[go: up one dir, main page]

JPH10235170A - Hollow fiber filtration membrane - Google Patents

Hollow fiber filtration membrane

Info

Publication number
JPH10235170A
JPH10235170A JP4630497A JP4630497A JPH10235170A JP H10235170 A JPH10235170 A JP H10235170A JP 4630497 A JP4630497 A JP 4630497A JP 4630497 A JP4630497 A JP 4630497A JP H10235170 A JPH10235170 A JP H10235170A
Authority
JP
Japan
Prior art keywords
membrane
hollow fiber
pores
dense layer
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4630497A
Other languages
Japanese (ja)
Inventor
Teruhiko Oishi
輝彦 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP4630497A priority Critical patent/JPH10235170A/en
Publication of JPH10235170A publication Critical patent/JPH10235170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the filtration reliability and water permeation performance by forming a membrane of gradient structure in which pore diameters are varied continuously from the outer face of the membrane toward the inner face, forming dense layers on both faces of the membrane and also forming a plurality of pores running through the dense layer at least on one face. SOLUTION: This hollow fiber filtration membrane (hereinafter referred to as membrane) is composed of a polymer, for instance, a polysulfone polymer or the like, and formed into the hollow fiber shape having an inner face and an outer face, and also formed into a structure continuously integrated from one face of the membrane to the other face. Dense layers are formed on both faces of the membranes, and a continuos network structure is formed from one dense layer of the membrane to the other dense layer. The pores of the network structure are of the gradient structure in which the pores are formed larger or smaller concentrically as pores are closer to the surface of the membrane. Also a plurality of pores are opened running through the dense layer at least on one face of the membrane, and the average pore diameter of the pores opened on the inner face is preferably formed larger than the average pore diameter of the pores opened on the outer face.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い透水性能と信
頼性の高い中空糸状精密濾過膜に関する。
TECHNICAL FIELD The present invention relates to a hollow fiber microfiltration membrane having high water permeability and high reliability.

【0002】[0002]

【従来の技術】中空糸状膜は、平面状膜と比較して単位
体積当たりの有効膜面積を大きくすることができるの
で、膜濾過装置を小型化することができる。また、中空
糸状膜を用いた場合は流体の流れが均一になるなどの優
れた特徴を有するため、各方面で利用されるようになっ
てきている。
2. Description of the Related Art A hollow fiber membrane can increase the effective membrane area per unit volume as compared with a flat membrane, so that the membrane filtration device can be downsized. In addition, when a hollow fiber membrane is used, it has excellent characteristics such as a uniform flow of fluid, and has been used in various fields.

【0003】中空糸状濾過膜の構造としては、特公昭
60−23130号公報に示されるような膜強度に重点
をおいて作られた膜厚全体が均一な構造を有する膜と、
特開平2−102722号公報に示されるような、透
水性能の向上に注力して開発された外表面もしくは外表
面近傍に緻密層を有する傾斜構造の膜に大別される。し
かしながら、上記の構造では、通水時の濾過抵抗が大
きく、結果として透水性能が不十分であり、の構造で
は、例えば、濾過運転中の急激な圧力変動による膜と膜
の擦れにより、又は外表面から内表面への濾過における
実液中の硬度な溶質物により、膜の分画性能を決定する
外表面もしくは外表面近傍の緻密層が破損されることが
あり、濾過信頼性が十分とはいえない。
[0003] As the structure of the hollow fiber membrane, there are two types of membranes, which are made with emphasis on membrane strength and have a uniform thickness as shown in Japanese Patent Publication No. 60-23130.
As shown in Japanese Patent Application Laid-Open No. 2-102722, it is roughly classified into a film having a gradient structure having a dense layer on the outer surface or in the vicinity of the outer surface, which has been developed with an emphasis on improving water permeability. However, in the above structure, the filtration resistance at the time of passing water is large, and as a result, the water permeability is insufficient. In the structure of the above, for example, rubbing between the membranes due to rapid pressure fluctuation during the filtration operation, or Hard solutes in the actual liquid during filtration from the surface to the inner surface may damage the outer surface or the dense layer near the outer surface that determines the membrane's fractionation performance, and the filtration reliability is not sufficient. I can't say.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、高い
透水性能を有し、かつ信頼性の高い精密濾過膜を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable microfiltration membrane having high water permeability.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決したものである。すなわちこの発明は、(1)膜の外
表面から内表面に向かって連続的に孔径が変化する傾斜
構造の膜であって、膜の両表面に緻密層を有し、かつ少
なくとも一方の表面に緻密層を貫通して開口した複数の
孔を有する中空糸状濾過膜、(2)膜の外表面から内表
面に向かって孔径が大きくなる傾斜構造を有し、内表面
に緻密層を貫通して開口した複数の孔を有する上記
(1)の中空糸状濾過膜、および、(3)膜の両表面に
緻密層を貫通して開口した複数の孔を有し、内表面に開
口した孔の平均孔径が、外表面に開口した孔の平均孔径
より大きいことを特徴とする上記(1)または(2)の
中空糸状濾過膜、に関する。
The present invention has solved the above-mentioned problems. That is, the present invention provides (1) a film having a gradient structure in which the pore diameter changes continuously from the outer surface to the inner surface of the film, and has a dense layer on both surfaces of the film, and at least one surface has A hollow fiber filtration membrane having a plurality of holes opened through the dense layer, (2) having a slope structure in which the pore diameter increases from the outer surface to the inner surface of the membrane, and penetrating the dense layer on the inner surface; The hollow fiber filter membrane of (1) above, which has a plurality of open pores, and (3) the average of the number of pores which have a plurality of pores which are opened through the dense layer on both surfaces of the membrane and which are opened on the inner surface. The hollow fiber filter membrane according to the above (1) or (2), wherein the pore diameter is larger than the average pore diameter of the pores opened on the outer surface.

