[go: up one dir, main page]

JPH10220982A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH10220982A
JPH10220982A JP3709997A JP3709997A JPH10220982A JP H10220982 A JPH10220982 A JP H10220982A JP 3709997 A JP3709997 A JP 3709997A JP 3709997 A JP3709997 A JP 3709997A JP H10220982 A JPH10220982 A JP H10220982A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
inlet tank
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3709997A
Other languages
Japanese (ja)
Inventor
Tomohiro Chiba
朋広 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP3709997A priority Critical patent/JPH10220982A/en
Publication of JPH10220982A publication Critical patent/JPH10220982A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/035Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger in which a temperature distribution at the surface of the heat exchanger can be reduced and a heat exchanging performance can be improved while some disadvantages such as a reduction in an assembling work efficiency and an increased aeration resistance are being prevented. SOLUTION: A heat exchanger having an inlet tank 4 and a plurality of tubes 2 communicated with and connected to the inlet tank 4 to feed refrigerant of double gas-liquid phases through an expansion valve is constructed such that a partition plate 15 for defining an inner area of the inlet tank 4 into at least two chambers 16, 17 for a refrigerant feeding side and a refrigerant discharging side and allowing a communication between both chambers is arranged in the inlet tank 4, and the communication allowing part of the partition plate 15 is formed at the lower part of a cross sectional direction of the inlet tank 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば車両用空
調装置に用いられる冷媒を使用する熱交換器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger using a refrigerant used in, for example, a vehicle air conditioner.

【0002】[0002]

【従来の技術】従来から、たとえば車両用空調装置等に
用いられる熱交換器としては図1に示すようなものが知
られている。この熱交換器の外観を表した図1は、後述
の本発明の説明においても共通に使用する。図1におい
て、熱交換器1は、内部に流体通路が形成された複数の
チューブ2と、各チューブ2間に配設されたフィン3と
を有している。複数のチューブ2により、流体の分配を
司る入口タンク4と流体の集合を司る出口タンク5が互
いに連通されるようになっている。
2. Description of the Related Art Conventionally, a heat exchanger as shown in FIG. 1 has been known for use in, for example, a vehicle air conditioner. FIG. 1 showing the appearance of this heat exchanger is commonly used in the following description of the present invention. In FIG. 1, the heat exchanger 1 has a plurality of tubes 2 having a fluid passage formed therein, and fins 3 disposed between the tubes 2. The plurality of tubes 2 allow an inlet tank 4 that controls fluid distribution and an outlet tank 5 that controls fluid collection to communicate with each other.

【0003】熱交換器1には、膨張弁6が連結されてお
り、外部から導入された冷媒は、該膨張弁6により減
圧、膨張され、入口タンク4内において各チューブ2へ
分配され、該チューブ2を通過し出口タンク5内に集合
された後、膨張弁6を介して外部へと排出される。上記
冷媒の流れを図9に示す。そして、熱交換器1内部を循
環する冷媒と熱交換器1内を通過する熱交換用空気との
間で熱交換が行われるようになっている。
[0003] An expansion valve 6 is connected to the heat exchanger 1, and a refrigerant introduced from the outside is decompressed and expanded by the expansion valve 6 and distributed to each tube 2 in an inlet tank 4. After passing through the tube 2 and gathering in the outlet tank 5, it is discharged to the outside via the expansion valve 6. FIG. 9 shows the flow of the refrigerant. Then, heat exchange is performed between the refrigerant circulating in the heat exchanger 1 and the heat exchange air passing in the heat exchanger 1.

【0004】ところで、膨張弁6により減圧された冷媒
は、気液混合状態、つまり気液二相の冷媒になってい
る。このため、気相、液相の慣性力に起因して、入口タ
ンク4の上流側に連通するチューブ2にはガス冷媒が、
下流側に連通するチューブ2には液冷媒がそれぞれ多く
流入するおそれがあり、結果的に各チューブ2間に温度
分布が生じ熱交換性能が低下するおそれがある。
The refrigerant decompressed by the expansion valve 6 is in a gas-liquid mixed state, that is, a gas-liquid two-phase refrigerant. For this reason, due to the inertia forces of the gas phase and the liquid phase, the gas refrigerant flows into the tube 2 communicating with the upstream side of the inlet tank 4,
A large amount of liquid refrigerant may flow into the tubes 2 communicating with the downstream side, and as a result, a temperature distribution may occur between the tubes 2 and the heat exchange performance may be reduced.

