JPH10220888A - Refrigerating cycle - Google Patents
Refrigerating cycleInfo
- Publication number
- JPH10220888A JPH10220888A JP9024152A JP2415297A JPH10220888A JP H10220888 A JPH10220888 A JP H10220888A JP 9024152 A JP9024152 A JP 9024152A JP 2415297 A JP2415297 A JP 2415297A JP H10220888 A JPH10220888 A JP H10220888A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- evaporator
- valve
- solenoid valve
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 115
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims description 27
- 238000005057 refrigeration Methods 0.000 claims description 25
- 238000001704 evaporation Methods 0.000 claims description 3
- 238000007599 discharging Methods 0.000 claims 1
- 229920006395 saturated elastomer Polymers 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000004378 air conditioning Methods 0.000 description 26
- 239000012071 phase Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Landscapes
- Air-Conditioning For Vehicles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電磁弁を膨張弁の
下流側に配置した冷凍サイクルに関するもので、例え
ば、車室内のフロント側とリア側の双方に、冷凍サイク
ルの蒸発器を内蔵する空調ユニットを配設する車両用空
調装置等に用いて好適である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle in which an electromagnetic valve is disposed downstream of an expansion valve. For example, a refrigeration cycle evaporator is built in both the front side and the rear side in a vehicle compartment. It is suitable for use in a vehicle air conditioner or the like in which an air conditioning unit is provided.
【0002】[0002]
【従来の技術】従来より、例えば車室内のフロント側の
空調制御とリア側の空調制御とをそれぞれ独立して行う
ために、車室内前後の空調ユニット内にそれぞれ冷却用
の蒸発器を配設するとともに、この2つの冷却用の蒸発
器とこれらの蒸発器に流入する冷媒を減圧するための膨
張弁をそれぞれ並列に配置した車両空調用の冷凍サイク
ルが知られている。2. Description of the Related Art Conventionally, evaporators for cooling have been provided in air conditioning units before and after a vehicle cabin, for example, in order to independently perform air conditioning control on a front side and air conditioning control on a rear side in a vehicle interior. In addition, there has been known a refrigeration cycle for vehicle air conditioning, in which two cooling evaporators and expansion valves for reducing the pressure of refrigerant flowing into these evaporators are arranged in parallel.
【0003】そして、この冷凍サイクルにおいては、2
つの蒸発器への冷媒流れを断続するために、膨張弁の上
流側の冷媒流路を開閉する電磁弁を設けている。しか
し、膨張弁にて減圧される前の高圧側の液相冷媒の流れ
が、電磁弁によって急激に遮断されるときに、ウォータ
ハンマ音が発生するという問題があった。また、それま
で冷媒流れを遮断していた電磁弁を開くときには、高圧
の液冷媒が急激に膨張弁の絞り部に衝突することに伴う
騒音が発生するという問題があった。In this refrigeration cycle, 2
In order to interrupt the flow of the refrigerant to the two evaporators, an electromagnetic valve for opening and closing the refrigerant flow path on the upstream side of the expansion valve is provided. However, when the flow of the liquid-phase refrigerant on the high pressure side before the pressure is reduced by the expansion valve is suddenly cut off by the solenoid valve, there is a problem that a water hammer sound is generated. In addition, when the solenoid valve that has blocked the flow of the refrigerant is opened, there is a problem that noise is generated due to the high-pressure liquid refrigerant suddenly colliding with the throttle portion of the expansion valve.
【0004】そこで、特開平7−151422号公報で
は、電磁弁を膨張弁の下流側(すなわち、気液二相状態
の冷媒が流れる低圧側の流路)に配置して、電磁弁の閉
弁時におけるウォータハンマ音や、電磁弁の開弁時にお
ける騒音を低減するようにしたものが提案されている。Therefore, in Japanese Patent Application Laid-Open No. Hei 7-151422, a solenoid valve is disposed downstream of an expansion valve (that is, a low-pressure side flow path through which a gas-liquid two-phase refrigerant flows) to close the solenoid valve. In order to reduce the noise of the water hammer at the time of operation and the noise at the time of opening the solenoid valve, there has been proposed one that reduces the noise.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、上記公
報記載の従来技術について、本発明者らが種々実験検討
したところ、電磁弁の開弁時には、以下の理由から、騒
音低減を図ることができないことが分かった。ここで、
上記公報記載の従来技術においては、膨張弁のダイヤフ
ラムの上側に、蒸発器出口冷媒温度における冷媒の飽和
圧力を作用させ、ダイヤフラムの下側に、電磁弁の下流
側の蒸発器圧力を作用させることにより、2つの圧力差
に応じてダイヤフラムを変動させ、この変動を膨張弁の
弁体に伝達することにより、膨張弁の弁開度を調整して
いる。However, the present inventors have conducted various experimental studies on the prior art described in the above-mentioned publication, and found that when the solenoid valve was opened, noise could not be reduced for the following reasons. I understood. here,
In the prior art described in the above publication, the saturation pressure of the refrigerant at the evaporator outlet refrigerant temperature is applied to the upper side of the diaphragm of the expansion valve, and the evaporator pressure downstream of the solenoid valve is applied to the lower side of the diaphragm. Thus, the diaphragm is changed in accordance with the two pressure differences, and this change is transmitted to the valve body of the expansion valve, thereby adjusting the valve opening of the expansion valve.
【0006】そして、一方の蒸発器が電磁弁の閉弁によ
り冷媒の流れが停止されると、この蒸発器の温度は周囲
温度(室温)まで上昇するので、ダイヤフラムの上側に
は、室温における冷媒の飽和圧力(例えば0.6MPa
程度)が作用する。これに対して、電磁弁の下流側が、
他方の蒸発器への冷媒循環(圧縮機の運転)により低圧
(例えば0.3MPa程度)となっており、この圧力
が、ダイヤフラムの下側に作用する。この結果、膨張弁
の弁体に開弁方向の力が作用し、膨張弁は全開状態とな
る。When the flow of the refrigerant in one of the evaporators is stopped by closing the solenoid valve, the temperature of the evaporator rises to the ambient temperature (room temperature). Saturation pressure (for example, 0.6 MPa
Act). On the other hand, the downstream side of the solenoid valve is
The refrigerant is circulated to the other evaporator (the operation of the compressor) to reduce the pressure (for example, to about 0.3 MPa), and this pressure acts on the lower side of the diaphragm. As a result, a force in the valve opening direction acts on the valve body of the expansion valve, and the expansion valve is fully opened.
【0007】この膨張弁の全開状態において電磁弁が開
弁すると、この電磁弁部位において急激な圧力変動が発
生し、この圧力変動が液体冷媒を介して、電磁弁上流側
配管、具体的には、膨張弁の上流側に連結される高圧配
管に伝播してこの配管を振動させ、騒音が発生すること
がわかった。また、それまで冷媒流れが停止していた蒸
発器に大流量の冷媒が急激に流れだし、冷媒流動音(騒
音)が発生することがわかった。When the solenoid valve opens when the expansion valve is fully opened, a sudden pressure change occurs at the solenoid valve portion, and the pressure change is caused by the liquid refrigerant via the upstream pipe of the solenoid valve, specifically, It was found that the noise propagated to the high-pressure pipe connected to the upstream side of the expansion valve to vibrate the pipe and generate noise. In addition, it was found that a large flow rate of the refrigerant suddenly started flowing into the evaporator where the flow of the refrigerant had stopped, and a refrigerant flow noise (noise) was generated.
