[go: up one dir, main page]

JPH10227699A - Noncontact temperature measuring sensor - Google Patents

Noncontact temperature measuring sensor

Info

Publication number
JPH10227699A
JPH10227699A JP9029903A JP2990397A JPH10227699A JP H10227699 A JPH10227699 A JP H10227699A JP 9029903 A JP9029903 A JP 9029903A JP 2990397 A JP2990397 A JP 2990397A JP H10227699 A JPH10227699 A JP H10227699A
Authority
JP
Japan
Prior art keywords
optical lens
infrared
infrared sensor
chopper
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9029903A
Other languages
Japanese (ja)
Inventor
Takeshi Masutani
武 増谷
Koji Nomura
幸治 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9029903A priority Critical patent/JPH10227699A/en
Publication of JPH10227699A publication Critical patent/JPH10227699A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a sharp beam by a method wherein a light guide device having a taper-shaped inner face is arranged between an optical lens and a chipper and stray light is reduced. SOLUTION: A chopper 3 is arranged between an optical lens 2 and an infrared sensor 1, and a light guide device 5 which has a taper-shaped inner face is installed between the optical lens 2 and the chopper 3. Infrared rays which are radiated from an object to be measured are narrowed down by the optical lens 2 which uses a silicon diffraction-type plano lens so as to be incident on the infrared sensor 1. A beam which is condensed on the infrared sensor 1 from the optical lens 2 is shut off by the chopper 3 at constant intervals, and it can be measured continuously by a pyroelectric infrared sensor. An incident beam which has an angle is reflected by the tapered light guide device 5 so as to change its angle gradually, it does not reach the infrared sensor 1, and it does not becomes stray light. Since the stray light is reduced, it is possible to obtain an effect to invalidate the beam which is incident on the optical lens 2 but which is deviated from an optical axis, and the visual-field characteristic of the optical lens can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は赤外線センサを用い
た非接触測温センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-contact temperature sensor using an infrared sensor.

【0002】[0002]

【従来の技術】近年赤外線センサは、非接触で物体の検
知や温度の検出ができる点を活かして自動ドアや警報装
置、エアコンの室内温度制御などに利用されており、今
後その応用範囲は拡大していくとみられている。焦電形
赤外線センサはLiTaO3単結晶などの焦電体による
焦電効果を利用したセンサである。焦電体は自発分極を
有しており常に表面電荷が発生するが、大気中における
定常状態では大気中の電荷と結びついて電気的に中性を
保っている。この焦電体に赤外線が入射すると焦電体の
温度が変化し、これにともない表面の電荷状態も中性状
態が壊れて変化する。この表面に発生する電荷を検出し
て赤外線入射量を測定するのが焦電形赤外線センサであ
る。物体はその温度に応じた赤外線を放射しており、こ
のセンサを用いることにより物体の位置や温度を検出で
きる。
2. Description of the Related Art In recent years, infrared sensors have been used for automatic doors, alarm devices, air conditioner indoor temperature control, etc., taking advantage of the fact that they can detect objects and detect temperatures in a non-contact manner. It is expected to do so. The pyroelectric infrared sensor is a sensor utilizing a pyroelectric effect of a pyroelectric body such as a LiTaO 3 single crystal. The pyroelectric body has spontaneous polarization and always generates a surface charge. However, in a steady state in the atmosphere, the pyroelectric body is electrically neutral with the charge in the atmosphere. When infrared light is incident on the pyroelectric body, the temperature of the pyroelectric body changes, and accordingly, the charge state of the surface changes due to the neutral state being broken. A pyroelectric infrared sensor measures the amount of infrared radiation by detecting the charge generated on the surface. An object emits infrared rays according to its temperature, and by using this sensor, the position and temperature of the object can be detected.

【0003】焦電形赤外線センサを用いて温度を検知す
るためには、入射赤外線(以下ビーム)を断続する必要
があり、このために機械式のチョッパが用いられてい
る。チョッパの構成としては回転モータや電磁アクチュ
エータ、圧電アクチュエータ等がありセンサを小型化す
るには圧電アクチュエータが適している。
In order to detect temperature using a pyroelectric infrared sensor, it is necessary to intermittently transmit incident infrared rays (hereinafter, referred to as a beam). For this purpose, a mechanical chopper is used. The configuration of the chopper includes a rotary motor, an electromagnetic actuator, a piezoelectric actuator, and the like. A piezoelectric actuator is suitable for downsizing the sensor.

