JPH10218662A - Production of zirconia sintered compact - Google Patents
Production of zirconia sintered compactInfo
- Publication number
- JPH10218662A JPH10218662A JP9020249A JP2024997A JPH10218662A JP H10218662 A JPH10218662 A JP H10218662A JP 9020249 A JP9020249 A JP 9020249A JP 2024997 A JP2024997 A JP 2024997A JP H10218662 A JPH10218662 A JP H10218662A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- powder
- sintered body
- producing
- zirconia sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000843 powder Substances 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 13
- 239000002245 particle Substances 0.000 claims abstract description 12
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 10
- 239000011164 primary particle Substances 0.000 claims description 5
- 239000013078 crystal Substances 0.000 abstract description 15
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 abstract description 14
- 238000010298 pulverizing process Methods 0.000 abstract description 6
- 239000003381 stabilizer Substances 0.000 abstract description 5
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract 2
- 238000005299 abrasion Methods 0.000 abstract 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000004064 recycling Methods 0.000 description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000000292 calcium oxide Substances 0.000 description 2
- 235000012255 calcium oxide Nutrition 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000001935 peptisation Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 208000031872 Body Remains Diseases 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052574 oxide ceramic Inorganic materials 0.000 description 1
- 239000011224 oxide ceramic Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910002082 tetragonal zirconia polycrystal Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003232 water-soluble binding agent Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、新規なジルコニア
焼結体の製造方法に関する。[0001] The present invention relates to a method for producing a novel zirconia sintered body.
【0002】本発明の方法によって製造された部分安定
化ジルコニア焼結体は、高強度、高靱性、耐摩耗性用途
部材に好適に用いられ、再利用が可能な部分安定化ジル
コニアの製造方法である。The partially stabilized zirconia sintered body produced by the method of the present invention is suitably used for members having high strength, high toughness and wear resistance, and is a method for producing partially stabilized zirconia that can be reused. is there.
【0003】[0003]
【従来の技術】近年、金属、プラスチックス、セラミッ
クス材料が用いられる用途分野において、資源の有効活
用が進んでおり、それに伴って材料のリサイクル技術の
開発が望まれている。2. Description of the Related Art In recent years, resources have been effectively utilized in application fields in which metals, plastics, and ceramic materials are used, and accordingly, development of material recycling techniques has been desired.
【0004】しかし、セラミックス材料のリサイクル技
術はまだ不十分なものである。However, the technology for recycling ceramic materials is still insufficient.
【0005】一般に材料のリサイクルにおいて、原料と
なるのは消費された後廃棄物となる部品を構成する材料
である。これをコストを費やして、一旦部品を作る前の
状態に戻し、再びほぼ同じプロセスを経て元の部品にす
るか、または新しい部品を作るわけである。したがっ
て、材料のリサイクルのポイントは、部品を作る前の状
態に戻すのにかかる費用が、最初の時に比べてどの程度
高くなるかという経済的問題と、リサイクルされたもの
が最初に作られたものと比較して、十分機能的に満足さ
れるものであるかという技術的問題とがある。[0005] In general, in the recycling of materials, the raw materials are the materials constituting the parts that become waste after being consumed. At the expense of this, the part is returned to the state before the part was made, and the original part is made through the substantially same process again, or a new part is made. Therefore, the point of material recycling is the economical problem of how much it costs to return the parts to the state before making the parts compared to the first time, and the thing that recycled materials were made first. There is a technical problem as to whether or not the function is sufficiently satisfied.
【0006】アルミ缶の回収に代表される金属、プラス
チックス資源の再利用、さらに最近ではごく当たり前に
なりつつある再生紙などが知られている。これらの例は
上記の経済的問題、技術的問題を解決できた、あるいは
解決できる見通しがあるものと言える。[0006] Recycling of metals and plastics resources typified by the recovery of aluminum cans, as well as recycled paper, which has recently become quite commonplace, are known. It can be said that these examples have solved or are expected to solve the above economic and technical problems.