【0008】本発明は上記点に鑑みてなされたもので、
2つの蒸発器および膨張弁をそれぞれ並列に配置した冷
凍サイクルにおいて、電磁弁の開弁時における騒音の低
減を図ることを目的とする。[0008] The present invention has been made in view of the above points,
In a refrigerating cycle in which two evaporators and an expansion valve are respectively arranged in parallel, an object is to reduce noise when the solenoid valve is opened.
【0009】[0009]
【課題を解決するための手段】上記目的を達成するた
め、請求項1および2記載の発明では、圧縮機(1)か
ら吐出されたガス冷媒を凝縮器(2)にて凝縮し、この
凝縮した液冷媒を、並列に設けた第1膨張弁(41)お
よび第2膨張弁(42)にて減圧膨張させ、この減圧膨
張した冷媒を、並列に設けた第1蒸発器(51)および
第2蒸発器(52)にて蒸発させ、これら第1、第2蒸
発器(51、52)にて蒸発させた冷媒を合流部(5
3)にて合流させた後、圧縮機(1)へ吸入させる冷凍
サイクルにおいて、第2膨張弁(42)下流と第2蒸発
器(52)上流との間の冷媒流路を、第1電磁弁(6)
にて開閉し、第2蒸発器(52)下流と合流部(53)
上流との間の冷媒流路を、第2電磁弁(7)にて開閉
し、第1電磁弁(6)下流の蒸発器圧力(P2)、およ
び、第2電磁弁(7)上流の蒸発器出口冷媒温度に基づ
いて、第2膨張弁(42)の弁開度を調整し、第2蒸発
器(52)への冷媒の供給を遮断するときに、第1電磁
弁(6)および第2電磁弁(7)を閉弁し、第2蒸発器
(52)に冷媒を供給するときに、前記第1電磁弁
(6)および前記第2電磁弁(7)を開弁することを特
徴としている。According to the first and second aspects of the present invention, a gas refrigerant discharged from a compressor (1) is condensed in a condenser (2), and the condensed gas refrigerant is condensed in the condenser (2). The expanded liquid refrigerant is decompressed and expanded by the first expansion valve (41) and the second expansion valve (42) provided in parallel, and the decompressed and expanded refrigerant is supplied to the first evaporator (51) and the second evaporator (51) provided in parallel. 2 The evaporator (52) evaporates the refrigerant and the first and second evaporators (51, 52) evaporate the refrigerant.
In the refrigerating cycle in which the refrigerant flows into the compressor (1) after being merged in 3), the refrigerant flow path between the downstream of the second expansion valve (42) and the upstream of the second evaporator (52) is separated by the first electromagnetic wave. Valve (6)
To open and close at the junction with the downstream of the second evaporator (52).
The refrigerant passage between the upstream side and the upstream side is opened and closed by a second solenoid valve (7), and the evaporator pressure (P2) downstream of the first solenoid valve (6) and the evaporation upstream of the second solenoid valve (7). When the valve opening of the second expansion valve (42) is adjusted based on the temperature of the refrigerant at the outlet of the device, and the supply of the refrigerant to the second evaporator (52) is shut off, the first solenoid valve (6) and the second The second solenoid valve (7) is closed, and when supplying the refrigerant to the second evaporator (52), the first solenoid valve (6) and the second solenoid valve (7) are opened. And
【0010】上記構成によれば、第1電磁弁(6)およ
び第2電磁弁(7)を閉弁するとき、冷凍サイクルが運
転されていても、第1電磁弁(6)と第2電磁弁(7)
との間が、高圧側圧力(例えば2.0MPa程度)、お
よび、低圧側圧力(例えば0.3MPa程度)と遮断さ
れる。従って、第1電磁弁(6)と第2電磁弁(7)と
の間では、冷媒温度が室温程度の温度(例えば20℃)
まで上昇し、第1電磁弁(6)下流の蒸発器圧力(P
2)が低圧にはならないので、膨張弁(42)に閉弁方
向の力が作用し、膨張弁(42)が全閉状態となる。According to the above configuration, when the first solenoid valve (6) and the second solenoid valve (7) are closed, even if the refrigeration cycle is operating, the first solenoid valve (6) and the second solenoid valve (6) are closed. Valve (7)
Is cut off from the high pressure side pressure (for example, about 2.0 MPa) and the low pressure side pressure (for example, about 0.3 MPa). Therefore, between the first solenoid valve (6) and the second solenoid valve (7), the refrigerant temperature is about room temperature (for example, 20 ° C.).
To the evaporator pressure downstream of the first solenoid valve (6) (P
Since the pressure in 2) does not become low, a force in the valve closing direction acts on the expansion valve (42), and the expansion valve (42) is fully closed.
【0011】また、第1電磁弁(6)の閉弁時におい
て、第1電磁弁(6)より上流は、冷凍サイクルの運転
により高圧となっているため、第1、第2電磁弁(6)
の開弁時に、第1電磁弁(6)部位において急激な圧力
変動が生じるが、この開弁直後では、膨張弁(42)が
閉弁状態であるため、上記圧力変動による騒音の発生を
効果的に抑制できるとともに、大流量の冷媒が急激に流
れ出すことを抑制でき、冷媒流動音等の発生を効果的に
抑制できる。When the first solenoid valve (6) is closed, the pressure upstream of the first solenoid valve (6) is high due to the operation of the refrigeration cycle. )
When the valve is opened, the pressure fluctuates sharply at the first solenoid valve (6). Immediately after the opening, the expansion valve (42) is in a closed state. In addition to the above, it is possible to suppress the large flow of the refrigerant from flowing out abruptly, and it is possible to effectively suppress the generation of the refrigerant flow noise and the like.
【0012】また、第1電磁弁(6)は、膨張弁(4
2)より下流側の気液二相状態の冷媒流域に設置されて
いるから、電磁弁(6)の閉弁時におけるウォータハン
マ音も従来通り、良好に低減できる。The first solenoid valve (6) is provided with an expansion valve (4).
2) Since it is installed in the refrigerant flow area in the gas-liquid two-phase state on the downstream side, the water hammer noise when the solenoid valve (6) is closed can be reduced well as before.
【0013】[0013]
【発明の実施の形態】以下、本発明の実施形態を説明す
る。 (第1の実施形態)図1は、本発明による冷凍サイクル
の全体構成を示しており、この冷凍サイクルは、車両の
フロントシート側およびリアシート側に、それぞれ独立
に制御可能な空調ユニットを持つ車両用空調装置に使用
されるものである。Embodiments of the present invention will be described below. (First Embodiment) FIG. 1 shows the overall configuration of a refrigeration cycle according to the present invention. This refrigeration cycle is a vehicle having independently controllable air conditioning units on the front seat side and the rear seat side of the vehicle. It is used for air conditioners.
