temperature higher than the softening point after sealing is required, the material cannot be used because of softening and flowing. If an attempt is made to increase the heat resistance, the sealing temperature also increases, and sealing cannot be performed at a low temperature. If an oxide filler is added to increase the heat resistance after sealing, the wettability between the filler and the glass is poor, and the liquid phase at the time of bonding is reduced, so that the adhesiveness is poor.

【0006】封着時に結晶を析出する結晶性ガラスは、
封着後の耐熱性が大きい。しかし酸化鉛を含むガラス
は、一般に窒化物系セラミックスと反応し易く、特に非
酸化性雰囲気中で焼成すると、酸化鉛が還元されて酸素
が窒化物系セラミックス中の窒素と置き換わり、窒素ガ
スが発生するので、非酸化性雰囲気中で焼成を行う必要
のあるもの、例えば酸化性金属が使用されている部品の
封着には使用できない。更に鉛は生体や環境に悪影響を
与えるので、鉛系のガラスは使用しないことが望まし
い。
[0006] The crystalline glass that precipitates crystals during sealing is
High heat resistance after sealing. However, glass containing lead oxide generally reacts easily with nitride ceramics, especially when fired in a non-oxidizing atmosphere, lead oxide is reduced and oxygen replaces nitrogen in nitride ceramics, generating nitrogen gas. Therefore, it cannot be used for sealing a component that needs to be fired in a non-oxidizing atmosphere, for example, a component using an oxidizing metal. Further, since lead has a bad effect on living bodies and the environment, it is desirable not to use lead-based glass.

【0007】一方、英国特許第899901号や特開昭
48−43408号公報に記載されているようなB2
3 −SiO2 −ZnO系結晶性ガラスは、熱膨張係数の
小さいSi半導体の被覆用や、コバールやモリブデンな
どの封着に使用されるが、窒化物系セラミックスに対す
る封着性は不十分であり、軟化点が比較的高いため、特
に低温、例えば700℃以下の温度では接着強度の大き
い接合が形成できない。
On the other hand, B 2 O as described in British Patent No. 899901 and JP-A-48-43408.
3 -SiO 2 -ZnO-based crystalline glass is used for coating a Si semiconductor having a small coefficient of thermal expansion or for sealing Kovar or molybdenum, but the sealing property for nitride-based ceramics is insufficient. Since the softening point is relatively high, a bond having high adhesive strength cannot be formed particularly at a low temperature, for example, at a temperature of 700 ° C. or less.

【0008】作花済夫他「ガラスハンドブック」第14
7〜149頁(朝倉書店、1975年)等には、ZnO
−B2 3 系の結晶性ガラスが記載されている。しか
し、ZnO−B2 3 系結晶性ガラスはそのガラス化範
囲、結晶化範囲が極めて狭く、組成、熱処理等作業条件
による特性の変動が大きく、制御が難しいため、セラミ
ックスの封着用としては従来使用されておらず、特に窒
化物系セラミックスの封着に用いることについては、こ
れまで全く検討がなされていないのが実情である。
[0008] Saio Sakuhana et al., "Glass Handbook", No. 14
7 to 149 pages (Asakura Shoten, 1975)
-B 2 O 3 based crystal glass is described. However, ZnO-B 2 O 3 based crystalline glass the vitrification range, the crystallization range is extremely narrow, composition, large variations in characteristics due to heat treatment or the like working conditions, because control is difficult, as the sealing of the ceramic conventional It is not used, and the fact is that no particular study has been made on its use for sealing nitride-based ceramics.

【0009】また、英国特許第1205652号には各
種の半田ガラスが記載されており、ZnOとB2 3
らなる封着用半田ガラスも記載されているが、ここにも
ZnOとB2 3 からなるガラスを用いてこれを結晶化
して窒化物系セラミックスを封着した具体的記載はな
い。なお、ここに記載されている熱膨張係数の値は比較
的大きなものとなっており、この値はこのものが窒化物
系セラミックスの封着ガラスとして満足できるものでは
ないことを示しているのである。
Further, in British Patent No. 1205652, various solder glasses are described, and a sealing solder glass comprising ZnO and B 2 O 3 is also described. Here, ZnO and B 2 O 3 are also described. There is no specific description of crystallizing this using glass made of and sealing the nitride ceramics. In addition, the value of the coefficient of thermal expansion described here is relatively large, and this value indicates that this value is not satisfactory as a sealing glass of nitride ceramics. .