【0004】図4に従来の非接触測温センサを示す。図
4において11は赤外線センサ、12は光学レンズ、1
3は圧電アクチュエータからなるチョッパ、14は筐
体、15はセンサ受光部を示している。
FIG. 4 shows a conventional non-contact temperature sensor. In FIG. 4, 11 is an infrared sensor, 12 is an optical lens, 1
Reference numeral 3 denotes a chopper formed of a piezoelectric actuator, 14 denotes a housing, and 15 denotes a sensor light receiving unit.

【0005】ここでは光学レンズ12から赤外線センサ
11に至る筐体14の内面(以下キャビティ)は光軸に
対してほぼ平行状態になっており破線で示す反射ビーム
のような光軸に対して平行でないビームはキャビティに
反射して赤外線センサ11に入射する。このため実線で
示す直接ビームに比べてチョッパ13の位置での分布が
広がっていることがわかる。
Here, the inner surface (hereinafter referred to as a cavity) of the casing 14 from the optical lens 12 to the infrared sensor 11 is substantially parallel to the optical axis, and is parallel to the optical axis such as a reflected beam indicated by a broken line. The other beam is reflected by the cavity and enters the infrared sensor 11. Therefore, it can be seen that the distribution at the position of the chopper 13 is wider than that of the direct beam indicated by the solid line.

【0006】[0006]

【発明が解決しようとする課題】チョッパ13の目的は
赤外線センサ11に入射するビームを完全に遮断・通過
させることにある。このためビームが広く分布するとそ
れだけ大きな振幅が必要となる。圧電アクチュエータは
比較的振幅が小さくチョッパ13として用いる場合、光
学レンズ12と赤外線センサ11の間に設置し光学レン
ズ12によって絞られたビームを断続させることにより
この弱点をカバーしている。
The purpose of the chopper 13 is to completely block and pass the beam incident on the infrared sensor 11. Therefore, if the beam is widely distributed, a larger amplitude is required. When the piezoelectric actuator has a relatively small amplitude and is used as the chopper 13, the piezoelectric actuator covers the weak point by being provided between the optical lens 12 and the infrared sensor 11 and intermittently interrupting the beam narrowed by the optical lens 12.

【0007】光学レンズ12の光軸に平行な入射赤外線
(以下ビーム)は光学レンズ12の集光効果によって焦
点に収束しほぼ焦点位置に置かれた赤外線センサ11へ
導かれる。一方、光軸に平行でないビームは光学レンズ
12を通過したのち赤外線センサ11の筐体14も含め
た周辺の壁面(キャビティ)に反射して迷光となって一
部は赤外線センサ11に入射する。この結果赤外線セン
サ11への入射ビームの範囲が広がりチョッパ13の振
幅は大きなものが必要となる。
The incident infrared rays (hereinafter referred to as beams) parallel to the optical axis of the optical lens 12 are converged on the focal point by the light-converging effect of the optical lens 12 and guided to the infrared sensor 11 located substantially at the focal position. On the other hand, the beam that is not parallel to the optical axis passes through the optical lens 12 and is reflected on the peripheral wall (cavity) including the housing 14 of the infrared sensor 11 to become stray light and a part of the beam enters the infrared sensor 11. As a result, the range of the beam incident on the infrared sensor 11 is widened and the chopper 13 needs to have a large amplitude.

【0008】前記周辺のキャビティの放射率が高い場合
は反射は少なくなり迷光も減少するが、今度はキャビテ
ィ自体の温度による放射ビームが赤外線センサ11に入
射する。この場合キャビティと赤外線センサ11に温度
差があるとノイズになり測定精度を悪化させる。
When the emissivity of the peripheral cavity is high, reflection is reduced and stray light is reduced. However, a radiation beam due to the temperature of the cavity itself enters the infrared sensor 11. In this case, if there is a temperature difference between the cavity and the infrared sensor 11, noise occurs and the measurement accuracy deteriorates.

