[go: up one dir, main page]

JPH10235767A - Carbon fiber reinforced plastic member - Google Patents

Carbon fiber reinforced plastic member

Info

Publication number
JPH10235767A
JPH10235767A JP9040631A JP4063197A JPH10235767A JP H10235767 A JPH10235767 A JP H10235767A JP 9040631 A JP9040631 A JP 9040631A JP 4063197 A JP4063197 A JP 4063197A JP H10235767 A JPH10235767 A JP H10235767A
Authority
JP
Japan
Prior art keywords
reinforced plastic
fiber reinforced
carbon fiber
protective layer
member according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9040631A
Other languages
Japanese (ja)
Inventor
Kenichi Yoshioka
健一 吉岡
Takehiko Hirose
武彦 廣瀬
Kenichi Noguchi
健一 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP9040631A priority Critical patent/JPH10235767A/en
Publication of JPH10235767A publication Critical patent/JPH10235767A/en
Pending legal-status Critical Current

Links

Landscapes

  • Golf Clubs (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the impact resistance of carbon fiber reinforced plastic with its good properties maintained by arranging a protective layer on the surface of a backing which is made of the reinforced plastic and whose tensile elongation at break is specified. SOLUTION: A carbon fiber reinforced plastic member has a backing made of carbon fiber reinforced plastic and a protective layer arranged on the surface of the backing. The tensile elongation at break at least in one direction of the reinforced plastic is more than 1.3%. An epoxy resin is used preferably as the matrix resin of the backing, and the protective layer preferably consists substantially of an organic polymer or glass fiber reinforced plastic. The organic polymer means polyester, aramide, polyimide, poly(ether ether ketone), etc. The thickness of the protective layer is preferably 1/5 or less, more preferably 1/10 or less. of that of the backing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭素繊維強化プラ
スチックを基材とする部材に関し、特に、耐衝撃性に優
れ、ゴルフクラブ用シャフト、スキーポール、その他の
スポーツ用具や、圧力容器、航空機構造材、その他の産
業用構造材などに用いられるのに適した炭素繊維強化プ
ラスチック製部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member made of carbon fiber reinforced plastic, and particularly to a member having excellent impact resistance and having a golf club shaft, a ski pole, other sports equipment, a pressure vessel, and an aircraft structure. TECHNICAL FIELD The present invention relates to a member made of carbon fiber reinforced plastic suitable for being used for materials, other industrial structural materials, and the like.

【0002】[0002]

【従来の技術】軽量、高強度、高弾性等の優れた特性を
持つ炭素繊維強化プラスチック製部材は、スポーツ用具
や産業用構造材として広く使用されている。
2. Description of the Related Art Carbon fiber reinforced plastic members having excellent properties such as light weight, high strength and high elasticity are widely used as sports equipment and industrial structural materials.

【0003】炭素繊維強化プラスチックを使用すること
により、従来の材料に比べて部材を軽量化することがで
きる。しかしながら、炭素繊維強化プラスチックの耐衝
撃性は、その静的な強度や弾性率の高さに比較すれば十
分高いとは言えず、用途によっては部材の軽量化が耐衝
撃性によって制限されている。
[0003] By using carbon fiber reinforced plastic, the weight of the member can be reduced as compared with conventional materials. However, the impact resistance of carbon fiber reinforced plastics cannot be said to be sufficiently high compared to their static strength and high elastic modulus, and depending on the application, weight reduction of members is limited by the impact resistance. .

【0004】たとえば、ゴルフクラブ用シャフトは、使
用の状況によりシャフトに直接木の枝や壁面等が当た
り、衝撃力によって折損することがある。また、スキー
ポールは、滑走中にスキー板のエッジにより衝撃力を受
けるなどして損傷が蓄積し、破損に至ることがある。ガ
スボンベ等の圧力容器においては容器取り扱い時の落下
などで衝撃力を受けることがあり、航空機の構造材にお
いては工程中での工具落下等により衝撃損傷が残存し、
強度低下の原因となることがある。このように多くの用
途において炭素繊維強化プラスチック製部材の耐衝撃性
を向上することが望まれている。
For example, in a golf club shaft, a tree branch, a wall surface, or the like directly hits the shaft depending on a use condition, and the shaft may be broken by an impact force. Further, the ski pole may be damaged by the impact of the edge of the ski during the run, for example, due to impact force. Pressure vessels, such as gas cylinders, may receive impact forces due to drops when handling the vessels, and impact damage remains in aircraft structural materials due to tool drops during the process.
It may cause a decrease in strength. Thus, it has been desired to improve the impact resistance of carbon fiber reinforced plastic members in many applications.

【0005】耐衝撃性を向上させる手段として、特開昭
60−47104号公報などには、マトリクス樹脂を高
靭性化する方法が記載されているが、この方法による耐
衝撃性の向上効果は十分ではない。しかも、高温下での
物性や疲労特性などが低下する場合があり、さらに従来
と異なる樹脂を使用することによって製造工程や成形装
置の変更が必要になることが多く、製品コストの上昇や
製品品位の低下を招くことも多い。
As a means for improving the impact resistance, a method of increasing the toughness of a matrix resin is described in Japanese Patent Application Laid-Open No. 60-47104, etc., but the effect of improving the impact resistance by this method is not sufficient. is not. In addition, physical properties and fatigue properties at high temperatures may be reduced, and the use of a resin different from the conventional one often requires changes in the manufacturing process and molding equipment, resulting in higher product costs and higher product quality. In many cases.