【0014】図1の冷凍サイクルは、圧縮機1を備えて
おり、この圧縮機1には、動力伝達を断続する電磁クラ
ッチが装着されており、この電磁クラッチが接続状態に
なると、図示しない車両エンジンから動力が伝達されて
圧縮機1は作動し、吸入冷媒を圧縮し、高温高圧のガス
冷媒として吐出する。凝縮器2は、図示しない冷却ファ
ンによる空冷作用を受けて圧縮機1からの吐出ガス冷媒
を冷却して凝縮させるものであり、この凝縮後の液冷媒
は受液器3内に流入する。この受液器3は、その内部に
流入した凝縮冷媒を気液分離して、液冷媒のみを流出さ
せる。受液器3の下流側には、液冷媒を気液二相状態に
減圧膨張させる第1、第2膨張弁41、42と、この第
1、第2膨張弁41、42を通過した冷媒を蒸発させる
第1、第2蒸発器51、52とが設けてある。なお、第
2膨張弁42および第2蒸発器52は、第1膨張弁41
および第1蒸発器51に並列に設けられている。The refrigeration cycle shown in FIG. 1 includes a compressor 1, which is equipped with an electromagnetic clutch for interrupting power transmission. When the electromagnetic clutch is connected, a vehicle (not shown) is provided. Power is transmitted from the engine, and the compressor 1 operates to compress the suction refrigerant and discharge it as a high-temperature and high-pressure gas refrigerant. The condenser 2 cools and condenses the gas refrigerant discharged from the compressor 1 by air cooling by a cooling fan (not shown), and the condensed liquid refrigerant flows into the liquid receiver 3. The liquid receiver 3 gas-liquid separates the condensed refrigerant flowing into the liquid receiver 3 and allows only the liquid refrigerant to flow out. Downstream of the receiver 3, first and second expansion valves 41 and 42 for decompressing and expanding the liquid refrigerant into a gas-liquid two-phase state, and the refrigerant passing through the first and second expansion valves 41 and 42 First and second evaporators 51 and 52 for evaporating are provided. The second expansion valve 42 and the second evaporator 52 are connected to the first expansion valve 41
And the first evaporator 51 are provided in parallel.
【0015】ここで、第1膨張弁41および第1蒸発器
51は、車室内前部の計器盤内部に配置される前部空調
ユニットF内に設けられ、車室内のフロントシート側の
空調のために使用される。また、第2膨張弁42および
第2蒸発器52は、車室内後部、例えばワゴンタイプの
自動車の天井部に配置される後部空調ユニットR内に設
けられ、車室内のリアシート側の空調のために使用され
る。なお、図示しないが、前部、後部空調ユニットF、
R内に空調用の送風機等が内蔵されていることはもちろ
んである。The first expansion valve 41 and the first evaporator 51 are provided in a front air-conditioning unit F disposed inside an instrument panel in a front part of the vehicle compartment, and provide air conditioning for a front seat side in the vehicle compartment. Used for The second expansion valve 42 and the second evaporator 52 are provided in a rear air-conditioning unit R disposed at the rear of the vehicle compartment, for example, at the ceiling of a wagon-type automobile, for air-conditioning the rear seat side in the vehicle compartment. used. Although not shown, the front and rear air conditioning units F,
It goes without saying that an air-conditioning blower and the like are built in R.
【0016】また、計器盤には、後部空調ユニットRの
運転の作動停止を切り替える後部空調切替スイッチ61
が設けられており、このスイッチ61は、乗員の判断で
手動にて切り替えられる。そして、このスイッチ61か
らの信号が電気制御装置62に入力され、この入力信号
に基づいて、後述する電磁弁6、7の開閉(電磁弁6、
7への通電のオン、オフ)を制御する。The instrument panel has a rear air conditioning switch 61 for switching the operation of the rear air conditioning unit R to stop.
The switch 61 is manually switched at the discretion of the occupant. Then, a signal from the switch 61 is input to the electric control device 62, and based on the input signal, opening / closing of the solenoid valves 6, 7 described later (the solenoid valves 6,
7 is turned on and off).
【0017】第1、第2膨張弁41、42は、周知のご
とく、第1、第2蒸発器51、52の出口冷媒の過熱度
を所定値に維持するように弁開度が自動調整される温度
式の膨張弁である。この具体的な構造について、膨張弁
42を代表して説明する。なお、図1には、膨張弁41
を概略的に示してあるが、この膨張弁41も、膨張弁4
2と同じ構造をしているとする。As is well known, the opening degrees of the first and second expansion valves 41 and 42 are automatically adjusted so as to maintain the degree of superheat of the refrigerant at the outlet of the first and second evaporators 51 and 52 at a predetermined value. This is a temperature-type expansion valve. This specific structure will be described using the expansion valve 42 as a representative. FIG. 1 shows the expansion valve 41.
The expansion valve 41 is also schematically shown in FIG.
Assume that it has the same structure as 2.
【0018】膨張弁42は密閉容器状の弁本体10を備
え、この弁本体10の上方内部が、ダイヤフラム11に
より、感温室111と均圧室112とに仕切られてい
る。感温室111と、蒸発器52の冷媒出口部に設けた
感温部16とは、キャピラリチューブ17にて連通され
ており、これら111、16、17内には、冷凍サイク
ル内に封入される冷媒と同じ冷媒が封入されている。こ
のため、感温室111内の圧力は、感温部16が感知す
る蒸発器出口冷媒温度に対応した飽和圧力P1となり、
この圧力P1が、ダイヤフラム11の上側に作用する。The expansion valve 42 has a valve body 10 in the form of a closed container. The upper inside of the valve body 10 is partitioned by a diaphragm 11 into a temperature sensing chamber 111 and a pressure equalizing chamber 112. The temperature sensing chamber 111 and the temperature sensing section 16 provided at the coolant outlet of the evaporator 52 are communicated with each other by a capillary tube 17, and inside these 111, 16, and 17, a refrigerant sealed in a refrigeration cycle is provided. And the same refrigerant as above. For this reason, the pressure in the temperature sensing chamber 111 becomes the saturation pressure P1 corresponding to the evaporator outlet refrigerant temperature sensed by the temperature sensing unit 16, and
This pressure P1 acts on the upper side of the diaphragm 11.
【0019】均圧室112と蒸発器52の冷媒出口部と
は外均管18にて連通されている。このため、均圧室1
12内の圧力は、蒸発器52の冷媒出口部の圧力(蒸発
器圧力)P2となり、この圧力P2がダイヤフラム11
の下側に作用する。均圧室112の下方には、絞り流路
14が形成されており、この絞り流路14の開度は、弁
体13にて調整される。この弁体13とダイヤフラム1
1とは、作動棒12にて連結されている。弁体13の下
側にはコイルスプリング15が設けてあり、このコイル
スプリング15により、所定のバネ力F3が、弁体13
および作動棒12を介してダイヤフラム11の下側に作
用する。The pressure equalizing chamber 112 and the refrigerant outlet of the evaporator 52 are communicated by the outer equalizing pipe 18. For this reason, the pressure equalizing chamber 1
The pressure in the evaporator 52 becomes the pressure (evaporator pressure) P2 at the outlet of the refrigerant of the evaporator 52.