【0005】上記のような問題を解消すべく、たとえば
特開平7−103610号公報のような提案もなされて
いる。該提案においては、膨張弁で減圧された冷媒を気
液分離手段により気液分離し、該分離されたガス冷媒と
液冷媒とを各チューブに連通されるガス冷媒用タンク、
液冷媒用タンクを介して各チューブに対して均等に分配
することにより、各チューブ間における温度の均一化を
達成し、熱交換器表面の温度分布を低減することによ
り、熱交換性能が向上されるようになっている。
[0005] In order to solve the above-mentioned problems, proposals have been made, for example, in Japanese Patent Application Laid-Open No. Hei 7-103610. In this proposal, a gas refrigerant tank in which the refrigerant decompressed by the expansion valve is gas-liquid separated by gas-liquid separation means, and the separated gas refrigerant and liquid refrigerant are communicated with each tube.
By evenly distributing the liquid to each tube through the liquid refrigerant tank, the temperature of each tube is made uniform, and the heat exchange performance is improved by reducing the temperature distribution on the heat exchanger surface. It has become so.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記提
案においては、各チューブを積層し、該積層体中に該積
層体と一体的にガス冷媒用タンクと液冷媒用タンクが構
成されているため、チューブを2枚のプレス成形された
プレートを互いに接合したものから構成しようとする
と、左右非対称形状のプレートを接合しなければならな
くなる。
However, in the above proposal, the tubes are stacked, and the gas refrigerant tank and the liquid refrigerant tank are formed integrally with the laminate in the laminate. If the tube is to be made of two press-formed plates joined to each other, asymmetric plates must be joined.

【0007】このため、プレス型の増加は免れないもの
になる。さらに、左右非対称形状のプレートを互いに接
合するため、組付け作業効率が低下するおそれもある。
また、上記提案の一態様においては、ガス冷媒用タン
ク、液冷媒用タンクをチューブ長手方向の両端に設ける
構成が採られているが、該構成においては、通気領域の
減少や通気抵抗の増大を招くおそれがある。
For this reason, an increase in the number of press dies is inevitable. Further, since the left and right asymmetric plates are joined to each other, the assembling work efficiency may be reduced.
Further, in one aspect of the above proposal, a configuration is adopted in which a gas refrigerant tank and a liquid refrigerant tank are provided at both ends in the tube longitudinal direction. In this configuration, it is necessary to reduce the ventilation area and increase the ventilation resistance. May be invited.

【0008】本発明の課題は、組付け作業効率の低下、
通気抵抗の増大、伝熱面積の減少等の弊害を招くことな
く、熱交換器の表面の温度分布を低減し、熱交換性能を
向上することのできる熱交換器を提供することにある。
The object of the present invention is to reduce the efficiency of assembly work,
An object of the present invention is to provide a heat exchanger that can reduce the temperature distribution on the surface of the heat exchanger and improve heat exchange performance without causing adverse effects such as an increase in ventilation resistance and a decrease in a heat transfer area.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の熱交換器は、入口タンクと、該入口タンク
に連通、接続された複数のチューブを有し、前記入口タ
ンクに膨張弁を介し気液二相の冷媒を導入する熱交換器
において、前記入口タンク内に、該入口タンク内を冷媒
導入側と冷媒反導入側との少なくとも2つの室に区画す
るとともに両室の連通を許容する区画板を設け、該区画
板の連通許容部を入口タンクの横断面方向下部に形成し
たことを特徴とするものからなる。
In order to solve the above-mentioned problems, a heat exchanger according to the present invention has an inlet tank and a plurality of tubes communicating with and connected to the inlet tank. In the heat exchanger for introducing a gas-liquid two-phase refrigerant through a valve, the inlet tank is divided into at least two chambers, a refrigerant introduction side and a refrigerant counter-introduction side, and the two chambers communicate with each other. And a communication permitting portion of the partition plate is formed at a lower portion in a cross-sectional direction of the inlet tank.

