[go: up one dir, main page]

JPH10219462A - Oxide deposition method - Google Patents

Oxide deposition method

Info

Publication number
JPH10219462A
JPH10219462A JP2185097A JP2185097A JPH10219462A JP H10219462 A JPH10219462 A JP H10219462A JP 2185097 A JP2185097 A JP 2185097A JP 2185097 A JP2185097 A JP 2185097A JP H10219462 A JPH10219462 A JP H10219462A
Authority
JP
Japan
Prior art keywords
sol
thin film
oxide
high temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2185097A
Other languages
Japanese (ja)
Inventor
Tadaaki Kuno
忠昭 久野
Satoru Miyashita
悟 宮下
Hiroshi Aoyama
拓 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2185097A priority Critical patent/JPH10219462A/en
Publication of JPH10219462A publication Critical patent/JPH10219462A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)

Abstract

(57)【要約】 【課題】 従来のゾルゲル法では有機残基等が薄膜中に
残存したり、酸化膜中の酸素の存在比が求める結晶系に
対し低くなってしまったり、厚膜化が困難なこと等が課
題であった。 【解決手段】 有機金属化合物を原料とするゾルを基板
に塗布後乾燥し、これに紫外線を照射してから高温に加
熱する。必要に応じ塗布、乾燥、紫外線照射、加熱工程
を繰り返す。または積層してから一括高温加熱する。ま
た工程中の雰囲気を必要に応じ制御する。これらの酸化
物をアニールすることで、酸化物結晶薄膜とする。
(57) [Summary] [PROBLEMS] In the conventional sol-gel method, organic residues or the like remain in a thin film, the abundance ratio of oxygen in an oxide film becomes lower than that of a crystal system to be obtained, or a thick film is formed. Difficulties were issues. SOLUTION: A sol using an organometallic compound as a raw material is applied to a substrate, dried, irradiated with ultraviolet rays, and then heated to a high temperature. The coating, drying, ultraviolet irradiation, and heating steps are repeated as necessary. Alternatively, they are laminated and then heated at a high temperature. The atmosphere during the process is controlled as needed. By annealing these oxides, an oxide crystal thin film is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゾルゲル法を用い
て基板上に薄膜を形成する、酸化物の成膜方法に関す
る。酸化物、特に高い結晶性を有する酸化物薄膜を用い
た電子デバイスに利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thin film on a substrate by using a sol-gel method. The present invention can be used for an electronic device using an oxide, particularly an oxide thin film having high crystallinity.

【0002】[0002]

【従来の技術】ゾルゲル法は組成制御性に優れており、
再現性良く面内で均質な薄膜を成膜できることが特徴で
ある。ゾルゲル法を用いた酸化物の成膜方法としては、
ゾルを塗布した後これを乾燥、高温加熱し、必要に応じ
以上の工程を繰り返し積層する方法が知られている。ク
ラックの発生を防ぐために、ゾル中に溶媒可溶性の高分
子を添加したり、ゾルの安定性を確保するために、キレ
ート剤を添加する方法が取られている。
2. Description of the Related Art The sol-gel method has excellent composition controllability,
The feature is that a uniform thin film can be formed in a plane with good reproducibility. As a method for forming an oxide film using a sol-gel method,
A method is known in which a sol is applied, dried and heated at a high temperature, and the above steps are repeated as necessary. In order to prevent the occurrence of cracks, a method of adding a solvent-soluble polymer to the sol or a method of adding a chelating agent to secure the stability of the sol has been adopted.

【0003】一方、紫外線照射を用いた成膜方法として
は、室温あるいは200℃以下の低温で酸化物を得よう
とする方式が知られている。
On the other hand, as a film forming method using ultraviolet irradiation, a method of obtaining an oxide at room temperature or a low temperature of 200 ° C. or less is known.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来のゾルゲ
ル法では有機残基が薄膜中に残存したり、酸化膜中の酸
素の存在比が求める結晶系に対し低くなってしまうとい
う課題があった。また、厚膜化が困難な上、有機残基の
存在のため結晶化率が高くならないという、プロセス上
の問題があった。
However, the conventional sol-gel method has a problem that organic residues remain in the thin film or that the abundance ratio of oxygen in the oxide film is lower than that of the desired crystal system. . Further, there is a problem in the process that it is difficult to increase the film thickness and the crystallization ratio does not increase due to the presence of organic residues.

【0005】一方紫外線照射を用いる低温での成膜方法
では、緻密化が不充分で残存水酸基も多く、応用が極め
て限られてしまうという課題があった。特に電子デバイ
ス応用には、用いることが困難であった。
On the other hand, the method of forming a film at a low temperature using ultraviolet irradiation has a problem that the densification is insufficient, the residual hydroxyl groups are large, and the application is extremely limited. In particular, it has been difficult to use it for electronic device applications.

【0006】そこで本発明はこのような問題点を解決す
るもので、その目的とするところは、有機残基の無い酸
化物薄膜を生産性良く、容易に成膜する方法を提供する
ところにある。厚膜化にも対応でき、結晶性が高く、酸
素欠損もない良好な酸化物薄膜が得られる。
Accordingly, the present invention is to solve such a problem, and an object of the present invention is to provide a method for easily forming an oxide thin film having no organic residue with good productivity. . A good oxide thin film which can be made thicker, has high crystallinity, and has no oxygen deficiency can be obtained.

【0007】[0007]

【課題を解決するための手段】本発明の酸化物成膜方法
は、有機金属化合物を原料とするゾルを基板に塗布し、
ゲル化乾燥させた後、高温に加熱して酸化物薄膜とする
ゾルゲル法において、乾燥後に紫外線を照射してから高
温に加熱することを特徴とする。また、塗布と乾燥と紫
外線照射の工程を繰り返し、積層させてから高温に加熱
すること、あるいは高温に加熱するまでの工程を繰り返
し、積層させて厚い膜を得ることを特徴とする。更に工
程中の雰囲気を必要に応じ制御することを特徴とする。
これらの酸化物をアニールすることで、酸化物結晶薄膜
を得ることを特徴とする。
According to the method for forming an oxide film of the present invention, a sol made of an organometallic compound is applied to a substrate,
The sol-gel method in which a gel is dried and then heated to a high temperature to form an oxide thin film is characterized by irradiating ultraviolet rays after drying and then heating to a high temperature. Further, it is characterized in that the steps of coating, drying and ultraviolet irradiation are repeated to form a thick film by laminating and heating to a high temperature after laminating, or by repeating the steps from heating to high temperature. Further, it is characterized in that the atmosphere during the process is controlled as required.
An oxide crystal thin film is obtained by annealing these oxides.