【0010】[0010]

【発明が解決しようとする課題】このような状況の中、
本発明者等は、窒化物系セラミックスと濡れが良く、熱
膨張係数が適合する封着材料を見出すべく、また、酸化
鉛を含まず、低温で、酸化性雰囲気のみならず不活性雰
囲気中、還元性雰囲気中、真空中においても窒化物系セ
ラミックスを気密に封着することが可能なガラス材料を
得るべく研究を重ね、驚くべきことに従来、取扱いが難
しいためにセラミックス封着、封止用に使用されていな
かったZnO−B2 3 系ガラスの中に極めて好適なも
のがあることを知り、本発明に到達した。
In such a situation,
The present inventors, in order to find a sealing material that has good wettability with the nitride-based ceramics and a suitable thermal expansion coefficient, and does not contain lead oxide, at a low temperature, not only in an oxidizing atmosphere but also in an inert atmosphere, In order to obtain a glass material that can hermetically seal nitride-based ceramics even in a reducing atmosphere or in a vacuum, we have been working on obtaining a glass material. We know that there is very suitable in a ZnO-B 2 O 3 based glass which has not been used in, the present invention has been attained.

【0011】[0011]

【課題を解決するための手段】即ち、本発明は、ZnO
55〜63モル%、B2 3 45〜37モル%からなる
窒化物系セラミックスの封着用ガラスを要旨とするもの
である。以下、本発明を詳細に説明する。
That is, the present invention provides a ZnO
55-63 mole%, is a B 2 O 3 45~37 mol% sealing glass of the nitride-based ceramic consisting intended to be subject matter. Hereinafter, the present invention will be described in detail.

【0012】[0012]

【発明の実施の形態】本発明のガラスの組成は、ZnO
55〜63モル%とB2 3 45〜37モル%に調整す
る必要がある。なお、この量比はZnとBとの割合がZ
nOとB2 3 に換算した時の割合を意味するものであ
る。ガラス中のZnO成分が63モル%より多いとガラ
ス化しない。一方、55モル%より少ないとガラスの分
相が起こり易く、接合が不安定になって信頼性を損う。
ZnO55〜63モル%の範囲で焼結性、結晶化の度
合、結晶化速度等の点から窒化物系セラミックの気密な
封着性に最も適している。本発明のガラスは、粉末の形
で用いてもよいが、望ましくはガラス粉末をビヒクル中
に分散させてペースト状にして用いる。
DETAILED DESCRIPTION OF THE INVENTION The composition of the glass of the present invention is ZnO.
It is necessary to adjust the 55 to 63 mol% and B 2 O 3 45~37 mol%. Note that this ratio is such that the ratio between Zn and B is Z
It means the ratio when converted to nO and B 2 O 3 . If the ZnO component in the glass is more than 63 mol%, the glass will not be vitrified. On the other hand, if it is less than 55 mol%, the phase separation of the glass is likely to occur, and the bonding becomes unstable and the reliability is impaired.
ZnO in the range of 55 to 63 mol% is most suitable for hermetic sealing of the nitride ceramic from the viewpoints of sinterability, degree of crystallization, crystallization rate and the like. The glass of the present invention may be used in the form of a powder, but desirably, the glass powder is dispersed in a vehicle and used as a paste.

【0013】ビヒクルは、通常ガラスペーストに用いら
れているものでよく、水や有機系の溶剤に、必要により
樹脂や分散剤、界面活性剤等を添加したものが使用され
る。ガラス粉末又はガラスペーストは、通常の方法、例
えば被封着材間に充填したり、一方の被封着材に塗布し
た後、この上に他方の被封着材を載置するなどの方法で
セラミックスに適用され、ガラスの軟化点以上の温度で
熱処理することにより封着が行われる。熱処理は大気な
どの酸化性雰囲気や、窒素、アルゴンなどの不活性雰囲
気、水素、水素−窒素などの還元性雰囲気、更に真空中
のいずれの雰囲気中でも行うことができる。
The vehicle may be one usually used for a glass paste, and is obtained by adding a resin, a dispersant, a surfactant and the like to water or an organic solvent as needed. Glass powder or glass paste is used in a usual manner, for example, filling between sealing materials, or applying to one sealing material, and then placing the other sealing material on top of this. Sealing is performed by applying a heat treatment at a temperature equal to or higher than the softening point of glass, which is applied to ceramics. The heat treatment can be performed in any atmosphere such as an oxidizing atmosphere such as air, an inert atmosphere such as nitrogen or argon, a reducing atmosphere such as hydrogen or hydrogen-nitrogen, or a vacuum.