【0006】また、特開平3−168167号公報およ
び特開平3−168168号公報には、炭素繊維強化プ
ラスチック製のゴルフクラブ用シャフトの最内層および
/または層間や、最外層に有機系重合体からなるフィル
ムを配する方法がそれぞれ記載されている。しかし、こ
れらの方法でも耐衝撃性の向上は十分でなく、さらなる
向上が望まれている。フィルムの厚さを増すことである
程度の耐衝撃性の向上は可能であるが、この場合、部材
全体の重量が増すため、軽量、高強度、高弾性といった
炭素繊維強化プラスチックの優れた特性が十分生かされ
なくなる。
Japanese Patent Application Laid-Open Nos. 3-168167 and 3-168168 disclose that a golf club shaft made of carbon fiber reinforced plastic has an innermost layer and / or an innermost layer and an outermost layer made of an organic polymer. A method of disposing a film is described. However, these methods do not sufficiently improve the impact resistance, and further improvement is desired. It is possible to improve the impact resistance to some extent by increasing the thickness of the film, but in this case, the weight of the entire member increases, so the excellent properties of carbon fiber reinforced plastic such as light weight, high strength, and high elasticity are sufficient. Will not be alive.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、上記
の従来技術の問題を解決し、炭素繊維強化プラスチック
を基材とし、その優れた特性を保持しながら、従来にな
い高い耐衝撃性を有する炭素繊維強化プラスチック製部
材を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art, and to use a carbon fiber reinforced plastic as a base material while maintaining excellent properties thereof while providing an unprecedentedly high impact resistance. Another object of the present invention is to provide a carbon fiber reinforced plastic member having the following.

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するために以下の構成を有する。
The present invention has the following configuration to achieve the above object.

【0009】すなわち、炭素繊維強化プラスチックから
なる基材と、その表面に配された保護層とを有し、か
つ、基材の引張破断伸度が1.3%を超えることを特徴
とする炭素繊維強化プラスチック製部材である。
That is, a carbon having a base material made of carbon fiber reinforced plastic and a protective layer disposed on the surface thereof, wherein the base material has a tensile elongation at break of more than 1.3%. It is a fiber reinforced plastic member.

【0010】[0010]

【発明の実施の形態】本発明の炭素繊維強化プラスチッ
ク製部材(以下、単に部材ということがある)は、炭素
繊維強化プラスチックからなる基材と、その表面に配さ
れた保護層とを有する。基材を構成する炭素繊維強化プ
ラスチックは、少なくとも一つの方向について引張破断
伸度が1.3%を超えるものである。
BEST MODE FOR CARRYING OUT THE INVENTION A member made of carbon fiber reinforced plastic according to the present invention (hereinafter sometimes simply referred to as a member) has a base material made of carbon fiber reinforced plastic and a protective layer disposed on the surface thereof. The carbon fiber reinforced plastic constituting the base material has a tensile elongation at break of more than 1.3% in at least one direction.

【0011】一般に、部材に外部から衝撃力が加わる
と、衝撃点には局部的に大きな表面圧力が生じ、一方、
部材内部には変形にともなう圧縮および引張力が生じ
る。部材内部の圧縮力は、通常、衝撃点の近傍で最も高
くなる。炭素繊維強化プラスチックの多くは引張強さに
比べ圧縮強さが低く、衝撃点近傍で圧縮力によって破壊
が開始し、それが部材全体に伝播することが多い。した
がって、炭素繊維強化プラスチック製部材の耐衝撃性を
高めるためには、主に炭素繊維強化プラスチックの圧縮
強さを高めることが有効とされてきた。
In general, when an impact force is applied to a member from the outside, a large surface pressure is locally generated at the point of impact, while
A compression and tensile force is generated inside the member due to the deformation. The compressive force inside the member is usually highest near the point of impact. Many of the carbon fiber reinforced plastics have a lower compressive strength than a tensile strength, and fracture starts by a compressive force near an impact point, which often propagates to the entire member. Therefore, in order to enhance the impact resistance of the carbon fiber reinforced plastic member, it has been effective to mainly increase the compressive strength of the carbon fiber reinforced plastic.

【0012】ところが、本発明者の明らかにしたところ
によれば、このような炭素繊維強化プラスチック製部材
の表面(衝撃点を含む)に保護層を配すると、衝撃点の
表面圧力やその近傍の圧縮力が緩和されて耐衝撃性が向
上するとともに、部材内の引張力が引き金となって部材
が破壊するようになる。したがって、従来考えられてい
た以上に引張特性が耐衝撃性を大きく支配するようにな
る。よって本発明の部材は、基材の引張破断伸度が1.
3%を超えるもの、好ましくは1.5%を超えるものと
することにより、従来考えられないような高い耐衝撃性
を示す。
However, according to the findings of the present inventor, when a protective layer is provided on the surface (including the impact point) of such a carbon fiber reinforced plastic member, the surface pressure at the impact point and the pressure near the impact point can be reduced. The compression force is alleviated, the impact resistance is improved, and the tensile force in the member triggers the member to break. Therefore, the tensile properties are more dominant in impact resistance than previously thought. Therefore, in the member of the present invention, the tensile elongation at break of the substrate is 1.
By setting it to more than 3%, preferably more than 1.5%, a high impact resistance which cannot be considered conventionally is exhibited.

【0013】基材の引張破断伸度は、必ずしも基材の全
方向について高い必要はなく、少なくとも1つの方向に
ついて1.3%を超えていればよい。この方向は、部材
が受ける外力の方向に対応していることが好ましい。す
なわち、たとえば外力として曲げ衝撃荷重を受ける部材
の場合は、曲げ変形によって引張の力を受ける方向につ
いて基材の引張破断伸度が1.3%を超えることが好ま
しい。
The tensile elongation at break of the substrate does not necessarily need to be high in all directions of the substrate, but may be more than 1.3% in at least one direction. This direction preferably corresponds to the direction of the external force applied to the member. That is, for example, in the case of a member that receives a bending impact load as an external force, the tensile elongation at break of the base material preferably exceeds 1.3% in the direction in which tensile force is applied by bending deformation.