【0009】小型・高精度の非接触測温センサを実現す
るためにはチョッパ13の制約からビームを広げずに且
つキャビティとの温度差の影響を受けない構造が求めら
れている。
In order to realize a small-sized and high-precision non-contact temperature sensor, there is a need for a structure which does not expand the beam and is not affected by a temperature difference from the cavity due to restrictions of the chopper 13.

【0010】本発明は以上のような従来の欠点を除去す
るものであり、迷光のないシャープなビームを得てチョ
ッパとして小さな振幅のものが使用できる非接触測温セ
ンサを提供することを目的とする。
An object of the present invention is to provide a non-contact temperature sensor which can obtain a sharp beam without stray light and can use a chopper having a small amplitude. I do.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
本発明は、被測定物から放射される赤外線を検出して電
気信号を発生する赤外線センサと、被測定物から放射さ
れる赤外線を集光して前記赤外線センサへ送る光学レン
ズと、前記赤外線センサ自身の温度を検出する自己温度
センサと、前記光学レンズと赤外線センサとの間にあり
赤外線センサへ入射する赤外線を機械的に断続するチョ
ッパと、前記赤外線センサ、光学レンズ、自己温度セン
サ、チョッパを取り付け支持する筐体を有する非接触測
温センサにおいて、光学レンズとチョッパとの間にチョ
ッパ側に収斂するテーパ状の内面を持つ導光器を配置す
る構成とする。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides an infrared sensor for detecting an infrared ray emitted from an object to be measured and generating an electric signal, and an infrared sensor for collecting an infrared ray emitted from the object to be measured. An optical lens that emits light and sends it to the infrared sensor, a self-temperature sensor that detects the temperature of the infrared sensor itself, and a chopper that is between the optical lens and the infrared sensor and that mechanically interrupts infrared light that enters the infrared sensor And a non-contact temperature sensor having a housing for mounting and supporting the infrared sensor, the optical lens, the self-temperature sensor, and the chopper, wherein a light guide having a tapered inner surface converging on the chopper side between the optical lens and the chopper. The container is arranged.

【0012】上記構成とすることにより、迷光が減少し
チョッパとしては小さな振幅のものが使用できることに
なる。
With the above configuration, stray light is reduced, and a chopper having a small amplitude can be used.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、被測定物から放射される赤外線を検出して電気信号
を発生する赤外線センサと、被測定物から放射される赤
外線を集光して前記赤外線センサへ送る光学レンズと、
前記赤外線センサ自身の温度を検出する自己温度センサ
と、前記光学レンズと前記赤外線センサとの間にあり前
記赤外線センサへ入射する赤外線を機械的に断続するチ
ョッパと、前記赤外線センサ、光学レンズ、自己温度セ
ンサ、チョッパを取り付け支持する筐体を有する非接触
測温センサにおいて、前記光学レンズと前記チョッパと
の間に前記光学レンズの外形と前記赤外線受光部の縁を
結ぶテーパ状の内腔を持つ導光器を有する構成としたも
のであり、チョッパ通過ビームをシャープにすることが
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention is directed to an infrared sensor for detecting an infrared ray radiated from an object to be measured and generating an electric signal, and collecting infrared rays radiated from the object to be measured. An optical lens that emits light and sends it to the infrared sensor;
A self-temperature sensor for detecting the temperature of the infrared sensor itself, a chopper between the optical lens and the infrared sensor for mechanically interrupting infrared light incident on the infrared sensor, the infrared sensor, the optical lens, A temperature sensor, a non-contact temperature sensor having a housing for mounting and supporting a chopper, wherein a tapered lumen connecting the outer shape of the optical lens and the edge of the infrared light receiving portion is provided between the optical lens and the chopper. This is a configuration having a light guide, so that the beam passing through the chopper can be sharpened.