【0006】以下、本発明の中空糸状濾過膜(以下単に
膜ともいう)の構成について説明する。膜はポリマーか
らなり、その例としてポリスルホン系ポリマー、フッ化
ビニリデン系ポリマー、アクリロニトリル系ポリマー、
メタクリル酸系ポリマー、ポリアミド系ポリマー、ポリ
イミド系ポリマー、ポリエーテルイミド系ポリマーおよ
びセルロース系ポリマー等が挙げられる。
Hereinafter, the configuration of the hollow fiber membrane (hereinafter, also simply referred to as membrane) of the present invention will be described. The membrane is made of a polymer, for example, a polysulfone polymer, a vinylidene fluoride polymer, an acrylonitrile polymer,
Examples include methacrylic acid-based polymers, polyamide-based polymers, polyimide-based polymers, polyetherimide-based polymers, and cellulose-based polymers.

【0007】本発明の膜は、内表面と外表面とを有する
中空糸の形状を有しており、膜の一方の表面(例えば内
表面)から他方の表面(例えば外表面)まで一体的に連
続した構造からなる。膜の両表面に緻密層を有し、膜の
一方の緻密層から他方の緻密層までの間は連続した網目
構造からなっている。網目構造の孔は、膜の長さ方向に
対して垂直な断面において、一方の表面に向かうにつれ
同心円状に大きくまたは小さくなる傾斜構造を示す。そ
して、本発明の膜は、少なくとも一方の表面に緻密層を
貫通して開口した複数の孔を有している。
The membrane of the present invention has the shape of a hollow fiber having an inner surface and an outer surface, and is integrally formed from one surface (for example, the inner surface) to the other surface (for example, the outer surface) of the membrane. Consists of a continuous structure. The film has a dense layer on both surfaces and a continuous network structure from one dense layer to the other dense layer of the film. The pores of the network structure show an inclined structure that becomes concentrically larger or smaller as it goes to one surface in a cross section perpendicular to the length direction of the membrane. Further, the film of the present invention has a plurality of holes opened through the dense layer on at least one surface.

【0008】貫通孔は、傾斜構造の孔が大きい側の緻密
層に開口しているのが好ましい。例えば、膜の外表面か
ら内表面に向かって孔径の大きくなる傾斜構造の場合
は、膜の内表面に緻密層を貫通した孔が開口しているこ
とが好ましい。さらに、膜の透水性能を向上させるため
に、内外両表面の緻密層に貫通孔を開口させてもよい。
この場合、内表面に開口した孔の平均孔径が、外表面に
開口した孔の平均孔径より大きいほうが好ましい。
The through hole is preferably opened in the dense layer on the side where the hole of the inclined structure is large. For example, in the case of an inclined structure in which the hole diameter increases from the outer surface to the inner surface of the film, it is preferable that a hole penetrating through the dense layer is opened on the inner surface of the film. Further, in order to improve the water permeability of the membrane, through holes may be opened in the dense layers on both the inner and outer surfaces.
In this case, it is preferable that the average diameter of the holes opened on the inner surface is larger than the average diameter of the holes opened on the outer surface.