【0014】基材の引張破断伸度は、部材から保護材を
除去した後、歪ゲージを貼り、JIS K 7073に
従って測定することができる。円筒状など、JIS K
7073に準拠した試験片を得ることができない部材
の場合は、基材に歪ゲージを貼り、破断に至るまで均一
に引張荷重を負荷することによって引張破断伸度を測定
することができる。なお、ここで破断とは、基材が分断
し、荷重負担能力が失われることをいう。
The tensile elongation at break of the substrate can be measured according to JIS K 7073, after removing the protective material from the member, attaching a strain gauge. JIS K such as cylindrical
In the case of a member from which a test piece compliant with 7073 cannot be obtained, the tensile elongation at break can be measured by applying a strain gauge to the substrate and uniformly applying a tensile load until fracture. Here, the term “fracture” means that the base material is divided and the load-bearing ability is lost.

【0015】基材の強化繊維はピッチ系、PAN系を問
わず、炭素繊維であればよいが、基材の引張破断伸度を
高くするために、強化繊維の伸度は1.5%を超えるこ
とが好ましく、さらには2.0%を超えることが好まし
い。
The reinforcing fibers of the base material may be carbon fibers irrespective of pitch type or PAN type. To increase the tensile elongation at break of the base material, the elongation of the reinforcing fibers must be 1.5%. Preferably, it is more than 2.0%.

【0016】基材のマトリクス樹脂としては、エポキシ
樹脂、フェノール樹脂、ポリエステル樹脂、ビニルエス
テル樹脂など各種の熱硬化性樹脂および熱可塑性樹脂を
使用することができる。なかでも、成形が容易で物性に
すぐれたエポキシ樹脂が好ましい。またマトリクス樹脂
中には、様々な機能や性能を付加するために、本発明の
効果を損なわない範囲で粒子や繊維状等の物質が含まれ
ていてもよい。
As the matrix resin of the base material, various thermosetting resins and thermoplastic resins such as an epoxy resin, a phenol resin, a polyester resin and a vinyl ester resin can be used. Among them, an epoxy resin which is easy to mold and has excellent physical properties is preferable. In addition, in order to add various functions and performances, the matrix resin may contain a substance such as particles or fibrous materials as long as the effects of the present invention are not impaired.

【0017】本発明における耐衝撃性の向上効果は、基
材の静的な曲げ強さに対して引張強さが高い方が大き
い。保護層のない部材の場合は、衝撃点での表面圧力や
その近傍の圧縮力によって破壊するモード、すなわち曲
げに近い破壊モードをとるのに対し、保護層があると引
張モードで破壊するようになるため、結果的に曲げ強さ
に対する引張強さの割合が大きいほど、保護層の効果が
より大きくなるからである。具体的には基材の引張強さ
が、曲げ強さの1.2倍を超えることが好ましく、1.
5倍を超えることがさらに好ましい。曲げ強さは引張強
さと同様に保護材を除去した後、JIS K 7074
に従って測定することができる。
The effect of improving the impact resistance in the present invention is greater when the tensile strength is higher than the static bending strength of the substrate. In the case of a member without a protective layer, it takes a mode in which it breaks due to surface pressure at the impact point or a compressive force in the vicinity thereof, that is, a fracture mode close to bending, whereas if a protective layer is present, it breaks in a tensile mode. Therefore, as a result, the effect of the protective layer increases as the ratio of the tensile strength to the bending strength increases. Specifically, the tensile strength of the base material preferably exceeds 1.2 times the bending strength.
More preferably, it exceeds 5 times. The bending strength is determined in the same manner as in the tensile strength, after removing the protective material, according to JIS K7074.
Can be measured according to

【0018】保護層は実質的に有機系重合体またはガラ
ス繊維強化プラスチックからなることが好ましい。実質
的とは本発明の効果を損なわない範囲で他の物質を含ん
でいてもよいという意味である。有機系重合体とは、た
とえばポリエステル、アラミド、ポリイミド、ポリエー
テルエーテルケトンなどである。ガラス繊維強化プラス
チックとは、いわゆるSガラス、Eガラスなどを強化繊
維とし、エポキシ樹脂、フェノール樹脂などをマトリク
ス樹脂としたものである。保護層は、基材の成形時に同
時に一体成形してもよいし、基材のみ成形後に接着材で
接着するなど、様々な方法で基材と一体化することがで
きる。
Preferably, the protective layer is substantially made of an organic polymer or glass fiber reinforced plastic. Substantially means that other substances may be contained as long as the effects of the present invention are not impaired. The organic polymer is, for example, polyester, aramid, polyimide, polyetheretherketone, or the like. The glass fiber reinforced plastic is a material in which so-called S glass, E glass or the like is used as a reinforcing fiber, and an epoxy resin, a phenol resin or the like is used as a matrix resin. The protective layer may be integrally formed at the same time as the formation of the base material, or may be integrated with the base material by various methods, such as bonding the base material with an adhesive after forming the base material.

【0019】本発明の部材は、JIS K 7077に
準じたシャルピー衝撃試験における吸収エネルギーが、
基材単体の1.5倍を超えることが好ましい。このこと
により、実用に際して十分高い耐衝撃性向上効果が得ら
れる。なお、このシャルピー衝撃試験は、JIS K
7077の規定にかかわらず試験片支持台間距離を試験
片厚さの25〜30倍の範囲内として行う。
The member of the present invention has an energy absorption in a Charpy impact test according to JIS K 7077,
It is preferably more than 1.5 times that of the base material alone. Thereby, a sufficiently high impact resistance improving effect can be obtained in practical use. The Charpy impact test was conducted according to JIS K
Irrespective of the definition of 7077, the test is performed with the distance between the test-piece supporting tables within the range of 25 to 30 times the thickness of the test piece.