【0008】[0008]

【発明の実施の形態】上述の紫外線照射により、加熱工
程以前に対象試料内に存在する有機化合物の化学結合を
切ることができる。そのため、紫外線照射で有機物が除
去できたり、その後の加熱により容易に有機分解物を除
去することが可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By the above-mentioned irradiation with ultraviolet rays, it is possible to cut chemical bonds of organic compounds present in a target sample before a heating step. Therefore, organic substances can be removed by irradiation with ultraviolet rays, or organic decomposition products can be easily removed by subsequent heating.

【0009】以下実施例に基づき、本発明を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to examples.

【0010】(実施例1)10枚の白金板(1cm×1
cm)を用意し、これらを以下の実験に基板として使用
した。
(Example 1) Ten platinum plates (1 cm x 1)
cm) were prepared and used as substrates for the following experiments.

【0011】エチルアルコールに10重量部のテトラエ
トキシシランを溶解させたオルガノゾルを用意し、これ
を上記10枚の白金基板上に各々同一条件でスピンコー
ト法で塗布した後、200℃オーブンで10分間乾燥し
た。これら10枚の試料の内5枚については、誘電体バ
リア放電Xe2エキシマランプ(出力200W)により
波長172nm(半値幅14nm)の紫外線照射を2分
間行った(試料1〜5)。一方、残りの5枚については
従来通り紫外線照射は行っていない(比較例1〜5)。
試料1〜5及び比較例1〜5は更に400℃オーブンに
て30分間大気中にて加熱した後室温まで冷却すること
により、白金基板上に二酸化珪素膜を得た。
An organosol prepared by dissolving 10 parts by weight of tetraethoxysilane in ethyl alcohol is prepared, applied to each of the ten platinum substrates by spin coating under the same conditions, and then heated in a 200 ° C. oven for 10 minutes. Dried. Five of these 10 samples were irradiated with ultraviolet light of 172 nm (half-width 14 nm) for 2 minutes by a dielectric barrier discharge Xe2 excimer lamp (output 200 W) (samples 1 to 5). On the other hand, the remaining five sheets were not irradiated with ultraviolet rays as before (Comparative Examples 1 to 5).
Samples 1 to 5 and Comparative Examples 1 to 5 were further heated in a 400 ° C. oven for 30 minutes in the atmosphere, and then cooled to room temperature to obtain a silicon dioxide film on a platinum substrate.

【0012】得られた二酸化珪素薄膜中の残留水酸基
(OH基)の有無を調べるため、OH伸縮振動による波
数3600cm-1の赤外吸収スペクトルの測定を行っ
た。結果を表1に示す。表1より、乾燥工程と加熱工程
の間で紫外線照射を行ったもの(試料1〜5)は水酸基
の存在が認められず、良好な酸化物が得られていた。し
かしながら、紫外線照射を行わない従来法では、明らか
に残留水酸基が不純物として存在することが判明した
(比較例1〜5)。
In order to examine the presence or absence of residual hydroxyl groups (OH groups) in the obtained silicon dioxide thin film, an infrared absorption spectrum with a wave number of 3600 cm -1 due to OH stretching vibration was measured. Table 1 shows the results. As shown in Table 1, in the case where the ultraviolet irradiation was performed between the drying step and the heating step (Samples 1 to 5), the presence of hydroxyl groups was not recognized, and a good oxide was obtained. However, in the conventional method in which the ultraviolet irradiation was not performed, it was clearly found that the residual hydroxyl groups were present as impurities (Comparative Examples 1 to 5).

【0013】本実施例より、乾燥工程と加熱工程との間
の紫外線照射が、良好な酸化物膜を得る上で有効である
ことが明らかとなった。ここでは、紫外線源としてXe
2エキシマランプを用いた例を挙げたが、紫外線源とし
てAr、Kr等他のエキシマランプをはじめ、低圧ある
いは高圧水銀ランプやハロゲンランプ等、広く一般の紫
外線源による照射効果も調べたところ、各々最適な条件
で本実施例と同様な効果が確認された。また、他の酸化
物についても各々最適な紫外線源と照射条件を選ぶこと
により、本実施例と同様な効果が確認された。
From this example, it has been clarified that the irradiation of ultraviolet rays between the drying step and the heating step is effective in obtaining a good oxide film. Here, Xe is used as the ultraviolet light source.
2 An example using an excimer lamp was given, but the irradiation effects of widely used ultraviolet light sources, such as low-pressure or high-pressure mercury lamps and halogen lamps, as well as other excimer lamps such as Ar and Kr as ultraviolet light sources, were investigated. An effect similar to that of the present example was confirmed under optimal conditions. The same effect as in the present example was also confirmed for other oxides by selecting optimum ultraviolet light sources and irradiation conditions.

【0014】[0014]

【表1】 [Table 1]

【0015】(実施例2)8枚の白金板(1cm×1c
m)を用意し、これらを以下の実験に基板として使用し
た。
Example 2 Eight platinum plates (1 cm × 1c)
m) were prepared and used as substrates in the following experiments.