【0014】本発明のガラスは軟化点が約580〜62
0℃であり、DTAによる結晶化のピーク温度Tcは約
650〜780℃である。結晶化はこの結晶化温度より
も低い温度でも徐々におこるので、結晶化のための熱処
理は580〜800℃、好ましくは600〜780℃の
範囲の温度で、10〜120分間、好ましくは30〜6
0分間保持することにより、ゆっくりと結晶を析出させ
ることが望ましい。本発明のガラスは、熱処理により軟
化したガラスが流動化し、窒化物系セラミックスとの接
触面積を増加した後、固相反応することにより接合を形
成しつつゆっくりと結晶化及び焼結を起こすため、窒化
物系セラミックスとの接着性が極めて良好である。また
熱膨張係数が小さい。そのため得られた本発明のガラス
により接着された窒化物系セラミックス封着部は、気密
性、耐熱性、耐熱衝撃性に優れている。
The glass of the present invention has a softening point of about 580-62.
0 ° C., and the peak temperature Tc of crystallization by DTA is about 650 to 780 ° C. Since crystallization occurs gradually even at a temperature lower than the crystallization temperature, the heat treatment for crystallization is performed at a temperature in the range of 580 to 800 ° C, preferably 600 to 780 ° C, for 10 to 120 minutes, preferably 30 to 120 ° C. 6
It is desirable that the crystal be slowly precipitated by holding for 0 minutes. In the glass of the present invention, the glass softened by the heat treatment is fluidized, and after increasing the contact area with the nitride-based ceramic, a solid-phase reaction is performed to cause crystallization and sintering slowly while forming a bond, Very good adhesion to nitride ceramics. Also, the coefficient of thermal expansion is small. Therefore, the obtained nitride-based ceramics sealing portion bonded by the glass of the present invention has excellent airtightness, heat resistance, and thermal shock resistance.

【0015】[0015]

【実施例】【Example】

実施例1 ZnO60モル%、B2 3 40モル%からなるガラス
粉末75.5重量%と、ビヒクル24.5重量%とを混
練してガラスペーストを製造した。ビヒクルとしてはア
クリル樹脂とブチルカルビトールアセテートの混合物を
用いた。2枚の窒化珪素板を用意し、得られたガラスペ
ーストを一方の窒化珪素板に100μmの厚さに塗布
し、この上に他方の窒化珪素板を載せて、大気中、15
0℃で30分間保持して溶剤を揮発させた後、真空中で
昇温し、ピーク温度650℃で60分間保持することに
よりガラスを軟化及び結晶化させて封着を行ったとこ
ろ、気泡や隙間のない気密な封着体を得た。このガラス
のガラス転移点、軟化点、結晶化温度、熱膨張係数、窒
化珪素と接合強度を表1に示した。接合強度について
は、窒化珪素板上にガラスペーストを直径20mm、厚
さ100μmの円形に塗布した後、650℃で焼成し、
200gの鋼球を30cmの高さから落下させた時の剥
離状態から接合強度を評価した。
Example 1 A glass paste was manufactured by kneading 75.5% by weight of a glass powder composed of 60% by mole of ZnO and 40% by mole of B 2 O 3 and 24.5% by weight of a vehicle. A mixture of an acrylic resin and butyl carbitol acetate was used as a vehicle. Two silicon nitride plates were prepared, and the obtained glass paste was applied to one silicon nitride plate to a thickness of 100 μm, and the other silicon nitride plate was placed on the silicon nitride plate.
After keeping the solvent at 0 ° C. for 30 minutes to evaporate the solvent, the temperature was raised in vacuum, and the glass was kept at a peak temperature of 650 ° C. for 60 minutes to soften and crystallize the glass. An airtight sealed body with no gap was obtained. Table 1 shows the glass transition point, softening point, crystallization temperature, coefficient of thermal expansion, bonding strength with silicon nitride of this glass. Regarding the bonding strength, a glass paste was applied on a silicon nitride plate in a circular shape having a diameter of 20 mm and a thickness of 100 μm, and then baked at 650 ° C.
The joining strength was evaluated from the peeled state when a 200 g steel ball was dropped from a height of 30 cm.