【0020】基材の強化繊維の形態は、部材の用途や負
荷のかかり方によって適切なものを選択することができ
る。引き揃えられた連続繊維でもよいし、織物構造をと
っていてもよいし、それらを組み合わせたものであって
もよいが、なかでも引張強さを高くするために引き揃え
られた連続繊維であることが好ましい。その引き揃え方
向は1方向であってもよいし、互いに異なる2以上の方
向からなっていてもよい。
The form of the reinforcing fiber of the base material can be appropriately selected depending on the use of the member and the manner in which a load is applied. It may be a continuous fiber that is aligned, may have a woven structure, or may be a combination thereof, but is a continuous fiber that is aligned to increase the tensile strength. Is preferred. The alignment direction may be one direction, or may be two or more different directions.

【0021】基材の強化繊維の含有率は、高すぎると成
形時にボイドの発生などの問題が生じやすくなり、低す
ぎると基材の引張強さなどが低下する傾向があるので、
30〜85体積%の範囲内にあるのが好ましく、50〜
75体積%の範囲内にあるのがさらに好ましく、60体
積%付近であるのが最も好ましい。
If the content of the reinforcing fibers in the substrate is too high, problems such as generation of voids during molding tend to occur, and if it is too low, the tensile strength of the substrate tends to decrease.
It is preferably in the range of 30 to 85% by volume, and 50 to
More preferably it is in the range of 75% by volume, most preferably around 60% by volume.

【0022】保護層は外部からの衝撃を吸収し、基材に
生じる局部的な力や圧縮力を効率よく緩和するために、
十分な引張強さを有することが好ましい。具体的には少
なくとも1つの方向における引張強さが200MPaを
超えるのがよい。また、同様の理由により保護層の厚さ
は100μmを超えることが好ましい。
The protective layer absorbs external impact and efficiently reduces local and compressive forces generated on the substrate.
It is preferable to have sufficient tensile strength. Specifically, it is preferable that the tensile strength in at least one direction exceeds 200 MPa. Further, for the same reason, the thickness of the protective layer preferably exceeds 100 μm.

【0023】保護層の厚さと基材の厚さの比は、保護層
が基材の厚さの1/5を超えないことが好ましく、1/
10を超えないことがさらに好ましい。保護層の厚さが
この範囲より大きくなると、部材全体の重量増加が大き
くなる影響がでてくる。
The ratio of the thickness of the protective layer to the thickness of the substrate is preferably such that the protective layer does not exceed 1/5 of the thickness of the substrate,
More preferably, it does not exceed 10. If the thickness of the protective layer is larger than this range, the effect of increasing the weight of the entire member will increase.

【0024】また、部材全体の厚さは20mmを超えな
いことが好ましい。20mmを超えると保護層による耐
衝撃性の向上効果が小さくなる傾向がある。
It is preferable that the thickness of the entire member does not exceed 20 mm. If it exceeds 20 mm, the effect of improving the impact resistance by the protective layer tends to decrease.

【0025】本発明の部材は軽量、高強度、高弾性とい
った炭素繊維強化プラスチックの優れた特性と、高い耐
衝撃性を合わせ持ち、打撃などの外部衝撃を受ける部
材、たとえばゴルフクラブ用シャフト、スキーポール、
釣竿その他のスポーツ用具や、圧力容器、航空機用構造
材、船舶用構造材その他の産業用構造材として好適に用
いることができる。
The member of the present invention has excellent characteristics of carbon fiber reinforced plastic such as light weight, high strength and high elasticity, and high impact resistance, and is a member which receives an external impact such as a hit, such as a shaft for a golf club or a ski. Pole,
It can be suitably used as fishing rods and other sports equipment, pressure vessels, aircraft structural materials, marine structural materials and other industrial structural materials.

【0026】[0026]

【実施例】【Example】

実施例1 PAN系炭素繊維(伸度2.1%、引張強度4900M
Pa、引張弾性率230GPa)とエポキシ樹脂からな
る一方向性プリプレグA(プリプレグ目付224g/m
2 、繊維含有率67重量%)を、繊維方向が1方向(0
度方向)になるように14層積層し、所定の方法で硬化
して基材用成形板を作製した。
Example 1 PAN-based carbon fiber (elongation 2.1%, tensile strength 4900M)
Unidirectional prepreg A made of epoxy resin and a tensile modulus of 230 GPa (Pa, prepreg weight 224 g / m)
2 , the fiber content was 67% by weight) and the fiber direction was
14), and cured by a predetermined method to produce a substrate molded plate.

【0027】成形板の厚さは2.1mmであった。この
成形板からJIS K 7073に従って0度方向を長
手方向として引張試験片を切り出し測定した結果、引張
強さは2550MPa、引張破断伸度は1.7%であっ
た。またこの成形板からJIS K 7074に従って
0度方向を長手方向として曲げ試験片を切り出し測定し
た結果、曲げ強さは1670MPaであった。(引張強
さ/曲げ強さ=1.53)またこの成形板からJIS
K 7077に従って0度方向を長手方向としてシャル
ピー衝撃試験片を切り出し測定した結果、吸収エネルギ
ーは1.8Jであった。
The thickness of the formed plate was 2.1 mm. A tensile test piece was cut out from this molded plate in accordance with JIS K 7073 with the 0-degree direction as a longitudinal direction, and the tensile test piece was measured. As a result, the tensile strength was 2550 MPa and the tensile elongation at break was 1.7%. Further, a bending test piece was cut out from this molded plate in accordance with JIS K 7074 with the 0 degree direction as a longitudinal direction and measured, and as a result, the bending strength was 1670 MPa. (Tensile strength / Bending strength = 1.53)
The Charpy impact test piece was cut out and measured according to K 7077 with the 0 degree direction as the longitudinal direction, and as a result, the absorbed energy was 1.8 J.