【0016】エチルアルコールに10重量部のテトラエ
トキシシランを溶解させたオルガノゾルを用意し、これ
を上記8枚の白金基板上に各々同一条件でスピンコート
法で塗布した後、200℃オーブンで10分間乾燥し
た。これら8枚の試料の内7枚については、各々異なる
光源を用いて紫外線照射を所定の条件下で行った(試料
1〜7)。一方、残りの1枚については従来通り紫外線
照射は行っていない(比較例1)。試料1〜7及び比較
例1は更に400℃オーブンにて30分間大気中にて加
熱した後室温まで冷却することにより、白金基板上に二
酸化珪素膜を得た。
An organosol prepared by dissolving 10 parts by weight of tetraethoxysilane in ethyl alcohol is prepared, applied to each of the eight platinum substrates by spin coating under the same conditions, and then placed in a 200 ° C. oven for 10 minutes. Dried. For seven of these eight samples, ultraviolet irradiation was performed under predetermined conditions using different light sources (samples 1 to 7). On the other hand, the remaining one was not irradiated with ultraviolet rays as before (Comparative Example 1). Samples 1 to 7 and Comparative Example 1 were further heated in a 400 ° C. oven for 30 minutes in the atmosphere, and then cooled to room temperature to obtain a silicon dioxide film on a platinum substrate.

【0017】得られた二酸化珪素薄膜中の残留水酸基
(OH基)の有無を調べるため、OH伸縮振動による波
数3600cm-1の赤外吸収スペクトルの測定を行っ
た。結果を表2に示す。表2より、乾燥工程と加熱工程
の間で紫外線照射を行ったもの(試料1〜7)は、その
照射条件を適切に選ぶと水酸基の存在が認められなかっ
た。しかしながら、良好な酸化物膜を得るには、光源に
よって紫外線照射条件あるいはそのマージンに差異があ
ることがわかる(表2)。
In order to examine the presence or absence of residual hydroxyl groups (OH groups) in the obtained silicon dioxide thin film, an infrared absorption spectrum at a wave number of 3600 cm -1 due to OH stretching vibration was measured. Table 2 shows the results. From Table 2, it was found that, when ultraviolet irradiation was performed between the drying step and the heating step (samples 1 to 7), the presence of hydroxyl groups was not recognized when the irradiation conditions were appropriately selected. However, in order to obtain a good oxide film, it can be seen that there are differences in the ultraviolet irradiation conditions or margins depending on the light source (Table 2).

【0018】紫外線の光源がエキシマランプ(Xe2、
Kr2、Ar2)、水銀ランプ、ハロゲンランプ、メタ
ルハライドランプのいずれかの場合(各々試料1、2、
3、4、5、6に対応)は良好な酸化物膜を得るのに最
適な照射時間のマージンが比較的大きい。また広い面積
に渡って、試料を設置する場所依存性が比較的少ないと
いう結果も得た。つまり、大面積均一処理が可能であ
る。中でもXe2エキシマランプが照射時間が短く、か
つ最適時間マージンも大きく最も良好な結果を得た(試
料1)。エキシマレーザを用いたもの(試料7)は照射
時間のマージンが少なく、若干操作性や制御性に劣る。
さらに、試料設置面におけるレーザのエネルギー密度の
ばらつきもあり大面積均一処理には不向きである。特に
レーザの場合は他の光源に比べ照射エネルギー密度が高
いので、試料に与えるダメージに注意を要する。一方紫
外線照射を行わない従来法では、明らかに残留水酸基が
不純物として存在することが判明した(比較例1)。
The ultraviolet light source is an excimer lamp (Xe 2,
Kr2, Ar2), mercury lamp, halogen lamp, metal halide lamp (samples 1, 2,
(Corresponding to 3, 4, 5, and 6) have a relatively large margin of irradiation time optimal for obtaining a good oxide film. In addition, over a wide area, the result that the dependence on the place where the sample is placed was relatively small was also obtained. That is, large area uniform processing can be performed. Above all, the Xe2 excimer lamp has the shortest irradiation time, has a large optimum time margin, and has obtained the best results (Sample 1). The one using an excimer laser (sample 7) has a small margin of irradiation time and is slightly inferior in operability and controllability.
Furthermore, there is a variation in the energy density of the laser on the sample setting surface, which is not suitable for large area uniform processing. In particular, in the case of a laser, the irradiation energy density is higher than that of other light sources, and therefore, attention must be paid to damage to the sample. On the other hand, in the conventional method in which the ultraviolet irradiation was not performed, it was clearly found that the residual hydroxyl group was present as an impurity (Comparative Example 1).

【0019】以上より、乾燥工程と加熱工程の間で紫外
線照射を行う場合、その光源としてエキシマランプ、水
銀ランプ、ハロゲンランプ、メタルハライドランプのい
ずれかが適しており、中でもXe2エキシマランプを用
いることが望ましいことがわかった。本実施例では対象
として二酸化珪素膜の場合を示したが、他の酸化物でも
同様のプロセスで紫外線源に関する実験を試みたとこ
ろ、本実施例と同様の結果が得られた。
As described above, when ultraviolet irradiation is performed between the drying step and the heating step, any of an excimer lamp, a mercury lamp, a halogen lamp, and a metal halide lamp is suitable as a light source, and among them, a Xe 2 excimer lamp may be used. It turned out to be desirable. In the present embodiment, the case of a silicon dioxide film was shown as a target, but an experiment on an ultraviolet light source was tried with another oxide in the same process, and the same result as in the present embodiment was obtained.

【0020】[0020]

【表2】 [Table 2]

【0021】(実施例3)ここでは、酸化物膜の厚みを
増加させる方法について実施例を示す。ゾルゲル法で厚
膜を得るためには、ゾルの塗布を複数回繰り返す。以下
に今回行った実験の詳細を示す。
(Embodiment 3) Here, an embodiment of a method for increasing the thickness of an oxide film will be described. In order to obtain a thick film by the sol-gel method, the application of the sol is repeated a plurality of times. The details of the experiment conducted this time are shown below.

【0022】2枚の白金板(1cm×1cm)を用意
し、これらを以下の実験に基板として使用した。
Two platinum plates (1 cm × 1 cm) were prepared and used as substrates for the following experiments.