【0009】本発明の膜の代表的な例について、図面を
用いてさらに詳細に説明する。図1は、中空糸状膜の長
さ方向に対して垂直な断面(一部)の電子顕微鏡写真で
あり、図2は膜の内表面の様子を示す電子顕微鏡写真で
ある。この膜は、図1に示されるように、膜の外表面と
内表面に、膜中央部に比べて組織が緻密となった層を有
し、両表面層の間は、孔の径が膜の内表面に向かうにつ
れて大きくなるという、孔径についての異方性を有する
網目構造からなっている。図2には、緻密な内表面上
に、表面緻密層を貫通した孔が多数開口している様子が
示されている。別の態様として、膜の透水性能を向上さ
せるために、貫通孔を内表面緻密層のみではなく、内外
両表面の緻密層に開口させる場合がある。
A typical example of the film of the present invention will be described in more detail with reference to the drawings. FIG. 1 is an electron micrograph of a cross section (part) perpendicular to the length direction of the hollow fiber membrane, and FIG. 2 is an electron micrograph showing the state of the inner surface of the membrane. As shown in FIG. 1, this membrane has layers on the outer surface and inner surface of the membrane where the structure is denser than the central part of the membrane. And has a network structure having anisotropy with respect to the pore diameter, which increases toward the inner surface. FIG. 2 shows a state in which a large number of holes penetrating the dense surface layer are opened on the dense inner surface. As another embodiment, in order to improve the water permeability of the membrane, the through holes may be opened not only in the dense layer on the inner surface but also in the dense layers on both the inner and outer surfaces.

【0010】この発明で緻密層とは、ミクロ的に見た中
空糸状膜の長さ方向に対して垂直な断面において、膜を
構成するポリマーの空隙部分すなわち孔が小さく、膜の
濾過信頼性又は分画性能に寄与する層をいう。図1で
は、隣接する層に比べて孔径が格段に小さい内表面と、
傾斜構造の最小孔径層に続く外表面がこれに該当する。
また、貫通孔とは、緻密層を貫く円形、楕円形もしくは
網目状の0.01μm以上の孔をいい、内表面の場合
は、好ましくは0.05μm〜50μm、外表面の場合
は、好ましくは0.01μm〜1μmの大きさの孔をい
う。
[0010] In the present invention, the dense layer is a microscopic cross section perpendicular to the longitudinal direction of the hollow fiber membrane, in which the pores, ie, pores, of the polymer constituting the membrane are small, and the filtration reliability or A layer that contributes to fractionation performance. In FIG. 1, the inner surface has a pore size much smaller than the adjacent layer,
The outer surface following the smallest pore diameter layer of the inclined structure corresponds to this.
Further, the through-hole refers to a circular, elliptical or mesh-like hole of 0.01 μm or more penetrating the dense layer, preferably 0.05 μm to 50 μm in the case of the inner surface, and preferably in the case of the outer surface. A hole having a size of 0.01 μm to 1 μm.

【0011】本発明の膜は、両表面の緻密層の少なくと
も一方の緻密層に複数の貫通孔を有しているので、高い
濾過信頼性を維持したまま、高い透水性能を示すことが
できる。また、本発明において、両表面の緻密層の貫通
孔の孔径を、阻止しようとする溶質物の径よりも小さく
することにより、一方の表面の緻密層が破損しても他方
の緻密層により溶質物を阻止することが可能である。
Since the membrane of the present invention has a plurality of through holes in at least one of the dense layers on both surfaces, it can exhibit high water permeability while maintaining high filtration reliability. Further, in the present invention, by making the diameter of the through-holes of the dense layers on both surfaces smaller than the diameter of the solute to be prevented, even if the dense layer on one surface is damaged, the solute is formed by the other dense layer. It is possible to block things.

【0012】以下、本発明の中空糸状濾過膜の製造方法
の代表例について述べる。本発明の中空糸状膜は、膜形
成ポリマー、該ポリマーの溶剤、および特定の添加剤か
ら本質的になる製膜原液を、該ポリマーに対する良溶剤
の高濃度水溶液からなる内部液とともに2重環状ノズル
から吐出させ、エアギャップを通過させた後、凝固浴で
凝固させることにより製造される。
A typical example of the method for producing a hollow fiber membrane according to the present invention will be described below. The hollow fiber membrane of the present invention comprises a double annular nozzle comprising a membrane-forming stock solution consisting essentially of a film-forming polymer, a solvent for the polymer, and a specific additive, and an internal solution consisting of a high-concentration aqueous solution of a good solvent for the polymer. After passing through an air gap, and then coagulated in a coagulation bath.