【0010】上記入口タンクの冷媒導入側の室に連通さ
れるチューブ(以下、単にガス用チューブと言う。)の
数は、入口タンクの冷媒反導入側の室に連通されるチュ
ーブ(以下、単に液用チューブと言う。)の数よりも少
ないことが好ましい。より好ましくは、ガス用チューブ
の数は全チューブ数の10〜30%の範囲である。そし
て、前記入口タンクの冷媒導入側の室に連通するチュー
ブには主としてガス冷媒が導入され、前記冷媒反導入側
の室に連通するチューブには主として液冷媒が導入され
る。
The number of tubes (hereinafter simply referred to as gas tubes) connected to the refrigerant introduction side chamber of the inlet tank is determined by the number of tubes (hereinafter simply referred to as "tubes") connected to the refrigerant non-introduction side chamber of the inlet tank. Liquid tube). More preferably, the number of gas tubes is in the range of 10-30% of the total number of tubes. A gas refrigerant is mainly introduced into a tube communicating with a refrigerant introduction side chamber of the inlet tank, and a liquid refrigerant is mainly introduced into a tube communicating with the refrigerant non-introduction side chamber.

【0011】上記のような熱交換器においては、熱交換
器内部に導入された気液二相冷媒は、入口タンクの冷媒
導入側の室内において、実質的にガス冷媒と液冷媒とに
分離される。そして、比重の軽いガス冷媒は、冷媒導入
側の室に連通されるガス用チューブ内へ導入される。一
方、ガス冷媒よりも比重の重い液冷媒は、区画板の、入
口タンクの横断方向下部に形成された連通許容部を介し
て冷媒反導入側の室内へ送られ、該反導入側の室に連通
される液用チューブ内へ導入される。この際、ガス用チ
ューブ内においては、ガス冷媒に含まれるミスト状の液
冷媒が蒸発し、熱交換器を通過する熱交換用空気との間
で熱交換が行われる。一方、実質的に気液分離され、反
導入側の室内へ流入する液冷媒は、その乾き度がきわめ
て小さくなっているので、各液用チューブへ均等に分配
されることになる。つまり、分離されたガス冷媒、液冷
媒をそれぞれ別々のガス用チューブ、液用チューブを通
過させ、ガス冷媒を熱交換に有効利用しつつ、気液二相
の冷媒中に占める割合の大きな液冷媒が各液用チューブ
に対し均等に分配される結果、各液用チューブ間におけ
る均温化が図られるので、熱交換器の表面の温度分布が
小さくなり、効率的な熱交換を実現できる。
In the above-described heat exchanger, the gas-liquid two-phase refrigerant introduced into the heat exchanger is substantially separated into a gas refrigerant and a liquid refrigerant in a chamber on the refrigerant introduction side of the inlet tank. You. The gas refrigerant having a low specific gravity is introduced into a gas tube that communicates with the chamber on the refrigerant introduction side. On the other hand, the liquid refrigerant having a higher specific gravity than the gas refrigerant is sent to the refrigerant non-introduction-side chamber through the communication permitting portion formed at the lower portion of the partition plate in the transverse direction of the inlet tank, and is sent to the anti-introduction-side chamber. It is introduced into the fluid tube that is in communication. At this time, in the gas tube, the mist-like liquid refrigerant included in the gas refrigerant evaporates, and heat exchange is performed with the heat exchange air passing through the heat exchanger. On the other hand, the liquid refrigerant, which is substantially gas-liquid separated and flows into the chamber on the opposite side of the introduction, has an extremely small dryness, and is therefore evenly distributed to the respective liquid tubes. In other words, the separated gas refrigerant and liquid refrigerant are passed through separate gas tubes and liquid tubes, respectively, and the gas refrigerant is effectively used for heat exchange, while the liquid refrigerant having a large proportion of the gas-liquid two-phase refrigerant. Is evenly distributed to each liquid tube, so that the temperature of each liquid tube is equalized, so that the temperature distribution on the surface of the heat exchanger is reduced, and efficient heat exchange can be realized.