【0023】エチルアルコールに10重量部のテトラエ
トキシシランを溶解させたオルガノゾルを用意し、これ
を上記2枚の白金基板上に各々同一条件でスピンコート
法で塗布した後、200℃オーブンで10分間乾燥し
た。これら2枚の試料の内1枚については、Xe2エキ
シマランプ(出力200W)により波長172nm(半
値幅14nm)の紫外線照射を2分間行った。更に前述
のゾルの塗布、乾燥及び紫外線照射の一連の工程を10
回繰り返した(試料1)。一方、残りの1枚については
従来通り紫外線照射は行なわずにゾルの塗布及び乾燥を
10回繰り返した(比較例1)。その後、試料1及び比
較例1は400℃オーブンにて30分間大気中にて加熱
した後室温まで冷却することにより、どちらも白金基板
上に厚み1μmの二酸化珪素膜を得た。両者について以
下の評価を行った。結果を表3にまとめる。
An organosol prepared by dissolving 10 parts by weight of tetraethoxysilane in ethyl alcohol was prepared, applied to each of the two platinum substrates by spin coating under the same conditions, and then placed in a 200 ° C. oven for 10 minutes. Dried. One of these two samples was irradiated with ultraviolet rays having a wavelength of 172 nm (half-width 14 nm) for 2 minutes using a Xe2 excimer lamp (output 200 W). Further, a series of steps of the above-mentioned application of sol, drying and irradiation of ultraviolet rays are performed in 10 steps.
(Sample 1). On the other hand, application and drying of the sol were repeated 10 times for the remaining one without performing ultraviolet irradiation as before (Comparative Example 1). Thereafter, Sample 1 and Comparative Example 1 were heated in a 400 ° C. oven for 30 minutes in the air, and then cooled to room temperature, whereby a silicon dioxide film having a thickness of 1 μm was formed on a platinum substrate. The following evaluation was performed for both. The results are summarized in Table 3.

【0024】得られた二酸化珪素薄膜を光学顕微鏡で観
察したところ、試料1は平坦な均一な表面であったのに
対し、比較例1は表面が粗く、全体にクラックの存在が
多数見られた。次に、膜中の残留水酸基(OH基)の有
無を調べるため、OH伸縮振動による波数3600cm
-1の赤外吸収スペクトルの測定を行った。表3より、乾
燥工程と加熱工程の間で紫外線照射を行ったもの(試料
1)は水酸基の存在が認められず、良好な酸化物が得ら
れていた。しかしながら、紫外線照射を行わない従来法
では、明らかに残留水酸基が不純物として存在すること
が判明した(比較例1)。更に、試料1、比較例1共各
々2枚の平板電極で挟持し、電極間に10Vの電位を印
加したところ、試料1では電流のリークが無く、得られ
た二酸化珪素膜が良好な絶縁性を示したのに対し、比較
例1では電流リークが認められた(表3)。
Observation of the obtained silicon dioxide thin film with an optical microscope showed that Sample 1 had a flat and uniform surface, whereas Comparative Example 1 had a rough surface and many cracks were found throughout. . Next, in order to examine the presence or absence of residual hydroxyl groups (OH groups) in the film, a wave number of 3600 cm due to OH stretching vibration was used.
The infrared absorption spectrum of -1 was measured. Table 3 shows that the sample irradiated with ultraviolet rays between the drying step and the heating step (Sample 1) did not show the presence of hydroxyl groups, and a good oxide was obtained. However, in the conventional method without irradiation with ultraviolet rays, it was clearly found that the residual hydroxyl groups were present as impurities (Comparative Example 1). Further, Sample 1 and Comparative Example 1 were each sandwiched between two plate electrodes, and a potential of 10 V was applied between the electrodes. In Sample 1, there was no current leakage, and the obtained silicon dioxide film had good insulating properties. However, in Comparative Example 1, current leakage was observed (Table 3).

【0025】本実施例より、乾燥工程と紫外線照射を繰
り返し行ってからこれを加熱することにより良好な酸化
物膜を所望の膜厚で得られることが明らかとなった。こ
こでは、紫外線源としてXe2エキシマランプを用いた
例を挙げたが、紫外線源としてAr、Kr等他のエキシ
マランプをはじめ、低圧あるいは高圧水銀ランプやハロ
ゲンランプ等、広く一般の紫外線源による照射効果も調
べたところ、各々最適な条件で本実施例と同様な効果が
確認された。また、同様な工程を他の酸化物でも試みた
ところ、本実施例と同様の結果を得た。
From this example, it was clarified that a good oxide film having a desired film thickness can be obtained by repeatedly performing the drying step and the irradiation of ultraviolet rays and then heating the same. Here, an example in which a Xe2 excimer lamp is used as the ultraviolet light source has been described. Also, the same effect as in the present example was confirmed under the optimum conditions. Further, when the same process was tried for other oxides, the same result as that of the present example was obtained.

【0026】[0026]

【表3】 [Table 3]

【0027】(実施例4)ここでは、酸化物膜の厚みを
増加させる方法について実施例を示す。ゾルゲル法で厚
膜を得るためには、ゾルの塗布を複数回繰り返す。以下
に今回行った実験の詳細を示す。
(Embodiment 4) An embodiment of a method for increasing the thickness of an oxide film will be described. In order to obtain a thick film by the sol-gel method, the application of the sol is repeated a plurality of times. The details of the experiment conducted this time are shown below.

【0028】2枚の白金板(1cm×1cm)を用意
し、これらを以下の実験に基板として使用した。
Two platinum plates (1 cm × 1 cm) were prepared and used as substrates for the following experiments.

【0029】エチルアルコールに10重量部のテトラエ
トキシシランを溶解させたオルガノゾルを用意し、これ
を上記2枚の白金基板上に各々同一条件でスピンコート
法で塗布した後、200℃オーブンで10分間乾燥し
た。これら2枚の試料の内1枚については、Xe2エキ
シマランプ(出力200W)により波長172nm(半
値幅14nm)の紫外線照射を2分間行った後400℃
オーブンにて30分間大気中にて加熱した。更に前述の
ゾルの塗布、乾燥、紫外線照射及び加熱の一連の工程を
10回繰り返した(試料1)。一方、残りの1枚につい
ては従来通り紫外線照射は行なわずにゾルの塗布、乾
燥、及び加熱の一連の工程を10回繰り返した(比較例
1)。以上の工程で、どちらも白金基板上に厚み1μm
の二酸化珪素膜を得た。両者について以下の評価を行っ
た。結果を表4にまとめる。
An organosol prepared by dissolving 10 parts by weight of tetraethoxysilane in ethyl alcohol was prepared, applied to each of the two platinum substrates by spin coating under the same conditions, and then placed in a 200 ° C. oven for 10 minutes. Dried. One of these two samples was subjected to ultraviolet irradiation at a wavelength of 172 nm (half-width 14 nm) for 2 minutes using a Xe2 excimer lamp (output 200 W), and then 400 ° C.
Heated in oven for 30 minutes in air. Further, a series of steps of the above-described application of the sol, drying, ultraviolet irradiation, and heating was repeated 10 times (sample 1). On the other hand, a series of sol application, drying, and heating steps was repeated 10 times for the remaining one without performing UV irradiation as before (Comparative Example 1). In the above steps, both are 1 μm thick on a platinum substrate.
Was obtained. The following evaluation was performed for both. The results are summarized in Table 4.