【0013】用いられる膜形成ポリマーは、湿式製膜に
より膜を形成することができるポリマーであればよく、
例えばポリスルホン系ポリマー、フッ化ビニリデン系ポ
リマー、アクリロニトリル系ポリマー、メタクリル酸系
ポリマー、ポリアミド系ポリマー、ポリイミド系ポリマ
ー、ポリエーテルイミド系ポリマーおよびセルロース系
ポリマー等が挙げられる。
The film-forming polymer used may be a polymer capable of forming a film by wet film-forming.
Examples include polysulfone-based polymers, vinylidene fluoride-based polymers, acrylonitrile-based polymers, methacrylic acid-based polymers, polyamide-based polymers, polyimide-based polymers, polyetherimide-based polymers, and cellulose-based polymers.

【0014】添加剤はポリマーと相溶性のあるものであ
ればよく、例えば、ポリスルホン系ポリマーであればテ
トラエチレングリコール、トリエチレングリコール、ニ
トロベンゼン、テトラヒドロフラン、ジオキサン、ジメ
チルカーボネート、ポリビニルピロリドン系ポリマー、
ポリエチレングリコール系ポリマー、イソプロピルアル
コール、メタノール、エタノール、プロパノール、ブタ
ノール、アセトン、メチルエチルケトン等が挙げられ
る。
The additive may be any as long as it is compatible with the polymer. For example, in the case of a polysulfone polymer, tetraethylene glycol, triethylene glycol, nitrobenzene, tetrahydrofuran, dioxane, dimethyl carbonate, polyvinylpyrrolidone polymer,
Examples include polyethylene glycol polymers, isopropyl alcohol, methanol, ethanol, propanol, butanol, acetone, and methyl ethyl ketone.

【0015】またポリマーと添加剤の溶解に用いられる
溶剤は、ポリマー、添加剤を共に溶解するものであり、
例えば、ポリマーがポリスルホン系ポリマー、添加剤が
ポリビニルピロリドン系ポリマーである場合、N−メチ
ル−2−ピロリドン、N,N−ジメチルホルムアミド、
N,N−ジメチルアセトアミド等である。製膜原液のポ
リマー濃度は、製膜可能で、かつ得られた膜が膜として
の性能を有するような濃度の範囲であれば特に制限され
ず、5〜35重量%、好ましくは10〜30重量%であ
る。高い透水性能又は大きな分画分子量を達成するため
には、ポリマー濃度は低い方がよく、10〜25重量%
が好ましい。
The solvent used for dissolving the polymer and the additive dissolves both the polymer and the additive.
For example, when the polymer is a polysulfone-based polymer and the additive is a polyvinylpyrrolidone-based polymer, N-methyl-2-pyrrolidone, N, N-dimethylformamide,
N, N-dimethylacetamide and the like. The polymer concentration of the film-forming stock solution is not particularly limited as long as the film can be formed and the obtained film has a performance as a film in the range of 5 to 35% by weight, preferably 10 to 30% by weight. %. In order to achieve high water permeability or a high molecular weight cut-off, the lower the polymer concentration, the better the concentration of the polymer is 10 to 25% by weight.
Is preferred.

【0016】製膜原液中の添加剤濃度は、添加剤の種
類、分子量に左右されるが、1〜30重量%であり、好
ましくは1重量%以上、25重量%以下がよい。また、
原液粘度、溶解状態を制御する目的で、水、塩類等の第
4成分を添加することも可能であり、その種類、添加量
は組み合わせにより随時行えばよい。内部液は、中空糸
状膜の中空部と内表面を形成させるものであり、図1に
示すような貫通孔を有する緻密層を得るためには、内部
液は製膜原液に対し相分離を誘発させる能力を有し、か
つ20℃で15cp(センチポイズ)以上の粘性を有す
る液体がよく、たとえば、エチレングリコール、プロピ
レングリコール、トリメチレングリコール、1,2−ブ
チレングリコール、1,3−ブチレングリコール、2−
ブチン−1,4−ジオール、2−メチル−2,4−ペン
タンジオール、2−エチル−1,3−ヘキサンジオー
ル、グリセリン、テトラエチレングリコール、ポリエチ
レングリコール200、ポリエチレングリコール30
0、ポリエチレングリコール400等が挙げられる。ま
た、相分離を誘発させる能力を有し、かつ20℃で15
cp(センチポイズ)以上の粘性を有する液体であれ
ば、水との混合溶液、ポリマー溶剤との混合溶液でも良
い。
The concentration of the additive in the film forming solution depends on the type and molecular weight of the additive, but is 1 to 30% by weight, preferably 1% by weight or more and 25% by weight or less. Also,
For the purpose of controlling the viscosity of the stock solution and the dissolution state, it is possible to add a fourth component such as water or a salt, and the type and the amount of addition may be determined as needed depending on the combination. The internal liquid forms the hollow portion and the inner surface of the hollow fiber membrane, and in order to obtain a dense layer having through holes as shown in FIG. 1, the internal liquid induces phase separation from the stock solution for film formation. A liquid having the ability to form a liquid and having a viscosity of 15 cp (centipoise) or more at 20 ° C. is preferable, for example, ethylene glycol, propylene glycol, trimethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, −
Butyne-1,4-diol, 2-methyl-2,4-pentanediol, 2-ethyl-1,3-hexanediol, glycerin, tetraethylene glycol, polyethylene glycol 200, polyethylene glycol 30
0, polyethylene glycol 400 and the like. It also has the ability to induce phase separation and at 20 ° C.
As long as the liquid has a viscosity of cp (centipoise) or more, a mixed solution with water or a mixed solution with a polymer solvent may be used.