【0016】比較例1 PbOを含有しないZnO−B2 3 −SiO2 系ガラ
ス粉末(旭硝子株式会社製FG16)を用いる以外は実
施例1と同様にして、ガラスペーストを製造した。同様
の工程で2枚の窒化珪素板の封着に用いたが、ガラスは
焼結しなかった。熱処理温度を700℃にしたところ、
接合はしたものの気密な封着体は形成できなかった。ガ
ラスの物性及び窒化珪素と接合強度を表1に示した。接
合強度は700℃で熱処理したもので測定した。
Comparative Example 1 A glass paste was produced in the same manner as in Example 1 except that ZnO—B 2 O 3 —SiO 2 based glass powder containing no PbO (FG16 manufactured by Asahi Glass Co., Ltd.) was used. The same process was used to seal the two silicon nitride plates, but the glass was not sintered. When the heat treatment temperature was set to 700 ° C,
Although air-tightly sealed, a sealed body could not be formed. Table 1 shows the physical properties of the glass and the bonding strength with silicon nitride. The bonding strength was measured using a material that was heat-treated at 700 ° C.

【0017】比較例2 PbO−SiO2 −B2 3 系ガラス粉末(旭硝子株式
会社製F1370)を用いる以外は実施例1と同様にし
てガラスペーストを製造した。2枚の窒化珪素板の封着
を行ったが、ガラスの片寄りや気泡が見られ、良好な封
着体は形成できなかった。ガラスの物性及び窒化珪素と
接合強度を表1に示す。
Comparative Example 2 A glass paste was produced in the same manner as in Example 1 except that a PbO—SiO 2 —B 2 O 3 based glass powder (F1370 manufactured by Asahi Glass Co., Ltd.) was used. The sealing of the two silicon nitride plates was carried out, but some deviation of the glass and bubbles were observed, and a good sealed body could not be formed. Table 1 shows the physical properties of glass and the bonding strength with silicon nitride.

【0018】[0018]

【表1】 [Table 1]

【0019】実施例2 実施例1と同一の組成のガラス粉末を用い、実施例1と
同様の方法で2枚の窒化アルミニウム板の封着を行った
ところ、気密な封着体を得た。
Example 2 Using a glass powder having the same composition as in Example 1, two aluminum nitride plates were sealed in the same manner as in Example 1, and an airtight sealed body was obtained.

【0020】[0020]