【0014】請求項2に記載の発明は、内腔および前記
内腔のチョッパ側の開口面の表面は赤外線の反射面とし
たものであり、表面と赤外線センサとの温度差の影響を
小さくできる。
According to a second aspect of the present invention, the surface of the cavity and the opening surface of the cavity on the chopper side are infrared reflecting surfaces, so that the influence of the temperature difference between the surface and the infrared sensor can be reduced. .

【0015】請求項3に記載の発明は、内腔および前記
壁の表面は赤外線の非反射面としたものであり、表面反
射率の経時変化を少なくすることができる。
According to a third aspect of the present invention, the surfaces of the lumen and the wall are non-reflective surfaces of infrared rays, so that a change in surface reflectance with time can be reduced.

【0016】請求項4に記載の発明は、内腔の表面は赤
外線の非反射面であり壁の表面は滑らかな反射面とした
ものであり、表面と赤外線センサとの温度差の影響を小
さくし、内腔の表面の反射率の経時変化を少なくするこ
とができる。
According to a fourth aspect of the present invention, the surface of the lumen is a non-reflection surface of infrared rays and the surface of the wall is a smooth reflection surface, so that the influence of a temperature difference between the surface and the infrared sensor is reduced. In addition, the change with time of the reflectance of the surface of the lumen can be reduced.

【0017】以下本発明の一実施の形態について図を参
照しながら説明する。図1は本発明の一実施の形態にお
ける断面図である。1は赤外線センサ、2は光学レン
ズ、3はチョッパ、4は筐体(シャーシ)、5は導光
器、6はセンサ受光部である。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of an embodiment of the present invention. 1 is an infrared sensor, 2 is an optical lens, 3 is a chopper, 4 is a housing (chassis), 5 is a light guide, and 6 is a sensor light receiving unit.

【0018】被測定物(図示せず)から放射された赤外
線(以下ビーム)はシリコン回折形平面レンズを用いた
光学レンズ2によって絞られ赤外線センサ1に入射す
る。チョッパ3は光学レンズ2から赤外線センサ1へ集
光するビームを一定間隔で遮断し焦電型赤外線センサに
よる連続測定を可能にするもので、本実施の形態では圧
電式アクチュエータによって機械的な往復運動をするも
のを採用している。
An infrared ray (hereinafter referred to as a beam) emitted from an object to be measured (not shown) is converged by an optical lens 2 using a silicon diffraction type flat lens and is incident on an infrared sensor 1. The chopper 3 cuts off the beam condensed from the optical lens 2 to the infrared sensor 1 at regular intervals and enables continuous measurement by a pyroelectric infrared sensor. In the present embodiment, a mechanical reciprocating motion is performed by a piezoelectric actuator. What is adopted.

【0019】本実施の形態では図2に示すように、同様
の角度を持った入射ビームはテーパに形成されたキャビ
ティ即ち導光器5に反射することで徐々に角度を変化さ
せ結局赤外線センサ1には到達しないことがわかる。し
たがって迷光とはならずチョッパ3の位置でのビームの
分布は直接ビームによる狭いままでありチョッパ振幅と
しても小さくてすむ。
In this embodiment, as shown in FIG. 2, an incident beam having a similar angle is gradually reflected by a tapered cavity, that is, a light guide 5 to gradually change the angle. Is not reached. Therefore, the beam distribution at the position of the chopper 3 does not become stray light and remains narrow due to the direct beam, and the chopper amplitude can be small.

【0020】迷光が減少することは同時に光学レンズ2
に入射するビームにおいても光軸からはずれたものを無
効化する効果があり視野特性の改善にも寄与する。
The reduction of stray light is caused by the fact that the optical lens 2
This also has the effect of nullifying a beam incident on the optical axis deviating from the optical axis, and also contributes to the improvement of the visual field characteristics.