【0017】本発明の中空糸状濾過膜は、公知のチュー
ブインオリフィス型の2重環状ノズルを用いて製膜する
ことができる。より具体的には、製膜原液と内部液とを
この2重環状ノズルから同時に吐出させ、若干のエアギ
ャップを通過させた後、凝固浴中に浸漬して凝固させる
ことにより得ることができる。ここでいうエアギャップ
とは、ノズルと凝固浴との間の隙間を意味する。エアギ
ャップを円筒状の筒などで囲み、一定の温度と湿度を有
する気体を一定の流量でこのエアギャップに流すと、よ
り安定した状態で中空糸状膜を製造することができる。
また、膜の外表面の緻密層に貫通孔を開口させる一方法
として、使用したポリマーの非溶剤の蒸気をこのエアギ
ャップに流し、製膜原液を相分離させて開口させること
が可能である。
The hollow fiber filtration membrane of the present invention can be formed using a known tube-in-orifice type double annular nozzle. More specifically, it can be obtained by simultaneously discharging a film forming stock solution and an internal solution from the double annular nozzle, passing through a slight air gap, and immersing in a coagulation bath to coagulate. Here, the air gap means a gap between the nozzle and the coagulation bath. When the air gap is surrounded by a cylindrical tube or the like and a gas having a certain temperature and humidity flows through the air gap at a certain flow rate, the hollow fiber membrane can be manufactured in a more stable state.
In addition, as one method of opening a through hole in the dense layer on the outer surface of the membrane, a non-solvent vapor of the used polymer may be caused to flow through the air gap, and the membrane forming stock solution may be phase-separated and opened.

【0018】凝固浴としては、例えば水;メタノール、
エタノール等のアルコール類;エーテル類;n−ヘキサ
ン、n−ヘプタン等の脂肪族炭化水素類などポリマーを
溶解しない液体が用いられるが、水が好ましい。また、
凝固浴にポリマーを溶解する溶剤を若干添加することに
より凝固速度をコントロールすることも可能である。凝
固浴で凝固させることにより、膜の外表面に緻密層が形
成される。
Examples of the coagulation bath include water; methanol,
Liquids that do not dissolve polymers, such as alcohols such as ethanol; ethers; aliphatic hydrocarbons such as n-hexane and n-heptane, are used, but water is preferred. Also,
It is also possible to control the coagulation rate by adding a small amount of a solvent that dissolves the polymer to the coagulation bath. By coagulation in a coagulation bath, a dense layer is formed on the outer surface of the film.

【0019】凝固浴の温度は、−30℃〜90℃、好ま
しくは0℃〜90℃、さらに好ましくは0℃〜80℃で
ある。凝固浴の温度が90℃を越えたり、−30℃未満
であると、凝固浴中の中空糸状膜の表面の状態が安定し
にくい。
The temperature of the coagulation bath is from -30 ° C to 90 ° C, preferably from 0 ° C to 90 ° C, more preferably from 0 ° C to 80 ° C. When the temperature of the coagulation bath exceeds 90 ° C. or is lower than −30 ° C., the state of the surface of the hollow fiber membrane in the coagulation bath is not easily stabilized.

【0020】[0020]

【発明の実施の形態】以下にこの発明の実施例を示す
が、これに限定されるものではない。各測定方法は、下
記のとおりである。なお、測定サンプルとして使用した
中空糸状濾過膜は、すべて十分に水を含浸させた状態の
ものを用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below, but the present invention is not limited to these embodiments. Each measuring method is as follows. The hollow fiber filtration membranes used as measurement samples were all completely impregnated with water.