【0030】得られた二酸化珪素薄膜を光学顕微鏡で観
察したところ、試料1は平坦な均一な表面であったのに
対し、比較例1は表面が粗く、全体にクラックの存在が
多数見られた。次に、膜中の残留水酸基(OH基)の有
無を調べるため、OH伸縮振動による波数3600cm
-1の赤外吸収スペクトルの測定を行った。表4より、乾
燥工程と加熱工程の間で紫外線照射を行ったもの(試料
1)は水酸基の存在が認められず、良好な酸化物が得ら
れていた。しかしながら、紫外線照射を行わない従来法
では、明らかに残留水酸基が不純物として存在すること
が判明した(比較例1)。更に、試料1、比較例1共各
々2枚の平板電極で挟持し、電極間に10Vの電位を印
加したところ、試料1では電流のリークが無く、得られ
た二酸化珪素膜が良好な絶縁性を示したのに対し、比較
例1では電流リークが認められた(表4)。
Observation of the obtained silicon dioxide thin film with an optical microscope showed that Sample 1 had a flat and uniform surface, whereas Comparative Example 1 had a rough surface and many cracks were found throughout. . Next, in order to examine the presence or absence of residual hydroxyl groups (OH groups) in the film, a wave number of 3600 cm due to OH stretching vibration was used.
The infrared absorption spectrum of -1 was measured. From Table 4, it was found that the sample subjected to ultraviolet irradiation between the drying step and the heating step (Sample 1) did not show the presence of hydroxyl groups, and a good oxide was obtained. However, in the conventional method without irradiation with ultraviolet rays, it was clearly found that the residual hydroxyl groups were present as impurities (Comparative Example 1). Further, Sample 1 and Comparative Example 1 were each sandwiched between two plate electrodes, and a potential of 10 V was applied between the electrodes. In Sample 1, there was no current leakage, and the obtained silicon dioxide film had good insulating properties. In contrast, in Comparative Example 1, current leakage was observed (Table 4).

【0031】本実施例より、ゾルの塗布、乾燥、紫外線
照射及び加熱の操作を繰り返し行うことにより良好な酸
化物膜を所望の膜厚で得られることが明らかとなった。
ここでは、紫外線源としてXe2エキシマランプを用い
た例を挙げたが、紫外線源としてAr、Kr等他のエキ
シマランプをはじめ、低圧あるいは高圧水銀ランプやハ
ロゲンランプ等、広く一般の紫外線源による照射効果も
調べたところ、各々最適な条件で本実施例と同様な効果
が確認された。また、同様な工程を他の酸化物でも試み
たところ、本実施例と同様の結果を得た。
From this example, it has been clarified that a favorable oxide film can be obtained with a desired film thickness by repeatedly performing the operations of coating, drying, irradiating ultraviolet rays and heating the sol.
Here, an example in which a Xe2 excimer lamp is used as the ultraviolet light source has been described. Also, the same effect as in the present example was confirmed under the optimum conditions. Further, when the same process was tried for other oxides, the same result as that of the present example was obtained.

【0032】[0032]

【表4】 [Table 4]

【0033】(実施例5)5枚のニッケル板(1cm×
1cm)を用意し、これらを以下の実験に基板として使
用した。
Example 5 Five nickel plates (1 cm ×
1 cm) were prepared and used as substrates in the following experiments.

【0034】ジルコニウムアセチルアセトナートを酢酸
とエチルカルビトールに溶解させ、トリエチレングリコ
ールを少量添加した。得られたオルガノゾルを上記5枚
のニッケル基板上に各々同一条件でスピンコート法で塗
布した後、200℃オーブンで10分間乾燥した。更に
高圧水銀ランプによる紫外線照射を各々5枚の試料に対
して異なる雰囲気下で所定時間行った(試料1〜5)。
この時、雰囲気中のオゾン発生の有無を測定した結果を
表5に示す。試料1〜5は更に400℃オーブンにて3
0分間大気中にて加熱した後室温まで冷却することによ
り、基板上にジルコニア膜を得た。得られたジルコニア
膜中の残留水酸基(OH基)の有無を調べるため、OH
伸縮振動による波数3600cm-1の赤外吸収スペクト
ルの測定を行った。結果を表5に示す。
Zirconium acetylacetonate was dissolved in acetic acid and ethyl carbitol, and a small amount of triethylene glycol was added. The obtained organosol was applied on each of the five nickel substrates by spin coating under the same conditions, and then dried in a 200 ° C. oven for 10 minutes. Further, ultraviolet irradiation by a high-pressure mercury lamp was performed on each of the five samples under different atmospheres for a predetermined time (samples 1 to 5).
At this time, the results of measuring the presence or absence of ozone generation in the atmosphere are shown in Table 5. Samples 1 to 5 are further placed in a 400 ° C. oven
After heating in the air for 0 minutes and cooling to room temperature, a zirconia film was obtained on the substrate. To check for the presence of residual hydroxyl groups (OH groups) in the obtained zirconia film, OH
An infrared absorption spectrum at a wave number of 3600 cm -1 due to stretching vibration was measured. Table 5 shows the results.

【0035】以上の実施例で以下のことが明らかとなっ
た。
The following has been clarified in the above embodiment.