【0007】しかしながら、ニューセラミックスの分野
においてはこれまで再生や再利用という概念がほとんど
なかった。その理由は、製造工程中で焼成というプロセ
スにより、極めて安定で強固な材料となるため、原材料
への還元が難しく、リサイクルには不向きとされてい
た。However, in the field of new ceramics, there has been almost no concept of regeneration and reuse. The reason is that the process of firing during the manufacturing process makes the material extremely stable and strong, so it is difficult to reduce it to raw materials and it is not suitable for recycling.
【0008】すなわち、セラミックスは粉末の状態に戻
すことがリサイクルの第一歩と考えることができる。That is, it can be considered that returning ceramics to a powder state is the first step of recycling.
【0009】たとえば、アルミナ焼結体の場合は融点が
高く、溶融して元の状態である粉末に戻すことは極めて
難しい。また、酸、アルカリに対しても化学的に安定で
あり、溶解させることも困難である。一方、一部のガラ
ス組成からなるものは、融点が1000℃前後と比較的
低温であることから再利用が可能となっている。For example, in the case of an alumina sintered body, the melting point is high, and it is extremely difficult to melt and return the powder to its original state. Further, they are chemically stable to acids and alkalis, and are difficult to dissolve. On the other hand, those composed of a part of the glass composition can be reused because their melting points are relatively low, around 1000 ° C.
【0010】部分安定化ジルコニア焼結体に関しては、
極低温から100℃の範囲で化学的安定性が損なわれる
ことはないが、100℃から400℃付近の中温域では
比較的強度が劣化する現象が指摘されている。これは、
大気中に存在する水蒸気が活性化し、部分安定化ジルコ
ニア表面の結合を切断するために起こる現象と理解され
ている。Regarding the partially stabilized zirconia sintered body,
It has been pointed out that although the chemical stability is not impaired in the range from extremely low temperature to 100 ° C., the strength is relatively deteriorated in the middle temperature range from 100 ° C. to 400 ° C. this is,
It is understood that the phenomenon occurs because the water vapor present in the atmosphere is activated and breaks bonds on the surface of the partially stabilized zirconia.
【0011】[0011]
【発明が解決しようとする課題】本発明は上記の問題点
を解決し、リサイクル可能な部分安定化ジルコニア焼結
体の製造方法を提供することを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a method for producing a recyclable partially stabilized zirconia sintered body.
【0012】[0012]
【課題を解決するための手段】本発明の目的は、基本的
には、下記の構成により達成できる。即ち、「ジルコニ
アを有する焼結体を原料として、加熱処理によりジルコ
ニア粉末を調製し、再び焼結を行うことを特徴とするジ
ルコニア焼結体の製造方法。」である。The object of the present invention can be basically achieved by the following constitution. That is, "a method for producing a zirconia sintered body characterized in that a zirconia powder is prepared by heat treatment using a sintered body having zirconia as a raw material, and then sintered again."
【0013】[0013]
【発明の実施の形態】本発明を、製造方法の順にしたが
って、以下詳述する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below in the order of manufacturing method.
【0014】まず、原料となる焼結体は特に限定される
ものではないが、種々の方法で合成された平均一次粒子
径が1μm以下のジルコニア粉末を用いて製造されたも
のが挙げられる。また、ジルコニア粉末以外に、部分安
定化などのために、安定化剤や焼結助剤が適量添加され
たものが好ましく、安定化剤としてイットリアのほかカ
ルシア、マグネシア、セリアなどが1.5〜5モル%添
加されていたり、焼結助剤としてアルミナ0.05〜
5.0重量%、またはシリカは0.01〜0.1重量%
程度添加されているものが挙げられる。First, the sintered body used as a raw material is not particularly limited, and examples include a sintered body manufactured using zirconia powder having an average primary particle diameter of 1 μm or less synthesized by various methods. In addition to zirconia powder, for the purpose of partial stabilization, it is preferable that a stabilizer and a sintering aid are added in an appropriate amount. As a stabilizer, in addition to yttria, calcia, magnesia, ceria, etc. 5 mol% or alumina as a sintering aid
5.0% by weight, or 0.01 to 0.1% by weight of silica
To some extent.