【0021】中空糸状濾過膜の透水量は、25℃の限外
濾過水を長さ50mmの中空糸状膜のサンプルの内表面
から外表面へ水を透過させ、その量をリットル/hr・
2・atmで表した。ただし、有効膜面積は内表面換
算した。膜強度は、(株)島津製作所製のオ−トグラフ
AGS−5Dを使用し、サンプル長さ30mm、引っ張
りスピード50mm/分で測定した。
The amount of water permeated through the hollow fiber membrane is determined by passing ultrafiltration water at 25 ° C. from the inner surface to the outer surface of the hollow fiber membrane sample having a length of 50 mm, and the amount of water per liter / hr ·
It was expressed in m 2 · atm. However, the effective film area was converted to the inner surface. The film strength was measured using an autograph AGS-5D manufactured by Shimadzu Corporation at a sample length of 30 mm and a pulling speed of 50 mm / min.

【0022】破断強度は、中空糸状濾過膜1本当たりの
破断時の荷重を、引っ張る前の膜断面積当たりの算出
(kgf/cm2 )で表し、伸度(伸び)は、元の長さ
に対する破断までに伸びた長さ(%)で表した。分画性
能は、0.2wt%のドデシル硫酸ナトリウム水溶液に
0.605μmのUniform Latex Par
ticleが0.02体積%になるように調製した原液
を、中空糸状膜に対して、入り圧と出圧との平均圧力
0.5kgf/cm2 で濾過した時の40分後の阻止率
を示す。
The breaking strength is expressed by the load at the time of breaking per hollow fiber filter membrane calculated by the membrane cross-sectional area before pulling (kgf / cm 2 ), and the elongation (elongation) is expressed by the original length. And the length (%) extended until the fracture. The fractionation performance was determined by adding a 0.605 μm Uniform Latex Par to a 0.2 wt% aqueous solution of sodium dodecyl sulfate.
The rejection after 40 minutes when the stock solution prepared so that the particles had a volume of 0.02% by volume was filtered against the hollow fiber membrane at an average pressure of the input pressure and the output pressure of 0.5 kgf / cm 2. Show.

【0023】外表面緻密層の除去は、他の層を傷つけな
いように実体顕微鏡を用いながらカミソリにより削り取
ることにより行った。膜の内表面および外表面の孔の大
きさは、電子顕微鏡写真により測定した。また、内表面
および外表面の平均孔径とは、下記式で示される値であ
る。
The removal of the dense layer on the outer surface was carried out by shaving with a razor while using a stereoscopic microscope so as not to damage other layers. The size of the pores on the inner and outer surfaces of the membrane was measured by electron micrograph. The average pore diameter on the inner surface and the outer surface is a value represented by the following formula.

【0024】[0024]

【数1】 (Equation 1)

【0025】[0025]

【実施例1】ポリスルホン(AMOCO Co. P−
3500)19重量%、重量平均分子量約8,000の
ポリエチレングリコール(関東化学社製 PEG600
0)25重量%を、N−メチル−2−ピロリドン56重
量%に溶解して均一な溶液とした。これを40℃に保
ち、ポリエチレングリコール(関東化学社製 PEG2
00)95重量%と水5重量%の混合溶液(20℃で6
1cp)からなる内部液とともに、紡口(2重環状ノズ
ル 0.5mm−0.7mm−1.3mm)から吐出さ
せ、30mmのエアギャップを通過させて50℃の水か
らなる凝固浴へ浸漬した。
Example 1 Polysulfone (AMOCO Co. P-
3500) 19% by weight, polyethylene glycol having a weight average molecular weight of about 8,000 (PEG600 manufactured by Kanto Chemical Co., Ltd.)
0) 25% by weight was dissolved in 56% by weight of N-methyl-2-pyrrolidone to obtain a uniform solution. This was kept at 40 ° C., and polyethylene glycol (PEG2 manufactured by Kanto Chemical Co., Ltd.) was used.
00) A mixed solution of 95% by weight and 5% by weight of water (6% at 20 ° C.)
1 cp) together with the internal liquid, which was discharged from a spinneret (double annular nozzle 0.5 mm-0.7 mm-1.3 mm), passed through a 30 mm air gap, and immersed in a coagulation bath composed of 50 ° C. water. .

【0026】この時、紡口から凝固浴までを円筒状の筒
で囲み、筒の中に水蒸気を含んだ窒素ガスをながしなが
ら、湿度を100%、温度を30℃にコントロールし
た。紡速は、10m/分に固定した。この膜の構造と性
能を表1に示した。
At this time, the space from the spinneret to the coagulation bath was surrounded by a cylindrical tube, and the humidity was controlled at 100% and the temperature was controlled at 30 ° C. while flowing nitrogen gas containing water vapor into the tube. The spinning speed was fixed at 10 m / min. Table 1 shows the structure and performance of this film.