Acts on the lower side. A throttle passage 14 is formed below the equalizing chamber 112, and the opening of the throttle passage 14 is adjusted by the valve 13. The valve 13 and the diaphragm 1
1 is connected by an operating rod 12. A coil spring 15 is provided below the valve 13, and a predetermined spring force F3 is generated by the coil spring 15.
And act on the lower side of the diaphragm 11 via the operating rod 12.
【0020】そして、ダイヤフラム11の上側に作用す
る圧力P1と、下側に作用する圧力P2およびバネ力F
3との差に応じてダイヤフラム11を上下に変動させ、
この変動を作動棒12を介して弁体13に伝達すること
により、膨張弁42内の絞り流路14の開度を自動調整
して、必要な冷媒流量とし、蒸発器出口冷媒の過熱度を
所定値に維持している。具体的には、P1の方がP2+
F3よりも大きくなったとき、ダイヤフラム11を押し
下げて膨張弁42内の絞り流路14を開き、P2+F3
がP1以上であるときは、膨張弁42内の絞り流路14
を閉じる。The pressure P1 acting on the upper side of the diaphragm 11, the pressure P2 acting on the lower side, and the spring force F
The diaphragm 11 is moved up and down according to the difference from 3,
By transmitting this fluctuation to the valve body 13 via the operating rod 12, the opening degree of the throttle passage 14 in the expansion valve 42 is automatically adjusted to a required refrigerant flow rate, and the superheat degree of the refrigerant at the evaporator outlet is reduced. It is maintained at a predetermined value. Specifically, P1 is P2 +
When it becomes larger than F3, the diaphragm 11 is pushed down to open the throttle passage 14 in the expansion valve 42, and P2 + F3
Is greater than or equal to P1, the throttle flow path 14 in the expansion valve 42
Close.
【0021】そして、第1、第2蒸発器51、52の冷
媒出口側は合流部53において合流し、この合流部53
からの冷媒を圧縮機1に吸入させている。ここで、第2
膨張弁42下流と第2蒸発器52上流との間の冷媒流路
には、この冷媒流路の開閉を行なう第1電磁弁6が設け
てある。さらに、蒸発器52下流と合流部53上流との
間の冷媒流路には、この冷媒流路の開閉を行なう第2電
磁弁7が設けてある。なお、キャピラリチューブ17の
先端、および、感温部16は、電磁弁7上流の冷媒流路
に位置している。この電磁弁6、7は、常閉型電磁弁で
あり、通電したときのみ開弁するものである。Then, the refrigerant outlet sides of the first and second evaporators 51 and 52 join at a junction 53, and the junction 53
Refrigerant is sucked into the compressor 1. Here, the second
A first solenoid valve 6 for opening and closing the refrigerant flow path is provided in the refrigerant flow path between the downstream of the expansion valve 42 and the upstream of the second evaporator 52. Further, a second electromagnetic valve 7 for opening and closing the refrigerant flow path is provided in the refrigerant flow path between the downstream of the evaporator 52 and the upstream of the junction 53. In addition, the tip of the capillary tube 17 and the temperature sensing part 16 are located in the refrigerant flow path upstream of the solenoid valve 7. The solenoid valves 6 and 7 are normally closed solenoid valves, and are opened only when electricity is supplied.
【0022】なお、膨張弁42と電磁弁6は一体化した
構造としてあり、この結果、膨張弁42および電磁弁6
の小型化を図ることができる。この一体化構造について
は、本出願人が先に提出した特願平7−160739号
等に詳しく説明してあるので、ここでの説明は省略す
る。次に、上記構成による作動を説明する。The expansion valve 42 and the solenoid valve 6 have an integrated structure. As a result, the expansion valve 42 and the solenoid valve 6
Can be reduced in size. This integrated structure has been described in detail in Japanese Patent Application No. Hei 7-160739 filed earlier by the present applicant, and a description thereof will be omitted. Next, the operation of the above configuration will be described.
【0023】まず、圧縮機1が車両のエンジンから電磁
クラッチを介して動力を伝達されて作動すると、圧縮機
1は、蒸発器51、52の下流側流路、つまり、合流部
53からの冷媒を吸入、圧縮して、高温高圧のガス冷媒
を凝縮器2に向けて吐出する。すると、この凝縮器2で
はガス冷媒が冷却されて凝縮する。この凝縮後の冷媒
は、受液器3内に流入し、冷媒の気液が分離され、液冷
媒が受液器3から流出して、並列配置された第1、第2
膨張弁41、42側へ向かう。First, when the compressor 1 operates by receiving power from an engine of a vehicle via an electromagnetic clutch, the compressor 1 operates in the downstream flow path of the evaporators 51 and 52, that is, the refrigerant from the junction 53. Is sucked and compressed, and a high-temperature and high-pressure gas refrigerant is discharged toward the condenser 2. Then, the gas refrigerant is cooled and condensed in the condenser 2. The condensed refrigerant flows into the liquid receiver 3, gas-liquid of the refrigerant is separated, the liquid refrigerant flows out of the liquid receiver 3, and the first and second liquid refrigerants are arranged in parallel.
It goes to the expansion valves 41 and 42 side.
【0024】ここで、車両のリアシート側に乗員が搭乗
していない場合は、リアシート側を空調する必要がない
ため、後部空調切替スイッチ61をオフとし、後部空調
ユニットRを作動させないようにする。これにより、電
磁弁6、および、電磁弁7への通電が遮断されて電磁弁
6、7が閉弁状態となり、第2蒸発器52の入口側冷媒
流路、および、出口側冷媒流路に冷媒が供給されなくな
る。Here, when no occupant is on the rear seat side of the vehicle, there is no need to air-condition the rear seat side. Therefore, the rear air conditioning switch 61 is turned off, and the rear air conditioning unit R is not operated. As a result, the energization of the solenoid valve 6 and the solenoid valve 7 is shut off, and the solenoid valves 6 and 7 are closed, so that the inlet-side refrigerant flow path and the outlet-side refrigerant flow path of the second evaporator 52 are closed. No coolant is supplied.
【0025】一方、前部空調ユニットF側では、受液器
3からの液冷媒が膨張弁41において減圧、膨張して、
低温低圧の気液二相状態となる。この気液二相冷媒が蒸
発器51で空調空気から吸熱して蒸発するため、空調空
気は冷却され冷風となり、車室内のフロントシート側を
空調する。なお、膨張弁41の開度は、上記した圧力P
1、P2、バネ力F3に応じて自動調整され、蒸発器出
口冷媒の過熱度を所定値に維持する。On the other hand, on the front air conditioning unit F side, the liquid refrigerant from the receiver 3 is decompressed and expanded at the expansion valve 41,
It becomes a gas-liquid two-phase state of low temperature and low pressure. Since the gas-liquid two-phase refrigerant absorbs heat from the conditioned air in the evaporator 51 and evaporates, the conditioned air is cooled and becomes cool air, and air-conditions the front seat side in the passenger compartment. The opening degree of the expansion valve 41 is determined by the pressure P
It is automatically adjusted according to 1, P2 and the spring force F3, and maintains the superheat degree of the evaporator outlet refrigerant at a predetermined value.