【0036】紫外線照射を、減圧下または窒素雰囲気下
で行うと大気中に比べ雰囲気中のオゾン発生量を低く抑
えれる(試料1〜3)。オゾンは人体に有害なため発生
量が少ない方が望ましい。また、試料1〜4は紫外線照
射時の雰囲気を除き全て同一条件であったが、試料4
(大気中紫外線処理)のみ残留水酸基(OH基)が認め
られた。これは、紫外線のエネルギーが大気中で吸収あ
るいは散乱されるために、対象試料へのエネルギー伝達
効率が低下したことによると考えられる。従って大気中
で紫外線照射を行い良好な酸化物膜を得るには照射エネ
ルギーを増加させなければならず(試料5)、これは効
率とオゾン発生の面から好ましくない。
When the ultraviolet irradiation is performed under reduced pressure or a nitrogen atmosphere, the amount of ozone generated in the atmosphere can be suppressed to be lower than that in the atmosphere (samples 1 to 3). Since ozone is harmful to the human body, it is desirable that the amount of ozone generated is small. Samples 1 to 4 were all under the same conditions except for the atmosphere at the time of ultraviolet irradiation.
Only in the case of (atmospheric UV treatment), residual hydroxyl groups (OH groups) were observed. This is probably because the energy of ultraviolet rays is absorbed or scattered in the atmosphere, so that the efficiency of energy transfer to the target sample is reduced. Therefore, irradiation energy must be increased in order to obtain a good oxide film by irradiating with ultraviolet light in the atmosphere (sample 5), which is not preferable in terms of efficiency and ozone generation.

【0037】以上の本実施例より、紫外線照射を減圧下
または窒素雰囲気下で行うことの優位性が示された。
The above example shows the superiority of performing ultraviolet irradiation under reduced pressure or in a nitrogen atmosphere.

【0038】[0038]

【表5】 [Table 5]

【0039】(実施例6)2枚のニッケル板(1cm×
1cm)を用意し、これらを以下の実験に基板として使
用した。
Example 6 Two nickel plates (1 cm ×
1 cm) were prepared and used as substrates in the following experiments.

【0040】チタニウムイソプロポキシドを酢酸とエチ
ルカルビトールに溶解させ、トリエチレングリコールを
少量添加した。得られたオルガノゾルを上記2枚のニッ
ケル基板上に各々同一条件でスピンコート法で塗布した
後、200℃オーブンで10分間乾燥した。更にメタル
ハライドランプによる紫外線照射を窒素雰囲気下で所定
時間行った。その後、2枚の試料の内1枚については、
酸素雰囲気400℃オーブンにて30分間加熱した後室
温まで冷却することにより、基板上にチタニア(TiO
2)膜を得た(試料1)。一方残りのもう1枚は大気中
400℃オーブンにて30分間加熱した後室温まで冷却
することにより、基板上にチタニア(TiO2)膜を得
た(比較例1)。得られたチタニア膜中のチタンと酸素
の化学量論比(理論上1:2)をプラズマ発光分析(I
CP法)及びクーロメトリー法で調べた。結果を表6に
示す。
Titanium isopropoxide was dissolved in acetic acid and ethyl carbitol, and a small amount of triethylene glycol was added. The obtained organosol was applied on the two nickel substrates by spin coating under the same conditions, and then dried in a 200 ° C. oven for 10 minutes. Further, ultraviolet irradiation by a metal halide lamp was performed for a predetermined time in a nitrogen atmosphere. Then, for one of the two samples,
After heating in an oxygen atmosphere 400 ° C. oven for 30 minutes and then cooling to room temperature, titania (TiO 2)
2) A film was obtained (Sample 1). On the other hand, the other sheet was heated in an air oven at 400 ° C. for 30 minutes and then cooled to room temperature to obtain a titania (TiO 2) film on the substrate (Comparative Example 1). The stoichiometric ratio between titanium and oxygen (theoretically 1: 2) in the obtained titania film was determined by plasma emission analysis (I
CP method) and the coulometric method. Table 6 shows the results.

【0041】表6より、試料1ではチタンと酸素の化学
量論比が理論であるところの1:2であり、理想的な酸
化物膜が得られた。一方、比較例1ではチタンと酸素の
化学量論比は1:1.6であり酸素が理論値より少ない
ことが判明した。
As shown in Table 6, in Sample 1, the stoichiometric ratio of titanium to oxygen was 1: 2, which is the theoretical value, and an ideal oxide film was obtained. On the other hand, in Comparative Example 1, the stoichiometric ratio between titanium and oxygen was 1: 1.6, and it was found that oxygen was lower than the theoretical value.

【0042】以上より、加熱工程を酸素雰囲気中で行う
ことにより、得られる酸化物の酸素欠陥(欠乏)を無く
し、理想的な化学量論比の組成を有する酸化物が得られ
ることが明らかとなった。また、他の酸化物についても
加熱工程を酸素雰囲気中で行うことにより、本実施例と
同様な効果が確認された。
From the above, it is apparent that performing the heating step in an oxygen atmosphere eliminates oxygen deficiency (deficiency) of the obtained oxide and provides an oxide having an ideal stoichiometric composition. became. In addition, by performing the heating step in an oxygen atmosphere for other oxides, the same effect as in this example was confirmed.

【0043】[0043]

【表6】 [Table 6]

【0044】(実施例7)2枚の白金板(1cm×1c
m)を用意し、これらを以下の実験に基板として使用し
た。
Example 7 Two platinum plates (1 cm × 1c)
m) were prepared and used as substrates in the following experiments.