【0027】[0027]

【実施例2】実施例1で使用したポリスルホンの代わり
にポリマーとしてポリエーテルイミド(GENERAL
ELECTRIC Co.Ultem1010)を用
いた以外は、実施例1と同一の組成比及び条件で製膜原
液を作成し、実施例1と同様の条件で紡糸を行い、中空
糸状濾過膜を得た。得られた中空糸状膜の構造及び性能
を表1に示した。
Example 2 Instead of the polysulfone used in Example 1, polyetherimide (GENERAL) was used as a polymer.
ELECTRIC Co. A membrane forming stock solution was prepared with the same composition ratio and conditions as in Example 1 except that Ultem 1010) was used, and spinning was performed under the same conditions as in Example 1 to obtain a hollow fiber filter membrane. Table 1 shows the structure and performance of the obtained hollow fiber membrane.

【0028】[0028]

【比較例1】実施例1と同様の製膜原液と、内部凝固液
としてN−メチル−2−ピロリドン95重量%と水5重
量%の混合溶液(20℃で4cp)を用いた以外は、実
施例1と同様の条件で紡糸を行い、中空糸状膜を得た。
得られた中空糸状濾過膜の構造及び性能を表1に示し
た。
COMPARATIVE EXAMPLE 1 Except for using the same membrane-forming stock solution as in Example 1 and a mixed solution of N-methyl-2-pyrrolidone 95% by weight and water 5% by weight (4 cp at 20 ° C.) as an internal coagulating liquid, Spinning was performed under the same conditions as in Example 1 to obtain a hollow fiber membrane.
Table 1 shows the structure and performance of the obtained hollow fiber filtration membrane.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】この発明によれば、透水量が大きく、濾
過信頼性の高い中空糸状精密濾過膜が得られる。
According to the present invention, a hollow fiber microfiltration membrane having a large water permeability and high filtration reliability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の中空糸状濾過膜の一態様の横断面(一
部)を示す電子顕微鏡写真(倍率350倍)である。
FIG. 1 is an electron micrograph (350 times magnification) showing a cross section (part) of one embodiment of the hollow fiber filtration membrane of the present invention.

【図2】図1に示す中空糸状濾過膜の内表面の電子顕微
鏡写真(倍率1,000倍)である。
FIG. 2 is an electron micrograph (× 1,000) of the inner surface of the hollow fiber filtration membrane shown in FIG. 1.

【手続補正書】[Procedure amendment]

【提出日】平成9年3月7日[Submission date] March 7, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図1[Correction target item name] Fig. 1

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図1】 FIG.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 ─────────────────────────────────────────────────────
FIG. 2 ────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成9年3月17日[Submission date] March 17, 1997

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0012】以下、本発明の中空糸状濾過膜の製造方法
の代表例について述べる。本発明の中空糸状膜は、膜形
成ポリマー、該ポリマーの溶剤、および特定の添加剤か
ら本質的になる製膜原液を内部液とともに2重環状ノズ
ルから吐出させ、エアギャップを通過させた後、凝固浴
で凝固させることにより製造される。
A typical example of the method for producing a hollow fiber membrane according to the present invention will be described below. Hollow fiber membranes of the present invention, the film-forming polymer, ejected solvent of the polymer, and the film-forming solution consisting essentially of certain additives together with the inner part liquid from a double annular nozzle, after passing through an air gap Manufactured by coagulation in a coagulation bath.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 膜の外表面から内表面に向かって連続的
に孔径が変化する傾斜構造の膜であって、膜の両表面に
緻密層を有し、かつ少なくとも一方の表面に緻密層を貫
通して開口した複数の孔を有することを特徴とする中空
糸状濾過膜。
1. A film having a gradient structure in which the pore size changes continuously from the outer surface to the inner surface of the film, wherein the film has a dense layer on both surfaces and a dense layer on at least one surface. A hollow fiber-shaped filtration membrane having a plurality of holes opened therethrough.
【請求項2】 膜の外表面から内表面に向かって孔径が
大きくなる傾斜構造を有し、内表面に緻密層を貫通して
開口した複数の孔を有することを特徴とする請求項1記
載の中空糸状濾過膜。
2. The film according to claim 1, wherein the film has an inclined structure in which the hole diameter increases from the outer surface to the inner surface, and the inner surface has a plurality of holes opened through the dense layer. Hollow fiber filtration membrane.
【請求項3】 膜の両表面に緻密層を貫通して開口した
複数の孔を有し、内表面に開口した孔の平均孔径が、外
表面に開口した孔の平均孔径より大きいことを特徴とす
る請求項1または2記載の中空糸状濾過膜。
3. A membrane having a plurality of holes opened through the dense layer on both surfaces of the membrane, wherein the average diameter of the holes opened on the inner surface is larger than the average diameter of the holes opened on the outer surface. The hollow fiber filtration membrane according to claim 1 or 2, wherein
JP4630497A 1997-02-28 1997-02-28 Hollow fiber filtration membrane Pending JPH10235170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4630497A JPH10235170A (en) 1997-02-28 1997-02-28 Hollow fiber filtration membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4630497A JPH10235170A (en) 1997-02-28 1997-02-28 Hollow fiber filtration membrane