【0026】そして、電磁弁6、7を閉弁状態としてい
るとき、後部空調ユニットR側は室温程度であり、しか
も、電磁弁7により、蒸発器52の冷媒出口側におい
て、蒸発器51への冷媒循環と遮断されているため、蒸
発器52の冷媒出口部(電磁弁7の直前位置)の圧力P
2は、室温(例えば20℃)に応じた冷媒の飽和圧力
(例えば0.6MPa)となっている。また、圧力P1
は、感温部421が感知する蒸発器出口冷媒温度、つま
り室温に応じた冷媒の飽和圧力(例えば0.6MPa)
である。このため、P1=P2であり、P1<P2+F
3となるので、ダイヤフラム11は下方へ移動せず、膨
張弁42は閉弁状態となる。When the solenoid valves 6 and 7 are closed, the rear air conditioning unit R side is at about room temperature, and the solenoid valve 7 allows the refrigerant to exit to the evaporator 51 at the refrigerant outlet side of the evaporator 52. Since the refrigerant circulation is blocked, the pressure P at the refrigerant outlet of the evaporator 52 (the position immediately before the solenoid valve 7)
Reference numeral 2 denotes the saturation pressure (eg, 0.6 MPa) of the refrigerant according to the room temperature (eg, 20 ° C.). Also, the pressure P1
Is the evaporator outlet refrigerant temperature sensed by the temperature sensing part 421, that is, the saturation pressure of the refrigerant according to the room temperature (for example, 0.6 MPa)
It is. Therefore, P1 = P2, and P1 <P2 + F
3, the diaphragm 11 does not move downward, and the expansion valve 42 is closed.
【0027】ここで、膨張弁42の弁体13による絞り
流路14のシール性は、電磁弁6、7による冷媒流路の
シール性に比べてさほど確実なものではないので、電磁
弁6、7を閉弁状態としているとき、たとえ膨張弁42
が閉弁状態であっても、受液器3からの液体冷媒(温度
が60℃、圧力が2MPa程度)が、絞り流路14と弁
体13との間の微少隙間から少しずつ漏れて、電磁弁6
部位まで液体冷媒が滞留することになる。つまり、電磁
弁6部位まで、高圧側圧力となっている。そして、電磁
弁6から電磁弁7の間には、室温に対応した飽和状態の
冷媒(温度が20℃、圧力が0.6MPa程度)が存在
し、電磁弁7の下流側には、蒸発器51への冷媒循環
(圧縮機の運転)により、ガス冷媒(温度が10℃、圧
力が0.3MPa程度)が存在する。Here, the sealing property of the throttle passage 14 by the valve body 13 of the expansion valve 42 is not so reliable as compared with the sealing property of the refrigerant passage by the solenoid valves 6 and 7. 7, the expansion valve 42 is closed.
Is closed, the liquid refrigerant (temperature is about 60 ° C. and pressure is about 2 MPa) from the receiver 3 leaks little by little from the minute gap between the throttle channel 14 and the valve body 13, Solenoid valve 6
The liquid refrigerant stays at the site. In other words, the pressure is at the high pressure side up to the six electromagnetic valves. A saturated refrigerant (temperature: 20 ° C., pressure: about 0.6 MPa) corresponding to room temperature exists between the solenoid valve 6 and the solenoid valve 7, and an evaporator is provided downstream of the solenoid valve 7. Due to the circulation of the refrigerant to the 51 (operation of the compressor), a gas refrigerant (temperature: 10 ° C., pressure: about 0.3 MPa) exists.
【0028】次に、上述のように膨張弁42が閉弁して
いる状態において、後部空調ユニットRを作動させるた
めに、後部空調切替スイッチ61がオンされると、電磁
弁6、7に同時に通電され、電磁弁6、7が同時に開弁
し、電磁弁6、7部位の冷媒流路が開口する。ところ
で、電磁弁6、7の閉弁時において、電磁弁6の上流側
が高圧側圧力となっているため、電磁弁6、7を開弁す
るときに、この電磁弁6部位において急激な圧力変動が
生じるが、この開弁直後では、膨張弁42が閉弁状態で
あるため、上記圧力変動による騒音の発生を効果的に抑
制できるとともに、大流量の冷媒が急激に流れ出すこと
を抑制でき、冷媒流動音等の発生を効果的に抑制でき
る。Next, when the rear air-conditioning switch 61 is turned on to operate the rear air-conditioning unit R while the expansion valve 42 is closed as described above, the solenoid valves 6 and 7 are simultaneously operated. Power is supplied to the solenoid valves 6 and 7 at the same time, and the refrigerant flow paths at the solenoid valves 6 and 7 are opened. By the way, when the solenoid valves 6 and 7 are closed, the pressure on the upstream side of the solenoid valves 6 is at the high pressure side. Immediately after the valve is opened, the expansion valve 42 is in the closed state, so that the generation of noise due to the pressure fluctuation can be effectively suppressed, and the large flow of the refrigerant can be suppressed from rapidly flowing out. Generation of flowing noise and the like can be effectively suppressed.
【0029】具体的には、電磁弁6、7を開弁した後、
蒸発器52の冷媒出口部の圧力P2は急激に低圧となる
が、ダイヤフラム11の均圧室112内の圧力は、キャ
ピラリチューブ17を経て徐々に上記圧力P2に近づく
ので、膨張弁42の弁体13の開度も徐々に増加するこ
とになり、この結果、膨張弁42を通過する冷媒流量も
徐々に増加する。従って、上記圧力変動による騒音の発
生や、冷媒流動音等の発生を効果的に抑制できる。Specifically, after opening the solenoid valves 6 and 7,
Although the pressure P2 at the refrigerant outlet of the evaporator 52 rapidly decreases, the pressure in the pressure equalizing chamber 112 of the diaphragm 11 gradually approaches the pressure P2 via the capillary tube 17, so that the valve element of the expansion valve 42 13 also gradually increases, and as a result, the flow rate of the refrigerant passing through the expansion valve 42 also gradually increases. Therefore, it is possible to effectively suppress the generation of noise due to the pressure fluctuation and the generation of refrigerant flow noise and the like.
【0030】そして、電磁弁6、7の開弁後、所定時間
が経過すると、ダイヤフラム11の均圧室112内の圧
力が、上記冷媒圧力P2そのものとなるので、これ以後
は、この圧力P1と、圧力P2+F3との釣り合いに応
じた位置に、膨張弁42の弁体13が変位する。これに
より、膨張弁42の弁体13は、蒸発器出口冷媒が所定
の過熱度を維持するように、絞り流路14の開度を調整
して冷媒流量を調整する。つまり、膨張弁42は、外部
均圧式の膨張弁として、冷媒流量の調整を行う。After a predetermined period of time has elapsed after the solenoid valves 6 and 7 have been opened, the pressure in the pressure equalizing chamber 112 of the diaphragm 11 becomes the refrigerant pressure P2 itself. , The valve element 13 of the expansion valve 42 is displaced to a position corresponding to the balance with the pressure P2 + F3. Thereby, the valve element 13 of the expansion valve 42 adjusts the opening degree of the throttle flow path 14 to adjust the flow rate of the refrigerant so that the evaporator outlet refrigerant maintains the predetermined degree of superheat. That is, the expansion valve 42 adjusts the refrigerant flow rate as an external pressure equalizing type expansion valve.