【0021】ここまでは導光器5の内面の表面状態は滑
らかな反射面として考えてきたが現実に微小な凹凸が避
けがたいときは黒色の非反射面でもよい。この場合導光
器5はテーパによる角度変化効果は無いがもともと非反
射面なので迷光は発生しない。ただしこれも理想的な非
反射面は在りえないのでテーパとの併用は効果的であ
る。しかし図3における垂直壁面7は黒色の非反射面と
すると輻射ビームが発生するのでキャビティと赤外線セ
ンサ1との温度差がある場合測定誤差の要因となるので
滑らかな反射面が望ましい。
Until now, the surface condition of the inner surface of the light guide 5 has been considered as a smooth reflecting surface. However, if minute irregularities are actually unavoidable, a black non-reflecting surface may be used. In this case, the light guide 5 has no angle changing effect due to the taper, but does not generate any stray light because it is originally a non-reflective surface. However, there is no ideal non-reflection surface, so that it is effective to use it together with a taper. However, if the vertical wall surface 7 in FIG. 3 is a black non-reflective surface, a radiation beam is generated, and a temperature difference between the cavity and the infrared sensor 1 causes a measurement error. Therefore, a smooth reflective surface is desirable.

【0022】光学レンズ3としては一般的にシリコンや
ゲルマなどの磨きレンズを用いるが、本発明のように小
形レンズの場合回折原理を応用した平板レンズは有効で
ある。これは大判のウェハより切り出して作るため面積
の縮小はコストに直結するためである。
Generally, a polished lens such as silicon or germanium is used as the optical lens 3. In the case of a small lens as in the present invention, a flat lens using the principle of diffraction is effective. This is because the area is reduced because it is cut out from a large-sized wafer and directly connected to the cost.

【0023】赤外線センサ1自身の温度を検出するため
の自己温度センサはここでは図示していないが赤外線セ
ンサ1の近傍又は赤外線センサ1のケース内に配置され
る。
A self-temperature sensor for detecting the temperature of the infrared sensor 1 itself is not shown here but is arranged in the vicinity of the infrared sensor 1 or in the case of the infrared sensor 1.

【0024】[0024]

【発明の効果】以上のように本発明はテーパを有する導
光器により迷光のないシャープなビームを得て小型の圧
電アクチュエータによるチョッパを活用して小型の非接
触測温センサを実現するものである。
As described above, the present invention realizes a small non-contact temperature measuring sensor by obtaining a sharp beam without stray light by a light guide having a taper and utilizing a chopper by a small piezoelectric actuator. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態の非接触測温センサの構
成を示す断面図
FIG. 1 is a cross-sectional view illustrating a configuration of a non-contact temperature sensor according to an embodiment of the present invention.

【図2】本発明の一実施の形態の機能を示す断面図FIG. 2 is a cross-sectional view showing functions of an embodiment of the present invention.

【図3】本発明の一実施の形態の機能を示す断面図FIG. 3 is a cross-sectional view illustrating functions of an embodiment of the present invention.

【図4】従来の非接触測温センサを示す断面図FIG. 4 is a sectional view showing a conventional non-contact temperature sensor.

【符号の説明】[Explanation of symbols]

1 赤外線センサ 2 光学レンズ 3 チョッパ 4 筐体 5 導光器 6 センサ受光部 7 垂直壁面 DESCRIPTION OF SYMBOLS 1 Infrared sensor 2 Optical lens 3 Chopper 4 Housing 5 Light guide 6 Sensor light-receiving part 7 Vertical wall surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被測定物から放射される赤外線を検出し
て電気信号を発生する赤外線センサと、被測定物から放
射される赤外線を集光して前記赤外線センサへ送る光学
レンズと、前記赤外線センサ自身の温度を検出する自己
温度センサと、前記光学レンズと赤外線センサとの間に
あり赤外線センサへ入射する赤外線を機械的に断続する
チョッパと、前記赤外線センサ、光学レンズ、自己温度
センサ、チョッパを取り付け支持する筐体を有する非接
触測温センサにおいて、前記光学レンズと前記チョッパ
との間に、前記光学レンズの外形と前記赤外線受光部の
縁を結ぶテーパ状の内腔を持つ導光器を有する非接触測
温センサ。
An infrared sensor for detecting an infrared ray radiated from the object to generate an electric signal; an optical lens for condensing the infrared ray radiated from the object to send to the infrared sensor; A self-temperature sensor for detecting the temperature of the sensor itself, a chopper between the optical lens and the infrared sensor for mechanically interrupting infrared light incident on the infrared sensor, and the infrared sensor, an optical lens, a self-temperature sensor, and a chopper A non-contact temperature sensor having a housing for mounting and supporting a light guide having a tapered lumen between the optical lens and the chopper that connects an outer shape of the optical lens and an edge of the infrared light receiving unit. A non-contact temperature sensor having:
【請求項2】 内腔および前記内腔のチョッパ側の開口
面の表面は赤外線の反射面である請求項1に記載の非接
触測温センサ。
2. The non-contact temperature sensor according to claim 1, wherein the surface of the lumen and the opening surface of the lumen on the chopper side are infrared reflecting surfaces.
【請求項3】 内腔および壁の表面は赤外線の非反射面
である請求項1に記載の非接触測温センサ。
3. The non-contact temperature sensor according to claim 1, wherein the surface of the lumen and the wall are non-reflective surfaces of infrared rays.
【請求項4】 内腔の表面は赤外線の非反射面であり、
前記壁の表面は滑らかな反射面である請求項3記載の非
接触測温センサ。
4. The surface of the lumen is an infrared non-reflective surface,
The non-contact temperature sensor according to claim 3, wherein the surface of the wall is a smooth reflecting surface.
JP9029903A 1997-02-14 1997-02-14 Noncontact temperature measuring sensor Pending JPH10227699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9029903A JPH10227699A (en) 1997-02-14 1997-02-14 Noncontact temperature measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9029903A JPH10227699A (en) 1997-02-14 1997-02-14 Noncontact temperature measuring sensor