【0045】チタニウムイソプロポキシドをジエタノー
ルアミンとブチルセロソルブに溶解させた後、チタンに
対し2倍モルの酢酸鉛3水和物と等モルのジルコニウム
アセチルアセナートを添加し、溶解させた。得られたオ
ルガノゾルを、スピンコート法で前記基板上に塗布し、
200℃で乾燥させた。これら2枚の試料の内1枚につ
いては、誘電体バリア放電Xe2エキシマランプ(出力
200W)により波長172nm(半値幅14nm)の
紫外線照射を2分間行った(試料1)。一方、残りの1
枚については従来通り紫外線照射は行っていない(比較
例1)。試料1及び比較例1は更に400℃オーブンに
て30分間大気中にて加熱した後、ランプ加熱の急速昇
温アニール炉(RTA)で酸素雰囲気中800℃に加熱
し、1分間保持した。以上の工程により、両試料共、ペ
ロブスカイト型のチタン酸ジルコン酸鉛(PZT)結晶
膜が得られたことをX線回折で確認した。
After dissolving titanium isopropoxide in diethanolamine and butyl cellosolve, 2 moles of lead acetate trihydrate and an equimolar amount of zirconium acetylacenate were added to titanium and dissolved therein. The resulting organosol is applied on the substrate by spin coating,
Dried at 200 ° C. One of these two samples was irradiated with ultraviolet light having a wavelength of 172 nm (half-width 14 nm) for 2 minutes by a dielectric barrier discharge Xe2 excimer lamp (output 200 W) (sample 1). Meanwhile, the remaining one
No UV irradiation was performed on the sheets as before (Comparative Example 1). Sample 1 and Comparative Example 1 were further heated in a 400 ° C. oven for 30 minutes in the atmosphere, then heated to 800 ° C. in an oxygen atmosphere in a lamp heating rapid temperature annealing furnace (RTA) and held for 1 minute. X-ray diffraction confirmed that a perovskite-type lead zirconate titanate (PZT) crystal film was obtained in both samples by the above steps.

【0046】得られたPZTの結晶性を(100)面か
らのX線回折ピークの半値幅で評価した結果を表7に示
す(相対値)。これより紫外線照射を行ったもの(試料
1)は、従来法(比較例1)に比べ、(100)ピーク
の半値幅が小さく、結晶性が良いことがわかった。これ
に伴い、比誘電率や圧電特性(d31)も測定の結果向上
することが明らかとなった(表7)。
Table 7 shows the results of evaluating the crystallinity of the obtained PZT by the half value width of the X-ray diffraction peak from the (100) plane (relative value). From this, it was found that the sample irradiated with ultraviolet rays (Sample 1) had a smaller half-width of the (100) peak and better crystallinity than the conventional method (Comparative Example 1). As a result, it was found that the relative permittivity and the piezoelectric characteristics (d31) also improved as a result of the measurement (Table 7).

【0047】本実施例では対象としてPZTの例を示し
たが、他の酸化物膜の場合でも紫外線照射工程を有する
ものは、結晶性の向上が認められた。更に、先の実施例
1〜6で示したように、各種紫外線光源、厚膜化、ある
いは紫外線照射工程・加熱工程の雰囲気制御にも対応し
た良好な酸化物結晶膜が得られることも、各種対象につ
いて実験を行ったところ確認された。
In this embodiment, an example of PZT is shown as an object. However, even in the case of another oxide film having an ultraviolet irradiation step, improvement in crystallinity was recognized. Furthermore, as shown in the previous Examples 1 to 6, it is possible to obtain a good oxide crystal film corresponding to various ultraviolet light sources, thickening, or atmosphere control in the ultraviolet irradiation step / heating step. An experiment was performed on the subject, which was confirmed.

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【発明の効果】 以上述べたように本発明の酸化物の成
膜方法は、有機金属化合物を原料とするゾルを基板に塗
布し、ゲル化乾燥させた後、高温に加熱して酸化物薄膜
とするゾルゲル法において、乾燥後に紫外線を照射する
ことで、ゲル薄膜に存在する有機化合物の化学結合を切
断することを特徴とする。これにより、その後の高温加
熱において、より容易に有機分解物を除去することが可
能となり、有機残基の無い酸化物薄膜を生産性良く、容
易に成膜できる。また、厚膜化にも対応でき、アニール
処理を経て結晶性が高く酸素欠損も無い良好な酸化物薄
膜が得られるため、電子デバイス用途や、マイクロマシ
ーンデバイス用途をはじめあらゆる分野へ応用でき、そ
のもたらされる効果は大きい。
As described above, according to the method for forming an oxide film of the present invention, a sol made of an organometallic compound is applied to a substrate, gelled and dried, and then heated to a high temperature to form an oxide thin film. The sol-gel method is characterized in that ultraviolet rays are irradiated after drying to break chemical bonds of organic compounds present in the gel thin film. This makes it possible to more easily remove the organic decomposition products during the subsequent high-temperature heating, so that an oxide thin film having no organic residue can be easily formed with good productivity. In addition, since it is possible to respond to thickening and obtain a good oxide thin film with high crystallinity and no oxygen deficiency after annealing, it can be applied to all fields including electronic device applications and micro machine devices. The effect brought is great.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、高温に加熱して酸化物
薄膜とするゾルゲル法において、乾燥後に紫外線を照射
してから高温に加熱することを特徴とする酸化物の成膜
方法。
In a sol-gel method, a sol containing an organometallic compound as a raw material is applied to a substrate, gelled and dried, and then heated to a high temperature to form an oxide thin film. A method for forming an oxide film, comprising heating.
【請求項2】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
紫外線の光源が水銀ランプ、ハロゲンランプ、エキシマ
ランプ、メタルハライドランプのいずれかであることを
特徴とする請求項1記載の酸化物の成膜方法。
2. A sol-gel method in which a sol containing an organometallic compound as a raw material is applied to a substrate, gelled and dried, irradiated with ultraviolet rays, and then heated to a high temperature to form an oxide thin film,
2. The oxide film forming method according to claim 1, wherein the ultraviolet light source is any one of a mercury lamp, a halogen lamp, an excimer lamp, and a metal halide lamp.
【請求項3】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
紫外線の光源がXe2エキシマランプであることを特徴
とする請求項1または2記載の酸化物の成膜方法。
3. A sol-gel method in which a sol made of an organometallic compound is applied to a substrate, gelled and dried, irradiated with ultraviolet rays, and then heated to a high temperature to form an oxide thin film.
3. The method according to claim 1, wherein the ultraviolet light source is a Xe2 excimer lamp.
【請求項4】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
塗布と乾燥と紫外線照射の工程を繰り返し、積層させて
から高温に加熱することを特徴とする酸化物の成膜方
法。
4. A sol-gel method in which a sol containing an organometallic compound as a raw material is applied to a substrate, gelled and dried, irradiated with ultraviolet rays, and then heated to a high temperature to form an oxide thin film.
A method of forming an oxide film, comprising repeating the steps of coating, drying, and irradiating ultraviolet rays, laminating the layers, and heating the layers to a high temperature.
【請求項5】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
高温に加熱するまでの工程を繰り返し、積層させて厚い
膜を得ることを特徴とする酸化物の成膜方法。
5. A sol-gel method in which a sol containing an organometallic compound as a raw material is applied to a substrate, gelled and dried, irradiated with ultraviolet light, and then heated to a high temperature to form an oxide thin film.
A method for forming an oxide, comprising repeating a process of heating to a high temperature and stacking to obtain a thick film.
【請求項6】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
紫外線の照射を減圧下または窒素雰囲気下で行うことを
特徴とする請求項1から5いずれか記載の酸化物の成膜
方法。
6. A sol-gel method in which a sol containing an organometallic compound as a raw material is applied to a substrate, gelled and dried, irradiated with ultraviolet rays, and then heated to a high temperature to form an oxide thin film,
6. The method according to claim 1, wherein the ultraviolet irradiation is performed under reduced pressure or in a nitrogen atmosphere.
【請求項7】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
高温の加熱を酸素雰囲気中で行うことを特徴とする請求
項1から6いずれか記載の酸化物の成膜方法。
7. A sol-gel method in which a sol using an organometallic compound as a raw material is applied to a substrate, gelled and dried, irradiated with ultraviolet rays, and then heated to a high temperature to form an oxide thin film,
7. The method according to claim 1, wherein the high-temperature heating is performed in an oxygen atmosphere.
【請求項8】 有機金属化合物を原料とするゾルを基板
に塗布し、ゲル化乾燥させた後、紫外線を照射してから
高温に加熱し、酸化物薄膜とするゾルゲル法において、
基板上に形成された酸化物を基板ごと適正な温度でアニ
ールし、結晶性の酸化物結晶薄膜を得ることを特徴とす
る請求項1から7いずれか記載の酸化物の成膜方法。
8. A sol-gel method in which a sol containing an organometallic compound as a raw material is applied to a substrate, gelled and dried, irradiated with ultraviolet rays, and then heated to a high temperature to form an oxide thin film,
8. The method for forming an oxide film according to claim 1, wherein the oxide formed on the substrate is annealed together with the substrate at an appropriate temperature to obtain a crystalline oxide crystal thin film.
JP2185097A 1997-02-04 1997-02-04 Oxide deposition method Withdrawn JPH10219462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2185097A JPH10219462A (en) 1997-02-04 1997-02-04 Oxide deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2185097A JPH10219462A (en) 1997-02-04 1997-02-04 Oxide deposition method