【0028】次に成形板の片面に保護層としてポリエス
テルフィルム(厚さ125μm、引張強さ210MP
a)をシアノアクリレート系接着剤で接着し、部材を作
製した。
Next, a polyester film (thickness 125 μm, tensile strength 210 MPa) was formed on one side of the molded plate as a protective layer.
a) was bonded with a cyanoacrylate adhesive to produce a member.

【0029】この部材から、0度方向を長手方向として
JIS K 7077に従ってシャルピー衝撃試験片を
作製し、保護層のある側にハンマが当たるようにして測
定を行った。試験片支持台間距離は60mmとした。
From this member, a Charpy impact test piece was prepared in accordance with JIS K 7077 with the 0 ° direction as the longitudinal direction, and the measurement was performed such that the hammer hit the side with the protective layer. The distance between the test piece supports was 60 mm.

【0030】測定の結果、吸収エネルギーは3.2Jで
あった。
As a result of the measurement, the absorbed energy was 3.2 J.

【0031】実施例2 実施例1と同様の基材用成形板を作製し、保護層として
ガラス繊維強化プラスチック(平織りEガラス繊維/エ
ポキシ樹脂、繊維体積含有率40%、成形厚さ320μ
m、引張強さ250MPa)を用いた他は実施例1と同
様にして部材を作製した。
Example 2 A base plate was prepared in the same manner as in Example 1, and a glass fiber reinforced plastic (plain weave E glass fiber / epoxy resin, fiber volume content 40%, molding thickness 320 μm) was used as a protective layer.
m, and a tensile strength of 250 MPa), except that a member was produced in the same manner as in Example 1.

【0032】この部材のシャルピー衝撃吸収エネルギー
を実施例1と同様に測定したところ3.5Jであった。
When the Charpy impact absorption energy of this member was measured in the same manner as in Example 1, it was 3.5 J.

【0033】実施例3 基材用成形板を作製する際に、プリプレグAを2方向
(0度方向と90度方向)になるように、[0/90/
0/90/0/90/0/0/90/0/90/0/9
0/0]の順序で積層した他は実施例1と同様にして基
材用成形板を作製した。
Example 3 In preparing a molded plate for a base material, the prepreg A was placed in the direction [0/90 /
0/90/0/90/0/0/90/0/90/0/9
[0/0], except that they were laminated in the order of [0/0], to produce a molded substrate plate in the same manner as in Example 1.

【0034】成形板の厚さは2.1mmであった。実施
例1と同様に各特性を測定したところ、引張強さは13
50MPa、引張破断伸度は1.6%、曲げ強さは88
0MPa、シャルピー衝撃吸収エネルギーは1.0Jで
あった。
The thickness of the formed plate was 2.1 mm. When the respective properties were measured in the same manner as in Example 1, the tensile strength was 13
50 MPa, tensile elongation at break of 1.6%, flexural strength of 88
0MPa and Charpy impact absorption energy were 1.0J.

【0035】次に実施例1と同様に保護層を接着して部
材を作製した。
Next, a member was produced by bonding a protective layer in the same manner as in Example 1.

【0036】この部材のシャルピー衝撃吸収エネルギー
を実施例1と同様に測定したところ1.6Jであった。
The Charpy impact absorption energy of this member was measured in the same manner as in Example 1, and it was 1.6 J.

【0037】実施例4 離型処理したテーパー付きステンレス製芯金のまわり
に、PAN系炭素繊維(伸度1.0%、引張強度422
0MPa、引張弾性率436GPa)とエポキシ樹脂か
らなる一方向性プリプレグB(プリプレグ目付224g
/m2 、繊維含有率67重量%)を、繊維方向が芯金主
軸と45度をなすように巻き付け、そのまわりに実施例
1で用いた一方向性プリプレグAを、繊維方向が芯金主
軸と一致するように巻き付け、次に細径側先端から30
0mmまでの部分に、実施例1で用いたのと同様のポリ
エステルフィルムを1周分巻き付け、次に一般的カーボ
ンシャフトの成形と同様の方法で、ラッピングテープ巻
き付け、硬化、テープ除去を行い、ゴルフクラブ用シャ
フトを得た。なお、成形後の外周研磨および塗装は行わ
なかった。シャフト端面より、炭素繊維強化プラスチッ
ク層の厚さを測定したところ、1.3mmであった。こ
の方法で2本のゴルフクラブ用シャフトを作製した。
Example 4 A PAN-based carbon fiber (elongation: 1.0%, tensile strength: 422) was wound around a release-treated tapered stainless steel core.
0 MPa, tensile modulus 436 GPa) and unidirectional prepreg B (prepreg weight 224 g) made of epoxy resin
/ M 2 , a fiber content of 67% by weight) is wound so that the fiber direction forms an angle of 45 ° with the mandrel main shaft, and the unidirectional prepreg A used in Example 1 is wound therearound. And then 30
A polyester film similar to that used in Example 1 is wound around the portion up to 0 mm for one round, and then wrapping tape is wound, cured, and the tape is removed in the same manner as in forming a general carbon shaft. Shaft was obtained. In addition, outer periphery polishing and coating after molding were not performed. When the thickness of the carbon fiber reinforced plastic layer was measured from the shaft end face, it was 1.3 mm. In this manner, two golf club shafts were produced.

【0038】このシャフトのうち1本の、細径側先端か
ら90mmの部分に歪ゲージを貼り、シャフト全体に引
張荷重を負荷したところ、引張破断伸度は1.8%であ
った。
When a strain gauge was attached to one of the shafts at a position 90 mm from the tip of the small diameter side and a tensile load was applied to the entire shaft, the tensile elongation at break was 1.8%.

【0039】このシャフトのうちもう1本の、細径部先
端から40〜140mmの部分を切り出し、支持台間距
離を60mmとしてシャルピー衝撃試験を行った結果、
吸収エネルギーは13.5Jであった。
Another 40-140 mm portion of the other shaft was cut out from the tip of the small-diameter portion, and the Charpy impact test was performed by setting the distance between supports to 60 mm.
The absorbed energy was 13.5J.