【0031】次に、本発明者が、電磁弁6、7の開弁時
に発生する圧力変動について実験、検討した結果を、図
2(a)および(b)に示すグラフに基づいて説明す
る。まず、冷凍サイクルとして、図1に示すもの(本発
明品)と、図1の冷凍サイクルから電磁弁7を廃止した
もの(従来品)とを用意した。そして、気温が30℃
で、相対湿度が50%の雰囲気に置かれた実車におい
て、圧縮機1の回転数を800r/mとし、本発明品に
ついては電磁弁6、7を閉弁した状態で、また、従来品
については電磁弁6を閉弁した状態で、冷凍サイクルを
作動させる。そして、蒸発器51の高圧側圧力が2.0
MPa、低圧側圧力が0.3MPaとなるように、蒸発
器51および凝縮器2への送風量(熱交換量)を調整
し、この状態で30分程度運転させた後、電磁弁6、7
を開弁した。Next, the results of an experiment and a study by the present inventor on pressure fluctuations generated when the solenoid valves 6 and 7 are opened will be described based on the graphs shown in FIGS. 2 (a) and 2 (b). First, as the refrigeration cycle, one shown in FIG. 1 (the present invention) and one in which the solenoid valve 7 was eliminated from the refrigeration cycle shown in FIG. 1 (conventional product) were prepared. And the temperature is 30 ° C
Then, in an actual vehicle placed in an atmosphere having a relative humidity of 50%, the rotation speed of the compressor 1 was set to 800 r / m, the solenoid valve 6, 7 was closed for the product of the present invention, and Operates the refrigeration cycle with the solenoid valve 6 closed. And the high pressure side pressure of the evaporator 51 is 2.0
After adjusting the air flow (heat exchange amount) to the evaporator 51 and the condenser 2 so that the pressure on the low pressure side becomes 0.3 MPa, and after operating for about 30 minutes in this state, the solenoid valves 6 and 7 are operated.
Was opened.
【0032】この電磁弁6、7開弁時の膨張弁42直前
位置における圧力変動を測定した結果が、図2(a)
(本発明品)および図2(b)(従来品)のグラフに示
してある。なお、このグラフの横軸は、電磁弁6、7を
開弁したときを0としたときの時間(秒)で、縦軸は、
膨張弁42直前上流位置における圧力である。このグラ
フによれば、従来品では、膨張弁42直前上流位置にお
ける圧力変動が約1MPaであるのに対して、本発明品
では、この圧力変動は約0.4MPaであることが確認
された。この結果、本発明によれば、電磁弁6部位にお
ける圧力変動が膨張弁42の上流側に伝播することを効
果的に抑制でき、この圧力変動による騒音を効果的に抑
制できることがわかった。FIG. 2 (a) shows the result of measuring the pressure fluctuation immediately before the expansion valve 42 when the solenoid valves 6 and 7 are opened.
(Product of the present invention) and FIG. 2B (conventional product). Note that the horizontal axis of this graph is the time (seconds) when the solenoid valves 6 and 7 are opened as 0, and the vertical axis is
This is the pressure at the upstream position immediately before the expansion valve 42. According to this graph, it was confirmed that the pressure fluctuation at the upstream position immediately before the expansion valve 42 was about 1 MPa in the conventional product, whereas the pressure fluctuation was about 0.4 MPa in the product of the present invention. As a result, it has been found that according to the present invention, it is possible to effectively suppress the pressure fluctuation at the electromagnetic valve 6 from propagating to the upstream side of the expansion valve 42, and it is possible to effectively suppress the noise due to the pressure fluctuation.
【0033】なお、再び後部空調ユニットRを作動させ
ないようにする場合は、電磁弁6、7への通電を同時に
停止して、電磁弁6、7を同時に閉弁する。 (第2の実施形態)上記第1の実施形態では、外均管1
8により、均圧室112と、蒸発器52出口部とを連通
し、均圧室112に、蒸発器出口部における蒸発器圧力
を導入していたが、図3に示す本実施形態は、内均管1
8により、均圧室112と、蒸発器52入口部(具体的
には、電磁弁6下流と蒸発器52上流との間の冷媒流
路)とを連通し、均圧室112に、蒸発器52入口部に
おける蒸発器圧力を導入している。つまり、膨張弁4
1、42が、内部均圧式の膨張弁として、冷媒流量の調
整を行う。本実施形態の作動は、上記第1の実施形態と
同じであり、同様の効果が得られる。なお、本実施形態
における膨張弁の具体的構造については、特開平7−1
51422号公報に説明してあるので、ここでの説明は
省略する。When the rear air conditioning unit R is not operated again, the power supply to the solenoid valves 6 and 7 is stopped at the same time, and the solenoid valves 6 and 7 are closed at the same time. (Second Embodiment) In the first embodiment, the outer equalizing pipe 1 is used.
8, the pressure equalizing chamber 112 communicates with the outlet of the evaporator 52, and the evaporator pressure at the evaporator outlet is introduced into the pressure equalizing chamber 112. However, the present embodiment shown in FIG. Equalizing pipe 1
8, the pressure equalizing chamber 112 communicates with the inlet of the evaporator 52 (specifically, the refrigerant flow path between the downstream of the solenoid valve 6 and the upstream of the evaporator 52). Evaporator pressure at 52 inlet is introduced. That is, the expansion valve 4
Reference numerals 1 and 42 adjust the flow rate of the refrigerant as internal pressure equalizing type expansion valves. The operation of this embodiment is the same as that of the first embodiment, and the same effects can be obtained. The specific structure of the expansion valve according to the present embodiment is described in
Since it is described in Japanese Patent Application Laid-Open No. 51422, the description here is omitted.
【0034】(他の実施形態)上記実施形態では、電磁
弁6と電磁弁7とを同時に開弁していたが、電磁弁6を
微少時間(例えば1〜2秒)先に開弁してもよい。これ
によっても、上記実施形態と同様の効果が得られる。た
だし、電磁弁7を先に開弁した後電磁弁6を開弁する
と、この間に膨張弁42が開弁する恐れがあり、上記従
来技術の有する問題が発生する恐れがあるため、電磁弁
6、7を同時に開弁するか、若しくは、電磁弁6を微少
時間先に開弁するのがよい。(Other Embodiments) In the above embodiment, the solenoid valve 6 and the solenoid valve 7 are simultaneously opened. However, the solenoid valve 6 is opened earlier for a very short time (for example, 1 to 2 seconds). Is also good. This also provides the same effects as the above embodiment. However, if the solenoid valve 6 is opened after the solenoid valve 7 is opened first, the expansion valve 42 may be opened during this time, and the problem of the prior art may occur. , 7 may be opened simultaneously, or the solenoid valve 6 may be opened a short time earlier.