【0012】また、膨張弁により減圧され、熱交換器内
部へ導入される気液二相の冷媒中においては、液冷媒よ
りもガス冷媒の割合が少なくなっているので、ガス用チ
ューブの数を液用チューブの数より少なく設定すれば、
本発明の目的をより効果的に達成することができる。ガ
ス用チューブの数は、全チューブ数の10〜30%の範
囲に設定することが望ましい。
Further, in the gas-liquid two-phase refrigerant which is decompressed by the expansion valve and introduced into the heat exchanger, the ratio of the gas refrigerant is smaller than that of the liquid refrigerant. If you set less than the number of liquid tubes,
The object of the present invention can be achieved more effectively. The number of gas tubes is desirably set in the range of 10 to 30% of the total number of tubes.

【0013】[0013]

【発明の実施の形態】以下に、本発明の望ましい実施の
形態について図面を参照して説明する。まず、熱交換器
1の外観構成については、図1に示した従来構成と略同
じである。本発明においては、熱交換器1の内部が、た
とえば図2ないし図8に示すように構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the drawings. First, the external configuration of the heat exchanger 1 is substantially the same as the conventional configuration shown in FIG. In the present invention, the inside of the heat exchanger 1 is configured, for example, as shown in FIGS.

【0014】図2ないし図7は、本発明の第1実施態様
に係る熱交換器1を示している。熱交換器1は、チュー
ブ2とフィン3とが交互に積層されて形成されるコア部
7を有しており、コア部7の積層方向の両端にはサイド
プレート8、9が設けられている。
FIGS. 2 to 7 show a heat exchanger 1 according to a first embodiment of the present invention. The heat exchanger 1 has a core portion 7 formed by alternately stacking the tubes 2 and the fins 3, and side plates 8 and 9 are provided at both ends of the core portion 7 in the stacking direction. .

【0015】コア部7のサイドプレート8側には、熱交
換器1内部へ冷媒を導入、導出する偏平タンク10が設
けられている。偏平タンク10内部は、膨張弁6により
減圧された気液二相の冷媒が導入される入口流路11と
冷媒を外部へと導出するための出口流路12とに分割さ
れている。入口流路11、出口流路12には、入口パイ
プ13、出口パイプ14が連通されており、該パイプ1
3、14に膨張弁6が連結されている。
On the side plate 8 side of the core part 7, a flat tank 10 for introducing and discharging the refrigerant into the heat exchanger 1 is provided. The interior of the flat tank 10 is divided into an inlet channel 11 through which the gas-liquid two-phase refrigerant decompressed by the expansion valve 6 is introduced, and an outlet channel 12 through which the refrigerant is led out. An inlet pipe 13 and an outlet pipe 14 communicate with the inlet channel 11 and the outlet channel 12, respectively.
The expansion valve 6 is connected to 3 and 14.

【0016】入口タンク4内部には、区画板15が設け
られている。該区画板15により、入口タンク4内は、
冷媒導入側の室16と冷媒反導入側の室17とに区画さ
れている。また、該区画板15には、室16と室17と
の連通を許容する連通許容部18が設けられている。本
実施態様においては、円形の一部を弦部とした形状の区
画板15の弦部と入口タンク4の内壁との隙間によって
連通許容部18が形成されている。この連通許容部18
は、上下方向にみて、入口タンク4の横断面方向下部に
形成されている。なお、図6、図7に示すように区画板
15に穴24を穿設し、穴24を連通許容部18とする
こともできる。この場合、穴24の個数、形状等はとく
に限定されるものではない。
A partition plate 15 is provided inside the inlet tank 4. Due to the partition plate 15, the inside of the inlet tank 4 is
It is divided into a chamber 16 on the refrigerant introduction side and a chamber 17 on the side opposite to the refrigerant introduction side. Further, the partition plate 15 is provided with a communication permitting portion 18 that permits communication between the chamber 16 and the chamber 17. In the present embodiment, the communication permitting portion 18 is formed by a gap between the chord portion of the partition plate 15 having a circular part as a chord portion and the inner wall of the inlet tank 4. This communication permitting part 18
Are formed at the lower portion in the cross-sectional direction of the inlet tank 4 when viewed in the up-down direction. In addition, as shown in FIGS. 6 and 7, a hole 24 may be formed in the partition plate 15, and the hole 24 may be used as the communication permission portion 18. In this case, the number, shape, and the like of the holes 24 are not particularly limited.