【0040】実施例5 離型処理したテーパー付きステンレス製芯金のまわり
に、プリプレグAを繊維方向が芯金主軸と直角となるよ
うに巻き付け、そのまわりにさらにプリプレグAを、繊
維方向が芯金主軸と一致するように巻き付け、次に細径
側先端から300mmまでの部分に、実施例1で用いた
のと同様のポリエステルフィルムを1周分巻き付け、次
に実施例4と同様の方法で、スキーポール用シャフトを
得た。シャフト端面より、炭素繊維強化プラスチック層
の厚さを測定したところ、1.5mmであった。この方
法で2本のスキーポール用シャフトを作製した。
Example 5 A prepreg A was wound around a release-treated tapered stainless steel core so that the fiber direction was perpendicular to the core shaft, and prepreg A was further wound around the prepreg A and the fiber direction was Wound so as to coincide with the main axis, and then wound around the portion from the tip of the small diameter side to 300 mm for one round of the same polyester film as used in Example 1, and then in the same manner as in Example 4, A ski pole shaft was obtained. The thickness of the carbon fiber reinforced plastic layer measured from the end face of the shaft was 1.5 mm. In this manner, two ski pole shafts were produced.

【0041】このシャフトのうち1本の、細径側先端か
ら150mmの部分に歪ゲージを貼り、シャフト全体に
引張荷重を負荷したところ、引張破断伸度は1.7%で
あった。
When a strain gauge was attached to a portion of one of the shafts, 150 mm from the tip of the small diameter side, and a tensile load was applied to the entire shaft, the tensile elongation at break was 1.7%.

【0042】このシャフトのうちもう1本の、細径部先
端から300mmまでの部分を切り出し、先端から15
0mmの部分に、デュポン式塗膜衝撃試験機により4J
の衝撃を加えた。つぎに、衝撃を受けた部分が最大の圧
縮力を受けるように4点曲げ試験を行った。このとき圧
子間距離は60mm、支点間距離は200mmとした。
その結果、破壊荷重は3.1kNであった。
Another portion of this shaft was cut out from the tip of the small diameter portion to 300 mm, and 15 mm from the tip.
4J at 0mm part by DuPont type coating film impact tester
Made a shock. Next, a four-point bending test was performed so that the impacted portion received the maximum compressive force. At this time, the distance between the indenters was 60 mm, and the distance between the fulcrums was 200 mm.
As a result, the breaking load was 3.1 kN.

【0043】比較例1 プリプレグAのかわりに、PAN系炭素繊維(伸度1.
5%、引張強度3530MPa、引張弾性率230GP
a)とエポキシ樹脂からなる一方向性プリプレグC(プ
リプレグ目付224g/m2 、繊維含有率67重量%)
を用いた他は実施例1と同様にして基材用成形板を作製
した。
Comparative Example 1 Instead of prepreg A, PAN-based carbon fiber (elongation: 1.
5%, tensile strength 3530MPa, tensile modulus 230GP
a) Unidirectional prepreg C composed of a) and an epoxy resin (prepreg weight 224 g / m 2 , fiber content 67% by weight)
A molded plate for a base material was produced in the same manner as in Example 1 except for using.

【0044】成形板の厚さは2.1mmであった。実施
例1と同様に各特性を測定したところ、引張強さは18
00MPa、引張破断伸度は1.2%、曲げ強さは16
50MPa(引張強さ/曲げ強さ=1.09)、シャル
ピー衝撃吸収エネルギーは0.9Jであった。
The thickness of the formed plate was 2.1 mm. When the respective properties were measured in the same manner as in Example 1, the tensile strength was 18
00MPa, tensile elongation at break 1.2%, flexural strength 16
50 MPa (tensile strength / flexural strength = 1.09), and Charpy impact absorption energy was 0.9 J.

【0045】次に実施例1と同様に保護層を接着して部
材を作製した。
Next, a protective layer was adhered in the same manner as in Example 1 to produce a member.

【0046】この部材のシャルピー衝撃吸収エネルギー
を実施例1と同様に測定したところ1.1Jであった。
When the Charpy impact absorption energy of this member was measured in the same manner as in Example 1, it was 1.1 J.

【0047】比較例2 比較例1と同様の基材用成形板を作製し、保護層として
ガラス繊維強化プラスチック(平織りEガラス繊維/エ
ポキシ樹脂、繊維体積含有率40%、成形厚さ320μ
m)を用いた他は比較例1と同様にして部材を作製し
た。
Comparative Example 2 A molded plate for a base material similar to that of Comparative Example 1 was prepared, and a glass fiber reinforced plastic (plain woven E glass fiber / epoxy resin, fiber volume content 40%, molded thickness 320 μm) was used as a protective layer.
A member was produced in the same manner as in Comparative Example 1, except that m) was used.

【0048】この部材のシャルピー衝撃吸収エネルギー
を実施例1と同様に測定したところ1.2Jであった。
When the Charpy impact absorption energy of this member was measured in the same manner as in Example 1, it was 1.2 J.

【0049】比較例3 プリプレグAのかわりにプリプレグCを用いた他は実施
例4と同様にして2本のゴルフクラブ用シャフトを作製
した。
Comparative Example 3 Two shafts for a golf club were produced in the same manner as in Example 4 except that prepreg C was used instead of prepreg A.

【0050】このシャフトのうち1本の、細径側先端か
ら90mmの部分に歪ゲージを貼り、シャフト全体に引
張荷重を負荷したところ、引張破断伸度は1.0%であ
った。
When a strain gauge was attached to a portion of one of the shafts 90 mm from the tip end on the small diameter side and a tensile load was applied to the entire shaft, the tensile elongation at break was 1.0%.