【0035】また、上記実施形態では、電磁弁6と電磁
弁7とを同時に閉弁していたが、いずれか一方を微少時
間(例えば1〜2秒)先に閉弁してもよい。これによっ
ても、上記実施形態と同様の効果が得られる。ただし、
電磁弁6を先に閉弁した後、微少時間よりも長く経過し
てから(例えば10秒)電磁弁7を閉弁すると、この間
に、電磁弁6下流側が、他方の蒸発器への冷媒循環(圧
縮機の運転)により低圧となり、膨張弁が開弁する恐れ
があるため、電磁弁6、7を同時に閉弁するか、若しく
は、電磁弁7を微少時間先に閉弁するのがよい。In the above embodiment, the solenoid valve 6 and the solenoid valve 7 are closed at the same time. However, one of them may be closed earlier for a very short time (for example, 1 to 2 seconds). This also provides the same effects as the above embodiment. However,
After closing the solenoid valve 6 first and then closing the solenoid valve 7 after a lapse of more than a minute time (for example, 10 seconds), during this time, the downstream side of the solenoid valve 6 circulates refrigerant to the other evaporator. Since the pressure becomes low due to (compressor operation) and the expansion valve may open, it is preferable to close the solenoid valves 6 and 7 at the same time or close the solenoid valve 7 for a short time.
【0036】ここで、電磁弁7を閉弁した後、微少時間
よりも長く経過してから(例えば60秒)電磁弁6を閉
弁すると、この間に、受液器3からの液体冷媒が、膨張
弁42の絞り流路14と弁体13との隙間を経て、電磁
弁7の上流側、つまり、蒸発器52内に溜まる恐れがあ
り、次の電磁弁7の開弁時に、この電磁弁7部位に急激
な圧力変動が生じ、この変動が蒸発器52内の液体冷媒
を経て蒸発器52を振動させ、騒音が発生する恐れがあ
るので、電磁弁7を閉弁するとき(同時、または、微少
時間前後)に、電磁弁6を閉弁する必要がある。Here, when the solenoid valve 6 is closed after a lapse of a very short time (for example, 60 seconds) after the solenoid valve 7 is closed, the liquid refrigerant from the receiver 3 is discharged during this time. There is a possibility that the electromagnetic valve 7 may accumulate in the upstream side of the electromagnetic valve 7, that is, in the evaporator 52, through a gap between the throttle passage 14 of the expansion valve 42 and the valve body 13. When the electromagnetic valve 7 is closed (at the same time or at the same time, the pressure fluctuates at the seven positions, and this fluctuation causes the evaporator 52 to vibrate through the liquid refrigerant in the evaporator 52 and may generate noise. It is necessary to close the solenoid valve 6 before and after a very short time).
【0037】また、上記実施形態では、後部空調ユニッ
トRのみに電磁弁6、7(請求項でいう第1、第2電磁
弁)を設けていたが、前部空調ユニットFにも、第1、
第2電磁弁を設けてもよい。そして、後部空調ユニット
Rのみ作動させ、前部空調ユニットFを作動させないよ
うにしてもよい。また、上記実施形態では、2つの膨張
弁41、42および蒸発器51、52を有する冷凍サイ
クルに適用したが、3つ以上の膨張弁および蒸発器を有
する冷凍サイクルに適用してもよい。In the above embodiment, the solenoid valves 6 and 7 (first and second solenoid valves in the claims) are provided only in the rear air conditioning unit R. However, the first air conditioning unit F is also provided in the front air conditioning unit F. ,
A second solenoid valve may be provided. Then, only the rear air conditioning unit R may be operated, and the front air conditioning unit F may not be operated. In the above embodiment, the present invention is applied to a refrigeration cycle having two expansion valves 41 and 42 and evaporators 51 and 52, but may be applied to a refrigeration cycle having three or more expansion valves and evaporators.
【0038】また、上記実施形態では、蒸発器出口冷媒
温度に対応した飽和圧力P1、および、蒸発器51、5
2の冷媒出口部の蒸発器圧力P2に基づいて、ダイヤフ
ラム11を変動させることにて、膨張弁42の開度を調
整していたが、温度センサにて上記蒸発器出口冷媒温度
を検出し、圧力検出手段にて、上記蒸発器圧力P2を検
出し、この検出結果に基づいて蒸発器の冷媒出口部の過
熱度を算出し、この過熱度を所定値に維持するように、
膨張弁の開度を電気的に(例えばステップモータやリニ
アソレノイド等により)調整してもよい。In the above embodiment, the saturation pressure P1 corresponding to the evaporator outlet refrigerant temperature and the evaporators 51, 5
The opening degree of the expansion valve 42 was adjusted by changing the diaphragm 11 based on the evaporator pressure P2 at the refrigerant outlet of the second evaporator. However, the temperature sensor detects the evaporator outlet refrigerant temperature, The pressure detector detects the evaporator pressure P2, calculates the degree of superheat at the refrigerant outlet of the evaporator based on the detection result, and maintains the degree of superheat at a predetermined value.
The opening degree of the expansion valve may be electrically adjusted (for example, by a step motor or a linear solenoid).
【0039】また、本発明は、車両用空調装置に適用さ
れる冷凍サイクルに限らず、一般建造物内に装備した空
調装置や冷蔵装置に兼用される冷凍サイクル等に適用し
てもよい。なお、2つの冷蔵ユニットを有する冷凍サイ
クルにおいて、両方のユニットに本発明を適用してもよ
いし、いずれか一方のユニットに、本発明を適用しても
よい。Further, the present invention is not limited to a refrigeration cycle applied to a vehicle air conditioner, but may be applied to a refrigeration cycle used also as an air conditioner or a refrigerator installed in a general building. In a refrigeration cycle having two refrigerating units, the present invention may be applied to both units, or the present invention may be applied to either one of the units.
【図1】本発明の第1の実施形態に係わる模式的な冷凍
サイクル図である。FIG. 1 is a schematic refrigeration cycle diagram according to a first embodiment of the present invention.
【図2】(a)は第1の実施形態の冷凍サイクルにおけ
る圧力変動を示すグラフ、(b)は従来の冷凍サイクル
における圧力変動を示すグラフである。FIG. 2A is a graph showing pressure fluctuations in the refrigeration cycle of the first embodiment, and FIG. 2B is a graph showing pressure fluctuations in a conventional refrigeration cycle.
【図3】本発明の第2の実施形態に係わる模式的な冷凍
サイクル図である。FIG. 3 is a schematic refrigeration cycle diagram according to a second embodiment of the present invention.
1…圧縮機、2…凝縮器、41、42…膨張弁(第1、
第2膨張弁)、51、52…蒸発器(第1、第2蒸発
器)、53…合流部、6、7…電磁弁(第1、第2膨張
弁)、P1…蒸発器圧力、P2…飽和圧力。DESCRIPTION OF SYMBOLS 1 ... Compressor, 2 ... Condenser, 41,42 ... Expansion valve (1st,
Evaporator (first and second evaporators), 53, confluence section, 6, 7 solenoid valve (first and second expansion valves), P1 evaporator pressure, P2 ... Saturation pressure.