Publications (1)

Publication Number Publication Date
JPH10235170A true JPH10235170A (en) 1998-09-08

Family

ID=12743465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4630497A Pending JPH10235170A (en) 1997-02-28 1997-02-28 Hollow fiber filtration membrane

Country Status (1)

Country Link
JP (1) JPH10235170A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310117A (en) * 2000-05-02 2001-11-06 Usf Filtration & Separations Group Inc Internally hydrophilic membrane of anion copolymr blend
JP2006088148A (en) * 2004-09-20 2006-04-06 Para Ltd Hollow fiber membrane having excellent water permeability
WO2009142279A1 (en) * 2008-05-21 2009-11-26 三菱レイヨン株式会社 Hollow porous membrane and process for producing the same
KR20160039788A (en) * 2014-10-02 2016-04-12 주식회사 휴비스워터 Polysulfone-based Hollow Fiber Membrane Having Excellent Chemical Resistance and Preparation Method Thereof
JPWO2016072409A1 (en) * 2014-11-04 2017-08-10 旭化成メディカル株式会社 Hollow fiber filtration membrane

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001310117A (en) * 2000-05-02 2001-11-06 Usf Filtration & Separations Group Inc Internally hydrophilic membrane of anion copolymr blend
JP2006088148A (en) * 2004-09-20 2006-04-06 Para Ltd Hollow fiber membrane having excellent water permeability
KR100650330B1 (en) 2004-09-20 2006-11-27 주식회사 파라 Hollow fiber membrane with excellent water permeability
WO2009142279A1 (en) * 2008-05-21 2009-11-26 三菱レイヨン株式会社 Hollow porous membrane and process for producing the same
JP5341760B2 (en) * 2008-05-21 2013-11-13 三菱レイヨン株式会社 Hollow porous membrane and method for producing the same
US8752713B2 (en) 2008-05-21 2014-06-17 Mitsubishi Rayon Co., Ltd. Hollow porous membrane and process for producing the same
KR20160039788A (en) * 2014-10-02 2016-04-12 주식회사 휴비스워터 Polysulfone-based Hollow Fiber Membrane Having Excellent Chemical Resistance and Preparation Method Thereof
JPWO2016072409A1 (en) * 2014-11-04 2017-08-10 旭化成メディカル株式会社 Hollow fiber filtration membrane

Similar Documents

Publication Publication Date Title
JP4172819B2 (en) Hollow fiber membrane
CN115487695B (en) Asymmetric PES (polyether sulfone) filter membrane for virus removal and preparation method thereof
Oh et al. Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement
US4612119A (en) Hollow fiber filter medium and process for preparing the same
EP0037836B1 (en) Polyvinylidene fluoride resin hollow filament microfilter and process for producing same
US20030134550A1 (en) Braid-reinforced hollow fiber membrane
WO2010029908A1 (en) Hollow-fiber membrane and process for production of hollow-fiber membrane
US20100133169A1 (en) Vinylidene fluoride resin hollow-fiber porous membrane and process for production of the same
JP6599818B2 (en) Method for producing porous membrane
JP6419917B2 (en) Method for producing hollow fiber membrane
JP2006088148A (en) Hollow fiber membrane having excellent water permeability
JPH10235170A (en) Hollow fiber filtration membrane
JPWO2009119373A1 (en) Hollow fiber membrane and method for producing the same
JPH0478729B2 (en)
JP2005523146A (en) Hollow fiber
JPH0569571B2 (en)
JP3317975B2 (en) Polyacrylonitrile hollow fiber filtration membrane
JP2688564B2 (en) Cellulose acetate hollow fiber separation membrane
WO2016182015A1 (en) Porous hollow fiber membrane and manufacturing method therefor
JP3318251B2 (en) Method for producing polyacrylonitrile-based hollow fiber membrane
JP2020171923A (en) Porous film
JPS59228016A (en) Hollow yarn membrane of aromatic polysulfone
JPH10337456A (en) Membrane forming stock solution
JPH1170326A (en) Polyacrylonitrile-based membrane
JPH03174233A (en) Production of aromatic polysulfone hollow-fiber membrane