【0051】このシャフトのうちもう1本の、細径部先
端から40〜140mmの部分を切り出し、支持台間距
離を60mmとしてシャルピー衝撃試験を行った結果、
吸収エネルギーは8.9Jであった。
Another 40-140 mm portion of this shaft was cut out from the tip of the small-diameter portion, and the Charpy impact test was performed by setting the distance between the supports to 60 mm.
The absorbed energy was 8.9J.

【0052】比較例4 プリプレグAのかわりにプリプレグCを用いた他は実施
例5と同様にして2本のスキーポール用シャフトを作製
した。
Comparative Example 4 Two ski pole shafts were produced in the same manner as in Example 5 except that prepreg C was used instead of prepreg A.

【0053】このシャフトのうち1本について、実施例
5と同様の方法でシャフト全体に引張荷重を負荷したと
ころ、引張破断伸度は1.1%であった。
When a tensile load was applied to one of the shafts in the same manner as in Example 5, the tensile elongation at break was 1.1%.

【0054】このシャフトのうちもう1本について、実
施例5と同様の方法で衝撃を加え、つぎに4点曲げ試験
を行った結果、破壊荷重は1.6kNであった。
An impact was applied to another of the shafts in the same manner as in Example 5, and a four-point bending test was performed. As a result, the breaking load was 1.6 kN.

【0055】[0055]

【発明の効果】本発明の部材は、引張破断伸度が1.3
%を超える炭素繊維強化プラスチックからなる基材と、
その表面に配された保護層を有することにより、軽量、
高強度、高弾性といった炭素繊維強化プラスチックの優
れた特性をほとんど損なわずに、従来にない高い耐衝撃
性を有する。
The member of the present invention has a tensile elongation at break of 1.3.
% Of a carbon fiber reinforced plastic substrate,
By having a protective layer arranged on its surface, it is lightweight,
It has unprecedentedly high impact resistance, while hardly impairing the excellent properties of carbon fiber reinforced plastic such as high strength and high elasticity.

【0056】本発明の管状体は、高い耐衝撃性を有する
ことにより、ゴルフクラブ用シャフト、スキーポールそ
の他のスポーツ用具や、圧力容器、航空機構造材その他
の産業用構造材などに特に好適に用いられる。
Since the tubular body of the present invention has high impact resistance, it is particularly suitably used for golf club shafts, ski poles and other sports equipment, pressure vessels, aircraft structural materials and other industrial structural materials. Can be

フロントページの続き (51)Int.Cl.6 識別記号 FI B32B 5/00 B32B 17/04 Z 7/02 101 B29C 67/14 X 17/04 P Continued on the front page (51) Int.Cl. 6 Identification code FI B32B 5/00 B32B 17/04 Z 7/02 101 B29C 67/14 X 17/04 P

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】炭素繊維強化プラスチックからなる基材
と、その表面に配された保護層とを有し、かつ、基材の
引張破断伸度が1.3%を超えることを特徴とする炭素
繊維強化プラスチック製部材。
1. A carbon material comprising a substrate made of carbon fiber reinforced plastic and a protective layer disposed on the surface thereof, wherein the substrate has a tensile elongation at break of more than 1.3%. Fiber reinforced plastic members.
【請求項2】基材の引張強さが、その曲げ強さの1.2
倍を超えることを特徴とする請求項1に記載の炭素繊維
強化プラスチック製部材。
2. The tensile strength of a substrate is 1.2 times its bending strength.
The carbon fiber reinforced plastic member according to claim 1, wherein the number is more than twice.
【請求項3】保護層が実質的に有機系重合体からなるこ
とを特徴とする請求項1または2に記載の炭素繊維強化
プラスチック製部材。
3. The member made of carbon fiber reinforced plastic according to claim 1, wherein the protective layer is substantially made of an organic polymer.
【請求項4】保護層が実質的にガラス繊維強化プラスチ
ックからなることを特徴とする請求項1または2に記載
の炭素繊維強化プラスチック製部材。
4. The member made of carbon fiber reinforced plastic according to claim 1, wherein the protective layer is substantially made of glass fiber reinforced plastic.
【請求項5】シャルピー衝撃吸収エネルギーが、基材単
体のシャルピー衝撃吸収エネルギーの1.5倍を超える
ことを特徴とする請求項1〜4のいずれかに記載の炭素
繊維強化プラスチック製部材。
5. The carbon fiber reinforced plastic member according to claim 1, wherein the Charpy impact absorption energy exceeds 1.5 times the Charpy impact absorption energy of the base material alone.
【請求項6】基材の強化繊維が、引き揃えられた連続繊
維であることを特徴とする請求項1〜5のいずれかに記
載の炭素繊維強化プラスチック製部材。
6. The carbon fiber reinforced plastic member according to claim 1, wherein the reinforcing fibers of the base material are continuous fibers that are aligned.
【請求項7】強化繊維の引き揃え方向が、実質的に1方
向からなることを特徴とする請求項6に記載の炭素繊維
強化プラスチック製部材。
7. The member made of carbon fiber reinforced plastic according to claim 6, wherein the alignment direction of the reinforcing fibers is substantially one direction.
【請求項8】強化繊維の引き揃え方向が、互いに異なる
2以上の方向からなることを特徴とする請求項6に記載
の部材。
8. The member according to claim 6, wherein the reinforcing fibers are aligned in two or more different directions.
【請求項9】保護層の引張強さが200MPaを超える
ことを特徴とする請求項1〜8のいずれかに記載の炭素
繊維強化プラスチック製部材。
9. The carbon fiber reinforced plastic member according to claim 1, wherein the protective layer has a tensile strength exceeding 200 MPa.
【請求項10】保護層の厚さが100μmを超えること
を特徴とする請求項1〜9のいずれかに記載の炭素繊維
強化プラスチック製部材。
10. The carbon fiber reinforced plastic member according to claim 1, wherein the thickness of the protective layer exceeds 100 μm.
【請求項11】保護層の厚さが基材の厚さの1/5を超
えないことを特徴とする請求項1〜10のいずれかに記
載の炭素繊維強化プラスチック製部材。
11. The carbon fiber reinforced plastic member according to claim 1, wherein the thickness of the protective layer does not exceed 1/5 of the thickness of the base material.
【請求項12】全体厚さが20mmを超えないことを特
徴とする請求項1〜11のいずれかに記載の炭素繊維強
化プラスチック製部材。
12. A member made of carbon fiber reinforced plastic according to claim 1, wherein the total thickness does not exceed 20 mm.
【請求項13】請求項1〜12のいずれかに記載の炭素
繊維強化プラスチック製部材を有することを特徴とする
ゴルフクラブ用シャフト。
13. A golf club shaft comprising the carbon fiber reinforced plastic member according to claim 1.
【請求項14】請求項1〜12のいずれかに記載の炭素
繊維強化プラスチック製部材を有することを特徴とする
スキーポール。
14. A ski pole comprising the carbon fiber reinforced plastic member according to claim 1.
【請求項15】請求項1〜12のいずれかに記載の炭素
繊維強化プラスチック製部材を有することを特徴とする
釣竿。
15. A fishing rod comprising the carbon fiber reinforced plastic member according to claim 1.
【請求項16】請求項1〜12のいずれかに記載の炭素
繊維強化プラスチック製部材を有することを特徴とする
圧力容器。
16. A pressure vessel comprising the carbon fiber reinforced plastic member according to claim 1.
【請求項17】請求項1〜12のいずれかに記載の炭素
繊維強化プラスチック製部材を有することを特徴とする
航空機用構造材。
17. An aircraft structural material comprising the carbon fiber reinforced plastic member according to any one of claims 1 to 12.
【請求項18】請求項1〜12のいずれかに記載の炭素
繊維強化プラスチック製部材を有することを特徴とする
船舶用構造材。
18. A structural material for ships, comprising the member made of carbon fiber reinforced plastic according to any one of claims 1 to 12.
JP9040631A 1997-02-25 1997-02-25 Carbon fiber reinforced plastic member Pending JPH10235767A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9040631A JPH10235767A (en) 1997-02-25 1997-02-25 Carbon fiber reinforced plastic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9040631A JPH10235767A (en) 1997-02-25 1997-02-25 Carbon fiber reinforced plastic member