【0015】上記原料粉末を用いて、通常の粉砕、造
粒、成形、焼結および加工を経て製造されたジルコニア
焼結体が再利用原料となる。[0015] A zirconia sintered body produced through the usual pulverization, granulation, molding, sintering and processing using the above-mentioned raw material powder is a reused raw material.
【0016】上記焼結体は、部分安定化ジルコニア焼結
体または、正方晶ジルコニア多結晶体(Tetrago
nal Ziconia Polycrystals)
と呼ばれるものである。また、ジルコニアの結晶以外
に、アルミナの結晶を5〜90重量%以下含有する焼結
体や、窒化珪素あるいは炭化珪素などの結晶を含有する
焼結体なども本発明の製造方法における、再利用の原料
として用いることができる。The sintered body is a partially stabilized zirconia sintered body or a tetragonal zirconia polycrystal (Tetrago).
nal Ziconia Polycrystals)
It is called. In addition to the zirconia crystal, a sintered body containing 5 to 90% by weight or less of an alumina crystal, a sintered body containing a crystal such as silicon nitride or silicon carbide, etc. can be reused in the production method of the present invention. Can be used as a raw material.
【0017】オートクレーブ中に上記組成の部分安定化
ジルコニア焼結体、または部分安定化ジルコニアを含む
複合セラミックス焼結体に水(好ましく純水)を加え
て、攪拌しながら150〜300℃にて5〜200時間
加熱処理することによって、ジルコニアゾルが得られ
る。温度は150℃未満では温度が低すぎて、解膠が不
十分であり、300℃を越えてもやはり解膠が不十分で
ある。解膠を効率よく起こすためには、温度は150〜
300℃が必要である。さらに、200〜280℃であ
ることがより好ましい。時間は、2時間未満では解膠が
不十分で、一部焼結体が残存する、200時間を越える
と生産性が低下し、不経済である。処理時間は温度によ
っても異なるが、200〜280℃では10〜150時
間であることがより好ましい。撹拌方法としては通常の
プロペラ型攪拌機などが例示できるが特に限定されるも
のではない。撹拌の程度は200〜1000rpmでよ
い。Water (preferably pure water) is added to the partially stabilized zirconia sintered body or the composite ceramics sintered body containing partially stabilized zirconia having the above composition in an autoclave, and stirred at 150 to 300 ° C. for 5 hours. A zirconia sol is obtained by performing the heat treatment for up to 200 hours. If the temperature is lower than 150 ° C., the temperature is too low and peptization is insufficient, and if it exceeds 300 ° C., pulverization is also insufficient. For efficient peptization, the temperature should be between 150 and
300 ° C is required. Further, the temperature is more preferably from 200 to 280 ° C. If the time is less than 2 hours, pulverization is insufficient and a part of the sintered body remains. If the time is more than 200 hours, the productivity is reduced, which is uneconomical. Although the treatment time varies depending on the temperature, it is more preferably 10 to 150 hours at 200 to 280 ° C. As a stirring method, a usual propeller type stirrer can be exemplified, but it is not particularly limited. The degree of stirring may be from 200 to 1000 rpm.
【0018】また、通常のジルコニア焼結体はジルコニ
ア以外に、緻密化および高強度化などのために、安定化
剤や焼結助剤が適量添加または固溶されているのが普通
である。部分安定化に用いられる安定化剤は、イットリ
アのほかカルシア、マグネシア、セリアなどがあるが、
最も高強度を発現するイットリアが最も好適に用いられ
ている。このイットリアを1.5〜5モル%、好ましく
は2〜4モル%含むように原液段階で調合したイットリ
ア部分安定化ジルコニア粉末、もしくは純粋なジルコニ
ア粉末と1.5〜5モル%、好ましくは2〜4モル%の
添加量となるように調合したイットリア粉末の混合粉末
が用いられる。焼結助剤としては、アルミナ、シリカな
どの一般的なものを用いる。アルミナは0.05〜5.