【0017】冷媒導入側の室16、冷媒反導入側の室1
7は、それぞれ対応するガス用チューブ21、液用チュ
ーブ22により出口タンク5と連通されている。つま
り、チューブ2は、ガス用チューブ21と液用チューブ
22とから構成されている。チューブ2は、図4に示す
ように板状部材をプレス成形した成形プレート23を互
いに接合し、内部に流路が形成されるようになってい
る。なお、本実施態様においては、15本のチューブ2
のうちの2本(全チューブ数の約13%)がガス用チュ
ーブ21として構成されている。
The chamber 16 on the refrigerant introduction side and the chamber 1 on the side opposite to the refrigerant introduction side
Numeral 7 is connected to the outlet tank 5 by the corresponding gas tube 21 and liquid tube 22. That is, the tube 2 includes the gas tube 21 and the liquid tube 22. As shown in FIG. 4, the tube 2 is formed by joining forming plates 23 formed by press-forming plate members to form a flow path inside. In this embodiment, 15 tubes 2
Of them (about 13% of the total number of tubes) are configured as gas tubes 21.

【0018】本実施態様に係る熱交換器1においては、
膨張弁6を介して気液二相の冷媒が入口タンク4の室1
6内に導入されると、気相、液相の密度の相違により密
度の小さいガス冷媒は上昇し、密度の大きい液冷媒は、
室16すなわちタンク4の下部へ流下し、気液二相の冷
媒が実質的にガス冷媒と液冷媒とに分離される。本実施
態様においては、区画板15の、入口タンク4の横断面
方向下部には連通許容部18が設けられているので、分
離された液冷媒は比重の差により下部側に集まり、連通
許容部18を介して室17内へ流入する。
In the heat exchanger 1 according to this embodiment,
The gas-liquid two-phase refrigerant flows into the chamber 1 of the inlet tank 4 through the expansion valve 6.
When introduced into 6, the gas refrigerant having a low density rises due to the difference in density between the gas phase and the liquid phase, and the liquid refrigerant having a high density
The refrigerant flows down to the lower part of the chamber 16, that is, the tank 4, and the gas-liquid two-phase refrigerant is substantially separated into the gas refrigerant and the liquid refrigerant. In the present embodiment, the communication permitting portion 18 is provided at the lower portion of the partition plate 15 in the cross-sectional direction of the inlet tank 4, so that the separated liquid refrigerant gathers on the lower side due to a difference in specific gravity, and the communication permitting portion is provided. It flows into the chamber 17 via 18.

【0019】室16内において分離されたガス冷媒は、
比重の差により上部側に集まり、ガス用チューブ21内
を通り出口パイプ5内に流入するが、ガス冷媒中にはミ
スト状の液冷媒が含有されているので、ガス用チューブ
21内においてミスト状の液冷媒が蒸発し、熱交換器1
内を通過する熱交換用空気との間において熱交換が行わ
れる。一方、室17へ流入される液冷媒は、上記の如く
室16においてガス冷媒と実質的に分離されているの
で、その乾き度はきわめて小さい。このため、該液冷媒
を各液用チューブ22内へ均等に分配することができ、
各液用チューブ22内を流通する液冷媒量が均一化さ
れ、各チューブ22の温度分布が小さくなる。すなわ
ち、気液二相の冷媒中においては、液冷媒の割合がガス
冷媒に比べて圧倒的に多いので、液冷媒を均等に分配し
各液用チューブ22の均温化を図ることにより、熱交換
器1の表面の温度分布が小さくなり、効率的な熱交換が
達成される。
The gas refrigerant separated in the chamber 16 is
Due to the difference in specific gravity, they gather on the upper side and pass through the gas tube 21 and flow into the outlet pipe 5. However, since the gas refrigerant contains a mist-like liquid refrigerant, the mist-like liquid refrigerant is contained in the gas tube 21. Liquid refrigerant evaporates and heat exchanger 1
Heat is exchanged with the heat exchange air passing through the inside. On the other hand, since the liquid refrigerant flowing into the chamber 17 is substantially separated from the gas refrigerant in the chamber 16 as described above, its dryness is extremely small. Therefore, the liquid refrigerant can be evenly distributed into each liquid tube 22,
The amount of liquid refrigerant flowing through each liquid tube 22 is made uniform, and the temperature distribution of each tube 22 is reduced. That is, in the gas-liquid two-phase refrigerant, the ratio of the liquid refrigerant is overwhelmingly higher than that of the gas refrigerant, so that the liquid refrigerant is evenly distributed and the temperature of each liquid tube 22 is equalized, so that the heat is increased. The temperature distribution on the surface of the exchanger 1 is reduced, and efficient heat exchange is achieved.