Publications (1)

Publication Number Publication Date
JPH10235767A true JPH10235767A (en) 1998-09-08

Family

ID=12585906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9040631A Pending JPH10235767A (en) 1997-02-25 1997-02-25 Carbon fiber reinforced plastic member

Country Status (1)

Country Link
JP (1) JPH10235767A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127944A (en) * 2000-08-18 2002-05-09 Toray Ind Inc Frp made automobile panel
JP2005238837A (en) * 2004-01-29 2005-09-08 Toray Ind Inc Frp laminate structure
JP2006181751A (en) * 2004-12-27 2006-07-13 Toho Tenax Co Ltd Hollow rectangular parallelepiped made of frp whose one surface is opened and its manufacturing method
JP2006264236A (en) * 2005-03-25 2006-10-05 Toho Tenax Co Ltd Fire-resistant hybrid composite material, vessel using it and its manufacturing method
JP2016147056A (en) * 2015-02-10 2016-08-18 三菱レイヨン株式会社 Tubular body and golf club shaft, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127944A (en) * 2000-08-18 2002-05-09 Toray Ind Inc Frp made automobile panel
JP2005238837A (en) * 2004-01-29 2005-09-08 Toray Ind Inc Frp laminate structure
JP2006181751A (en) * 2004-12-27 2006-07-13 Toho Tenax Co Ltd Hollow rectangular parallelepiped made of frp whose one surface is opened and its manufacturing method
JP2006264236A (en) * 2005-03-25 2006-10-05 Toho Tenax Co Ltd Fire-resistant hybrid composite material, vessel using it and its manufacturing method
JP2016147056A (en) * 2015-02-10 2016-08-18 三菱レイヨン株式会社 Tubular body and golf club shaft, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6273830B1 (en) Tapered hollow shaft
JP3981980B2 (en) Hybrid fiber reinforced plastic
JP4784362B2 (en) Tubular body
JP3529009B2 (en) Carbon fiber reinforced composite
JPH10235767A (en) Carbon fiber reinforced plastic member
JP3771360B2 (en) Tubular body made of fiber reinforced composite material
JP3363559B2 (en) Nickel / titanium superelastic wire composite prepreg
JP3414082B2 (en) Fiber reinforced plastic members
JPH10272699A (en) Manufacture of fiber reinforced resin tubular body
JPH09277389A (en) Hollow shaft with taper
JP3841219B2 (en) Carbon fiber reinforced composite plate-like molded product
JPH06179251A (en) FRP pipe
JP2000263653A (en) Tubular body made of fiber reinforced composite material
JP2002347148A (en) Tubular body made of fiber-reinforced composite material and golf club shaft constituted by using the same
JPH0939125A (en) Tubular body of fiber reinforced plastic
JP2020131528A (en) Frp cylindrical body and power transmission shaft
JPH06198808A (en) Pipe made of frp
JP2002282398A (en) Tubular body made of fiber-reinforced composite material
JPH11254562A (en) Tubular body and prepreg
JPH09262832A (en) Prepreg
JP2007000528A (en) Golf club shaft made of fiber reinforced composite material
JP2000024151A (en) Tubular molded body, golf club shaft and fishing rod rod
JP2005238472A (en) Tubular body made of fiber reinforced composite material
RU2381904C1 (en) Layer composite material
JPH10156980A (en) Fiber-reinforced plastic tubular body and prepreg