Publications (1)

Publication Number Publication Date
JPH10219462A true JPH10219462A (en) 1998-08-18

Family

ID=12066590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2185097A Withdrawn JPH10219462A (en) 1997-02-04 1997-02-04 Oxide deposition method

Country Status (1)

Country Link
JP (1) JPH10219462A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU742356B2 (en) * 1999-05-17 2002-01-03 Secretary Of Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern
US6576302B1 (en) 1999-02-25 2003-06-10 Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern
JP2007530265A (en) * 2004-03-31 2007-11-01 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Method and apparatus for coating a substrate using dielectric barrier discharge

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576302B1 (en) 1999-02-25 2003-06-10 Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern
AU742356B2 (en) * 1999-05-17 2002-01-03 Secretary Of Agency Of Industrial Science And Technology Method for producing a metal oxide and method for forming a minute pattern
JP2007530265A (en) * 2004-03-31 2007-11-01 ヴラームス インステリング ヴール テクノロギシュ オンデルゾーク (ヴイアイティーオー) Method and apparatus for coating a substrate using dielectric barrier discharge

Similar Documents

Publication Publication Date Title
KR100922661B1 (en) Metal oxide thin film and its manufacturing method
EP2287114B1 (en) Ozone generating method
JP4067563B2 (en) UV irradiation process for manufacturing electronic devices with low leakage current and low polarization fatigue
EP0600303A2 (en) Method and apparatus for fabrication of dielectric thin film
JPH0228322A (en) Preliminary treatment of semiconductor substrate
US9903898B2 (en) Thermal poling method, piezoelectric film and manufacturing method of same, thermal poling apparatus, and inspection method of piezoelectric property
WO2015043624A1 (en) Apparatus and method for bonding substrates
JP6887770B2 (en) Method of forming PZT ferroelectric film
KR20070056970A (en) Dielectric element and manufacturing method thereof
EP4202507A1 (en) Optical filter, method for producing same and sterilization device
US9966283B2 (en) Pressurizing-type lamp annealing device, method for producing thin film, and method for using pressurizing-type lamp annealing device
JPH10219462A (en) Oxide deposition method
JPH0964307A (en) Heat treatment method for oxide thin film
KR102266526B1 (en) Polyvinylidene fluoride complex
WO1999036353A1 (en) Process for the formation of oxide ceramic thin film
CN1862827A (en) High-dielectric coefficient grid dielectric material titanium aluminate film and preparing method thereof
JP2006522352A (en) Method for depositing layers on a substrate
KR20060060613A (en) Formation method of thin film with high dielectric constant
WO2000032516A1 (en) Method of producing inorganic compound solid substance and method of manufacturing semiconductor device
CN1203527C (en) High dielectric coefficient gate dielectric material hafnium aluminate fil mand preparing method thereof
JP2017079276A (en) Polarization device and polarization method
JPH08124923A (en) Method and system for heat treating thin oxide film
JPH1064839A (en) Method for treating oxide
CN1256756C (en) High dielectric coefficient gate dielectric material hafnium nitrogen aluminate film and preparing method thereof
JP2023148331A (en) Method for modifying liquid composition for forming pzt ferroelectric film, modified liquid composition, and method for forming pzt ferroelectric film using the liquid composition

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040406