0重量%、シリカは0.01〜0.1重量%程度添加す
ることが好ましい。これによって、1350〜1500
℃で緻密な焼結体が得られる。これらの添加物は原料の
焼結体にもともと含有されているものをそのまま利用し
てもよいが、必要によりさらに添加したりして調製して
もよい。In addition, in addition to zirconia, a usual zirconia sintered body usually contains an appropriate amount of a stabilizer or a sintering aid or a solid solution for densification and high strength. Stabilizers used for partial stabilization include calcia, magnesia, ceria, etc. in addition to yttria,
Yttria expressing the highest strength is most preferably used. Yttria partially stabilized zirconia powder prepared at the stock solution stage to contain 1.5 to 5 mol%, preferably 2 to 4 mol% of yttria, or 1.5 to 5 mol%, preferably 2 to 5 mol%, of pure zirconia powder A mixed powder of yttria powder prepared so as to have an addition amount of 44 mol% is used. As the sintering aid, general ones such as alumina and silica are used. Alumina is 0.05-5.
It is preferable to add 0% by weight and silica at about 0.01 to 0.1% by weight. Thereby, 1350-1500
At ℃, a dense sintered body is obtained. As these additives, those originally contained in the sintered body of the raw material may be used as they are, but may be further added or prepared as necessary.
【0019】上記混合粉末に有機バインダーを加えて、
粉砕造粒されるが、酸化物系セラミックスではポリビニ
ルアルコール等の水溶性バインダーが好適に用いられ
る。また、スラリー中のセラミックス粒子をよく分散さ
せるために、公知の分散剤、消泡剤等が用いられる。An organic binder is added to the mixed powder,
Although it is pulverized and granulated, a water-soluble binder such as polyvinyl alcohol is preferably used in the case of oxide ceramics. In order to disperse the ceramic particles in the slurry well, a known dispersant, defoaming agent or the like is used.
【0020】該ゾルは、平均一次粒子径が0.3μm以
下となるように調製されることが好ましく、必要に応じ
て、前記処理の後、粉砕などの処理が適宜行なわれる。
平均一次粒子径が0.3μmを超えると、焼成する際に
きわめて高温を必要とするので好ましくない。The sol is preferably prepared so as to have an average primary particle diameter of 0.3 μm or less. After the above-mentioned treatment, if necessary, a treatment such as pulverization is appropriately carried out.
If the average primary particle size exceeds 0.3 μm, extremely high temperature is required for firing, which is not preferable.
【0021】ジルコニアビーズを用いたアトリションミ
ル、ビーズミル、ボールミル等によって、平均二次粒子
径が0.5〜1.5μmの一定な粒度分布になるまで粉
砕を行うのが好ましい。この後、スプレードライヤー等
の造粒装置を用いて、造粒径が40〜200μmの範囲
で均一となるように造粒されるのが好ましい。Pulverization is preferably carried out by an attrition mill, bead mill, ball mill or the like using zirconia beads until the average secondary particle diameter has a constant particle size distribution of 0.5 to 1.5 μm. Thereafter, the granulation is preferably performed using a granulation device such as a spray drier so that the granulated particle diameter is uniform in the range of 40 to 200 μm.
【0022】また、加熱処理後の粒子は単斜晶が50%
以上含まれる。The particles after the heat treatment are 50% monoclinic.
Included above.
【0023】さらに、ゾル状になったジルコニア粉末を
オートクレーブから取り出し、ボールミル等を用いて粉
砕を行った後、容器に移し替え、50〜150℃にて乾
燥する。乾燥は大気中でも真空中でもよい。Further, the sol-state zirconia powder is taken out of the autoclave, pulverized using a ball mill or the like, transferred to a container, and dried at 50 to 150 ° C. Drying may be in air or vacuum.