Claims (2)
と、 この圧縮機(1)から吐出されたガス冷媒を凝縮させる
凝縮器(2)と、 この凝縮器(2)で凝縮した液冷媒を減圧膨張させる第
1膨張弁(41)と、 この第1膨張弁(41)と並列に設けられ、前記凝縮器
(2)で凝縮した液冷媒を減圧膨張させる第2膨張弁
(42)と、 前記第1膨張弁(41)にて減圧膨張した冷媒を蒸発さ
せる第1蒸発器(51)と、 この第1蒸発器(51)と並列に設けられ、前記第2膨
張弁(42)にて減圧膨張した冷媒を蒸発させる第2蒸
発器(52)と、 前記第1蒸発器(51)および前記第2蒸発器(52)
で蒸発させた冷媒を合流させる合流部(53)とを備
え、 この合流部(53)からの冷媒を前記圧縮機(1)に吸
い込ませる冷凍サイクルにおいて、 前記第2膨張弁(42)下流と前記第2蒸発器(52)
上流との間の冷媒流路を開閉する第1電磁弁(6)と、 前記第2蒸発器(52)下流と前記合流部(53)上流
との間の冷媒流路を開閉する第2電磁弁(7)とを備
え、 前記第1電磁弁(6)下流の蒸発器圧力(P2)、およ
び、前記第2電磁弁(7)上流の蒸発器出口冷媒温度に
基づいて、前記第2膨張弁(42)の弁開度を調整し、 前記第2蒸発器(52)への冷媒の供給を遮断するとき
に、前記第1電磁弁(6)および前記第2電磁弁(7)
を閉弁し、前記第2蒸発器(52)に冷媒を供給すると
きに、前記第1電磁弁(6)および前記第2電磁弁
(7)を開弁することを特徴とする冷凍サイクル。A compressor for compressing and discharging a refrigerant (1)
A condenser (2) for condensing the gas refrigerant discharged from the compressor (1); a first expansion valve (41) for decompressing and expanding the liquid refrigerant condensed in the condenser (2); A second expansion valve (42) provided in parallel with the first expansion valve (41) and configured to decompress and expand the liquid refrigerant condensed by the condenser (2); and a refrigerant decompressed and expanded by the first expansion valve (41). And a second evaporator (52) provided in parallel with the first evaporator (51) and evaporating the refrigerant decompressed and expanded by the second expansion valve (42). And the first evaporator (51) and the second evaporator (52).
A merging section (53) for merging the refrigerant evaporated in the step (a). In a refrigeration cycle in which the refrigerant from the merging section (53) is sucked into the compressor (1), the refrigerant flows downstream of the second expansion valve (42). The second evaporator (52)
A first electromagnetic valve (6) for opening and closing a refrigerant flow path between the upstream and an upstream; and a second electromagnetic valve for opening and closing a refrigerant flow path between the downstream of the second evaporator (52) and the upstream of the junction (53). A valve (7), the second expansion based on the evaporator pressure (P2) downstream of the first solenoid valve (6) and the evaporator outlet refrigerant temperature upstream of the second solenoid valve (7). The first electromagnetic valve (6) and the second electromagnetic valve (7) when adjusting the valve opening of the valve (42) to shut off the supply of the refrigerant to the second evaporator (52).
The refrigeration cycle is characterized in that the first solenoid valve (6) and the second solenoid valve (7) are opened when refrigerant is supplied to the second evaporator (52).
前記第1蒸発器(51)にて車室内前側を冷房し、前記
第2蒸発器(52)にて車室内後側を冷房することを特
徴とする車両用空調装置。2. A refrigeration cycle according to claim 1, further comprising:
An air conditioner for a vehicle, wherein the first evaporator (51) cools the front side of the cabin and the second evaporator (52) cools the rear side of the cabin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9024152A JPH10220888A (en) | 1997-02-06 | 1997-02-06 | Refrigerating cycle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9024152A JPH10220888A (en) | 1997-02-06 | 1997-02-06 | Refrigerating cycle |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10220888A true JPH10220888A (en) | 1998-08-21 |
Family
ID=12130377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9024152A Pending JPH10220888A (en) | 1997-02-06 | 1997-02-06 | Refrigerating cycle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10220888A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7178362B2 (en) * | 2005-01-24 | 2007-02-20 | Tecumseh Products Cormpany | Expansion device arrangement for vapor compression system |
CN106322760A (en) * | 2016-09-22 | 2017-01-11 | 杭州佳力斯韦姆新能源科技有限公司 | Air source carbon dioxide heat pump system carrying out combined type throttling by using double capillary tubes |
WO2018025614A1 (en) * | 2016-08-04 | 2018-02-08 | ダイキン工業株式会社 | Refrigeration device |
-
1997
- 1997-02-06 JP JP9024152A patent/JPH10220888A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7178362B2 (en) * | 2005-01-24 | 2007-02-20 | Tecumseh Products Cormpany | Expansion device arrangement for vapor compression system |
WO2018025614A1 (en) * | 2016-08-04 | 2018-02-08 | ダイキン工業株式会社 | Refrigeration device |
JP2018021723A (en) * | 2016-08-04 | 2018-02-08 | ダイキン工業株式会社 | Refrigeration equipment |
CN109564034A (en) * | 2016-08-04 | 2019-04-02 | 大金工业株式会社 | Refrigerating plant |
CN109564034B (en) * | 2016-08-04 | 2020-04-07 | 大金工业株式会社 | Refrigerating device |
CN106322760A (en) * | 2016-09-22 | 2017-01-11 | 杭州佳力斯韦姆新能源科技有限公司 | Air source carbon dioxide heat pump system carrying out combined type throttling by using double capillary tubes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6834514B2 (en) | Ejector cycle | |
JP6304407B2 (en) | Integrated valve and heat pump cycle | |
US20190111764A1 (en) | Refigeration cycle device | |
JP2007163074A (en) | Refrigeration cycle | |
WO2018088034A1 (en) | Refrigeration cycle device | |
JP4415835B2 (en) | Refrigeration cycle equipment for vehicles | |
JP6070418B2 (en) | Heat pump cycle | |
JP2000283577A (en) | Refrigeration cycle for refrigerating plant | |
JP5991277B2 (en) | Integrated valve for heat pump | |
JP3257109B2 (en) | Vehicle refrigeration cycle control device | |
JPH10220888A (en) | Refrigerating cycle | |
JP4259092B2 (en) | Ejector cycle, air conditioner, and vehicle air conditioner | |
JP2005262958A (en) | Vehicular air-conditioner | |
JP2020029983A (en) | Refrigeration cycle device | |
JPH06174319A (en) | Air conditioner for vehicle | |
JP3924935B2 (en) | Thermal expansion valve | |
JP2000283606A (en) | Refrigeration cycled apparatus | |
JP2000280733A (en) | Automobile air conditioner | |
JPH05231731A (en) | Refrigeration cycle | |
WO2019155805A1 (en) | Ejector refrigeration cycle, and flow rate adjustment valve | |
JP2004243936A (en) | Air conditioner for vehicle | |
JP2000055484A (en) | Air conditioner | |
JP3500848B2 (en) | Vehicle air conditioner | |
JP2005201484A (en) | Refrigerating cycle | |
JP2000111175A (en) | Refrigerating cycle apparatus |