【0020】したがって、ガス用チューブ21の数を液
用チューブ22の数より少なくすれば、本発明の目的を
より効果的に達成できるが、ガス用チューブ22の数は
全チューブ数の10〜30%の範囲に設定されることが
好ましい。なお、ガス用チューブ21の数は、入口タン
ク4内の区画板15の位置を移動すれば容易に変更する
ことができる。
Therefore, if the number of gas tubes 21 is smaller than the number of liquid tubes 22, the object of the present invention can be achieved more effectively, but the number of gas tubes 22 is 10 to 30 of the total number of tubes. % Is preferably set. The number of gas tubes 21 can be easily changed by moving the position of the partition plate 15 in the inlet tank 4.

【0021】図8は、本発明の第2実施態様に係る熱交
換器を示している。本実施態様においては、入口タンク
4内に複数(図8においては2つ)の区画板25、26
が設けられている。そして、入口タンク4内は、区画板
26により冷媒導入側の室16と冷媒反導入側の室17
とに区画されている。さらに、冷媒導入側の室16は、
区画板25により第1の室27と第2の室28に区画さ
れている。また、本実施態様の熱交換器は、第一実施態
様の熱交換器1に比べてチューブ2の数が増加してい
る。
FIG. 8 shows a heat exchanger according to a second embodiment of the present invention. In the present embodiment, a plurality of (two in FIG. 8) partition plates 25, 26 are provided in the inlet tank 4.
Is provided. Further, the inside of the inlet tank 4 is partitioned by a partition plate 26 into a chamber 16 on the refrigerant introduction side and a chamber 17 on the side opposite to the refrigerant introduction side.
It is divided into and. Furthermore, the chamber 16 on the refrigerant introduction side is
The partitioning plate 25 partitions the first chamber 27 and the second chamber 28. Moreover, the number of tubes 2 in the heat exchanger of the present embodiment is larger than that of the heat exchanger 1 of the first embodiment.

【0022】本実施態様においては、室16を構成する
第1の室27および第2の室28により、気液二相の冷
媒が多段階的にガス冷媒と液冷媒に分離されるので、ガ
ス冷媒を熱交換に有効利用しつつ、室17内に導入され
る液冷媒の乾き度を一層向上することができる。したが
って、熱交換器の表面全体の温度分布がより低減され、
効率的な熱交換が達成できる。つまり、チューブ2の数
が比較的多い熱交換器に対しては、本実施態様のように
区画板を複数設けることにより、本発明の目的をより効
果的に達成することができる。
In this embodiment, the gas-liquid two-phase refrigerant is separated into the gas refrigerant and the liquid refrigerant in multiple stages by the first chamber 27 and the second chamber 28 constituting the chamber 16, so that the gas The dryness of the liquid refrigerant introduced into the chamber 17 can be further improved while effectively using the refrigerant for heat exchange. Therefore, the temperature distribution over the surface of the heat exchanger is reduced more,
Efficient heat exchange can be achieved. That is, for a heat exchanger having a relatively large number of tubes 2, by providing a plurality of partition plates as in the present embodiment, the object of the present invention can be more effectively achieved.

【0023】また、本実施態様においても、ガス用チュ
ーブ21の数は、全チューブ2の10〜30%の範囲に
なっている。
Also in this embodiment, the number of gas tubes 21 is in the range of 10 to 30% of the total tubes 2.