【発明の効果】本発明の低膨張結晶性ガラスを用いるこ
とにより、低温で、窒化物系セラミックスを気密に封着
することができる。又接合強度、耐熱性が優れているの
で、熱処理の繰返しや過酷な使用環境にも耐える。更に
本発明の結晶性ガラスは、酸化鉛を含まないので生体や
環境への害が少ない。以上の結果から、本発明により窒
化物系セラミックスの高温機械材料としての利用を大幅
に広げられるものと期待される。
By using the low expansion crystalline glass of the present invention, a nitride ceramic can be hermetically sealed at a low temperature. Also, since it has excellent bonding strength and heat resistance, it can withstand repeated heat treatment and severe use environment. Furthermore, since the crystalline glass of the present invention does not contain lead oxide, there is little harm to living bodies and the environment. From the above results, it is expected that the use of nitride ceramics as a high-temperature mechanical material can be greatly expanded by the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ZnO55〜63モル%、B2 3 45
〜37モル%からなる窒化物系セラミックスの封着用ガ
ラス。
1. 55 to 63 mol% of ZnO, B 2 O 3 45
A glass for sealing nitride-based ceramics of up to 37 mol%.
【請求項2】 請求項1記載のガラスの粉末をビヒクル
中に分散させてなる窒化物系セラミックスの封着用ガラ
スペースト。
2. A glass paste for sealing nitride-based ceramics, wherein the glass powder according to claim 1 is dispersed in a vehicle.
【請求項3】 請求項2記載のガラスペーストを窒化物
系セラミックス上に塗布し、乾燥させた後、軟化点以
上、780℃以下の範囲の温度で熱処理することにより
窒化物系セラミックスを封着する方法。
3. The nitride-based ceramic is sealed by applying the glass paste according to claim 2 onto a nitride-based ceramic, drying the glass paste, and then performing a heat treatment at a temperature in a range from a softening point to 780 ° C. how to.
【請求項4】 窒化物系セラミックスがZnO55〜6
3モル%、B2 345〜37モル%からなる結晶化ガ
ラスにより封着されている封着部。
4. The method according to claim 1, wherein the nitride-based ceramic is ZnO 55-6.
A sealed portion sealed with crystallized glass consisting of 3 mol% and 45 to 37 mol% of B 2 O 3 .
JP05710597A 1997-02-26 1997-02-26 Sealing method for nitride ceramics Expired - Lifetime JP4618653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05710597A JP4618653B2 (en) 1997-02-26 1997-02-26 Sealing method for nitride ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05710597A JP4618653B2 (en) 1997-02-26 1997-02-26 Sealing method for nitride ceramics

Publications (2)

Publication Number Publication Date
JPH10236842A true JPH10236842A (en) 1998-09-08
JP4618653B2 JP4618653B2 (en) 2011-01-26

Family

ID=13046244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05710597A Expired - Lifetime JP4618653B2 (en) 1997-02-26 1997-02-26 Sealing method for nitride ceramics

Country Status (1)

Country Link
JP (1) JP4618653B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074198A1 (en) * 2003-02-19 2004-09-02 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
US7585798B2 (en) 2003-06-27 2009-09-08 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP2019026550A (en) * 2017-07-31 2019-02-21 日本特殊陶業株式会社 Ceramic joined body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004074198A1 (en) * 2003-02-19 2004-09-02 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
US7425518B2 (en) 2003-02-19 2008-09-16 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
US7585798B2 (en) 2003-06-27 2009-09-08 Yamato Electronic Co., Ltd. Lead-free glass material for use in sealing and, sealed article and method for sealing using the same
JP2019026550A (en) * 2017-07-31 2019-02-21 日本特殊陶業株式会社 Ceramic joined body

Also Published As

Publication number Publication date
JP4618653B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
US5334558A (en) Low temperature glass with improved thermal stress properties and method of use
US4002799A (en) Glass sealed products
US5047371A (en) Glass/ceramic sealing system
US5663109A (en) Low temperature glass paste with high metal to glass ratio
JP2019518699A (en) Low temperature tellurite glass mixture for vacuum compression at temperatures below 450 ° C.
WO1992000924A1 (en) Tellurite glass compositions
JP2767276B2 (en) Sealing material
JPH02228023A (en) Manufacture of soi device employing excellend sealed layer
JP4618653B2 (en) Sealing method for nitride ceramics
CN104276839B (en) The method for sealing of glass-ceramic
EP0258408B1 (en) A low melting glass composition containing pbo and v 2?o 5?
CN117023993A (en) Leadless low-melting point glass-based sealing material, preparation method and application thereof
KR20190079114A (en) Glass bonding member, and manufacturing method and using method of the same
JP3125971B2 (en) Low temperature sealing composition
JPS58130547A (en) Silicon carbide substrate and manufacture thereof
JP3157695B2 (en) Low temperature sealing composition
JP3103208B2 (en) Solder preform substrate
JPH0725617B2 (en) Aluminum nitride substrate and manufacturing method thereof
JPH0476337B2 (en)
JP2001019472A (en) Sealing material
JPH01317183A (en) Metallizing composition for base plate having low thermal expansion
JP4072603B2 (en) Manufacturing method of bonding glass, vacuum hermetic container using bonding glass, and manufacturing method thereof
JPS6369787A (en) Aluminum nitride sintered body with metallized surface and manufacturing method thereof
JPS6243938B2 (en)
JPH0725663A (en) Aluminum nitride sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070801

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term