Publications (1)

Publication Number Publication Date
JPH10227699A true JPH10227699A (en) 1998-08-25

Family

ID=12288950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9029903A Pending JPH10227699A (en) 1997-02-14 1997-02-14 Noncontact temperature measuring sensor

Country Status (1)

Country Link
JP (1) JPH10227699A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880968B1 (en) 1999-10-29 2005-04-19 Roche Diagnostics Gmbh Test element analysis system
KR100492575B1 (en) * 2002-08-17 2005-06-03 엘지전자 주식회사 Thermopile infrared sensor with narrow visual field
JP2015166743A (en) * 2008-10-23 2015-09-24 カズ ヨーロッパ エスエー Non-contact medical thermometer with stray radiation shield

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6880968B1 (en) 1999-10-29 2005-04-19 Roche Diagnostics Gmbh Test element analysis system
KR100492575B1 (en) * 2002-08-17 2005-06-03 엘지전자 주식회사 Thermopile infrared sensor with narrow visual field
JP2015166743A (en) * 2008-10-23 2015-09-24 カズ ヨーロッパ エスエー Non-contact medical thermometer with stray radiation shield

Similar Documents

Publication Publication Date Title
US5745050A (en) Obstacle detection apparatus for vehicles
US5836694A (en) Laser and scope aiming mechanism for a hand-held temperature measuring unit
JPH1019768A (en) Surface plasmon resonance sensor
JP4702200B2 (en) RECEIVER AND RADAR DEVICE PROVIDED WITH THE RECEIVER
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
KR102263183B1 (en) Lidar device
US5705810A (en) Laser optical torquemeter
JP2007333592A (en) Distance measurement device
KR100370001B1 (en) Temperature sensing device
CN111257849A (en) Rotating pyramid reflector
JP4127579B2 (en) Light wave distance meter
JPH10227699A (en) Noncontact temperature measuring sensor
CA2087467C (en) Wide field of view optical element
US7059522B2 (en) Object detecting apparatus having hydrophilic light radiating window
US4853541A (en) Device for detecting the spatial orientation of excessively heated points
US5265479A (en) Micro resonator
JPH10227697A (en) Noncontact temperature measuring sensor
US5103088A (en) Optical sensor device using a dielectric transparent spherical-shell section
KR101868963B1 (en) Structure to the one direction over the distance by using the detected light
EP0942269A1 (en) Radiation sensing apparatus
EP0428263B1 (en) Vibrating sensor
JP2000317658A (en) Laser beam machining device
JPS6247525A (en) Radiation thermometer for fiber
JP2023001043A (en) Optoelectronic sensor and method of detecting objects
JPH08275925A (en) Radiative clinical thermometer