【0024】なお、上記第1、第2実施態様において
は、チューブ2は、左右対称形状の成形プレート23を
互いに接合することにより構成できるので、プレス型の
増加を防止し、組付けの容易性を確保することができ
る。また、熱交換器1の外観形状は何ら変更されていな
いので、通気抵抗の増大、伝熱面積の減少等の弊害を招
くおそれはない。
In the first and second embodiments, since the tube 2 can be formed by joining the symmetrical forming plates 23 to each other, the number of press dies is prevented from increasing, and the assembling is easy. Can be secured. In addition, since the external shape of the heat exchanger 1 is not changed at all, there is no possibility of causing adverse effects such as an increase in airflow resistance and a decrease in the heat transfer area.

【0025】[0025]

【発明の効果】以上説明したように、本発明の熱交換器
によるときは、組付け作業効率の低下、通気抵抗の増大
等の弊害を招くことなく、熱交換器の表面の温度分布を
低減でき、より効率的な熱交換が可能になるので、熱交
換器の性能を向上することができる。
As described above, when the heat exchanger of the present invention is used, the temperature distribution on the surface of the heat exchanger can be reduced without causing adverse effects such as a reduction in assembly work efficiency and an increase in ventilation resistance. As a result, more efficient heat exchange becomes possible, so that the performance of the heat exchanger can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施態様に係る熱交換器(但し、従
来技術の説明にも使用)の斜視図である。
FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention (however, it is also used for explanation of the prior art).

【図2】本発明の第1実施態様に係る熱交換器の断面図
である。
FIG. 2 is a cross-sectional view of the heat exchanger according to the first embodiment of the present invention.

【図3】図2の構造に対応する熱交換器内の冷媒の流れ
を示す説明図である。
FIG. 3 is an explanatory diagram showing a flow of a refrigerant in a heat exchanger corresponding to the structure of FIG. 2;

【図4】図2の熱交換器のチューブを構成する成形プレ
ートの平面図である。
FIG. 4 is a plan view of a forming plate constituting a tube of the heat exchanger of FIG. 2;

【図5】図2の熱交換器の入口タンクの拡大横断面図で
ある。
FIG. 5 is an enlarged cross-sectional view of an inlet tank of the heat exchanger of FIG. 2;

【図6】図5とは別の区画板が設けられた入口タンクの
拡大横断面図である。
FIG. 6 is an enlarged cross-sectional view of an inlet tank provided with a partition plate different from that of FIG. 5;

【図7】図6とは別の区画板が設けられた入口タンクの
拡大横断面図である。
FIG. 7 is an enlarged cross-sectional view of an inlet tank provided with a partition plate different from that of FIG. 6;

【図8】本発明の第2実施態様に係る熱交換器の断面図
である。
FIG. 8 is a cross-sectional view of a heat exchanger according to a second embodiment of the present invention.

【図9】従来の熱交換器内の流体の流れを示す説明図で
ある。
FIG. 9 is an explanatory diagram showing a flow of a fluid in a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1 熱交換器 2 チューブ 3 フィン 4 入口タンク 5 出口タンク 6 膨張弁 7 コア部 8、9 サイドプレート 10 偏平タンク 11 入口流路 12 出口流路 13 入口パイプ 14 出口パイプ 15 区画板 16 冷媒導入側の室 17 冷媒反導入側の室 18 連通許容部 21 ガス用チューブ 22 液用チューブ 23 成形プレート 25、26 区画板 27 第1の室 28 第2の室 DESCRIPTION OF SYMBOLS 1 Heat exchanger 2 Tube 3 Fin 4 Inlet tank 5 Outlet tank 6 Expansion valve 7 Core part 8, 9 Side plate 10 Flat tank 11 Inlet flow path 12 Outlet flow path 13 Inlet pipe 14 Outlet pipe 15 Partition plate 16 Refrigerant introduction side Chamber 17 Refrigerant anti-introduction side chamber 18 Communication permitting part 21 Gas tube 22 Liquid tube 23 Forming plate 25, 26 Partition plate 27 First chamber 28 Second chamber

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入口タンクと、該入口タンクに連通、接
続された複数のチューブを有し、前記入口タンクに膨張
弁を介し気液二相の冷媒を導入する熱交換器において、
前記入口タンク内に、該入口タンク内を冷媒導入側と冷
媒反導入側との少なくとも2つの室に区画するとともに
両室の連通を許容する区画板を設け、該区画板の連通許
容部を入口タンクの横断面方向下部に形成したことを特
徴とする熱交換器。
1. A heat exchanger having an inlet tank, a plurality of tubes connected to and connected to the inlet tank, and introducing a gas-liquid two-phase refrigerant to the inlet tank through an expansion valve.
In the inlet tank, a partition plate for partitioning the inside of the inlet tank into at least two chambers on a refrigerant introduction side and a refrigerant non-introduction side and allowing communication between the two chambers is provided, and the communication permitting portion of the partition plate is connected to the inlet. A heat exchanger formed at a lower portion in a cross-sectional direction of a tank.
【請求項2】 前記入口タンクの冷媒導入側の室に連通
するチューブの数が、前記冷媒反導入側の室に連通する
チューブの数よりも少ない、請求項1の熱交換器。
2. The heat exchanger according to claim 1, wherein the number of tubes communicating with the refrigerant introduction side chamber of the inlet tank is smaller than the number of tubes communicating with the refrigerant non-introduction side chamber.
【請求項3】 前記入口タンクの冷媒導入側の室に連通
するチューブには主としてガス冷媒が導入され、前記冷
媒反導入側の室に連通するチューブには主として液冷媒
が導入される、請求項1または2の熱交換器。
3. A gas refrigerant is mainly introduced into a tube communicating with a refrigerant introduction side chamber of the inlet tank, and a liquid refrigerant is mainly introduced into a tube communicating with the refrigerant non-introduction side chamber. 1 or 2 heat exchangers.
JP3709997A 1997-02-04 1997-02-04 Heat exchanger Pending JPH10220982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3709997A JPH10220982A (en) 1997-02-04 1997-02-04 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3709997A JPH10220982A (en) 1997-02-04 1997-02-04 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH10220982A true JPH10220982A (en) 1998-08-21

Family

ID=12488145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3709997A Pending JPH10220982A (en) 1997-02-04 1997-02-04 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH10220982A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714412B1 (en) 2002-09-13 2004-03-30 International Business Machines Corporation Scalable coolant conditioning unit with integral plate heat exchanger/expansion tank and method of use
JP2010513833A (en) * 2006-12-14 2010-04-30 ユーオーピー エルエルシー Heat exchanger for natural gas liquefaction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6714412B1 (en) 2002-09-13 2004-03-30 International Business Machines Corporation Scalable coolant conditioning unit with integral plate heat exchanger/expansion tank and method of use
JP2010513833A (en) * 2006-12-14 2010-04-30 ユーオーピー エルエルシー Heat exchanger for natural gas liquefaction

Similar Documents

Publication Publication Date Title
JP3017272B2 (en) Heat exchanger
US7367388B2 (en) Evaporator for carbon dioxide air-conditioner
JP4047891B2 (en) Heat exchanger
JPH04203895A (en) Heat exchanger
JPH09264693A (en) Heatexchanger provided with distribution device
JP5693346B2 (en) Evaporator
JPH07103610A (en) Refrigerant evaporator
US20140374072A1 (en) Kit for a heat exchanger, a heat exchanger core, and heat exchanger
US20050223739A1 (en) Evaporator
JPH03140764A (en) Heat exchanger
JP2000266492A (en) Laminated heat exchanger
JPH09309321A (en) Lamination type heat exchanger
JP2002147990A (en) Heat exchanger
JPH1163881A (en) Stacked heat exchanger
JPS633153A (en) Refrigerant evaporator
JP2891486B2 (en) Heat exchanger
JP5674376B2 (en) Evaporator
JPH10220982A (en) Heat exchanger
JPH0674609A (en) Heat exchanger
KR100350946B1 (en) Laminate type heat exchanger for vehicle
JPH1047809A (en) Heat exchanger
CN100513964C (en) Heat exchanger
JPH1114281A (en) Heat exchanger
JP4547205B2 (en) Evaporator
JP2002071282A (en) Laminated type evaporator