【0024】乾燥した粉末を160〜400メッシュの
ステンレス篩などを用いて凝集径を整え、ラバープレ
ス、金型プレス成型機にて0.5〜2トン/平方センチ
メートルの圧力で所定のサイズに成形する。The dried powder is adjusted to a coagulated diameter by using a 160-400 mesh stainless sieve or the like, and is formed into a predetermined size by a rubber press or a die press molding machine at a pressure of 0.5 to 2 ton / cm 2. .
【0025】上記のグリーン成形体を大気中、1350
〜1500℃にて1〜5時間焼成を行う。こうして、密
度5.9g/cm3以上、ビッカース硬度1150kg
f/mm2以上、単斜晶0〜10%、正方晶90〜10
0%で立方晶を実質的に含まず、平均結晶子径1μm以
下の高強度ジルコニアが得られる。The above green compact was placed in air at 1350
The firing is performed at 1500 ° C. for 1 to 5 hours. Thus, the density is 5.9 g / cm 3 or more, and the Vickers hardness is 1150 kg.
f / mm 2 or more, monoclinic 0-10%, tetragonal 90-10
At 0%, high-strength zirconia substantially free of cubic crystals and having an average crystallite diameter of 1 μm or less can be obtained.
【0026】上記の方法によりリサイクルされた部分安
定化ジルコニア焼結体は、従前の焼結体と同等の物性を
有し、機械・構造用途に用いることができる。The partially stabilized zirconia sintered body recycled by the above method has the same physical properties as the conventional sintered body and can be used for mechanical and structural applications.
【0027】[0027]
【実施例】以下に本発明を実施例を用いて具体的に説明
する。ただし、本発明はこれに限定されない。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below with reference to embodiments. However, the present invention is not limited to this.
【0028】(1) 以下のスペックのイットリア部分安定
化ジルコニア焼結体を原料として用いた。(1) A yttria partially stabilized zirconia sintered body having the following specifications was used as a raw material.
【0029】A.結晶構造;単斜晶5%、正方晶95%で
立方晶を実質的に含まない B.平均粒径;正方晶の平均粒子径0.35μm C.化学的組成;イットリア2.7モル%、アルミナ0.
35%、シリカ0.02%残りジルコニアからなる粉末
を1400℃にて焼成して成る焼結体 (2) 上記組成の部分安定化ジルコニアを以下の条件にて
加熱処理し、ジルコニアゾルを得た。A. Crystal structure; 5% monoclinic, 95% tetragonal and substantially free of cubic crystals B. Average particle size; average particle size of tetragonal 0.35 μm C. Chemical composition; Yttria 2 0.7 mol%, alumina 0.
A sintered body obtained by firing a powder composed of 35% and 0.02% of silica and the remaining zirconia at 1400 ° C. (2) A partially stabilized zirconia having the above composition was heat-treated under the following conditions to obtain a zirconia sol. .
【0030】A.容積2000ccのオートクレーブ中に
上記部分安定化ジルコニアからなる5mmφのボール1
00gと純水200ccを加えて、攪拌しながら200
℃にて96時間加熱処理した。A. 5 mmφ ball 1 made of the above partially stabilized zirconia in an autoclave having a capacity of 2000 cc.
200 g of pure water and 200 cc of pure water, and
Heat treatment was performed at 96 ° C. for 96 hours.
【0031】B.ゾル状になったジルコニア粉末をオート
クレーブから取り出しバットに移し替え、80℃にて真
空乾燥した。B. The sol-like zirconia powder was taken out of the autoclave, transferred to a vat, and dried at 80 ° C. under vacuum.
【0032】C.乾燥した粉末を328メッシュのステン
レス篩を用いて造粒径を整え、金型プレス機にて1トン
/平方センチメートルの圧力で25×50×5mmのサ
イズに成形した。C. The dried powder was adjusted to a particle size using a 328 mesh stainless steel sieve, and formed into a size of 25 × 50 × 5 mm by a mold press under a pressure of 1 ton / cm 2.
【0033】D.上記グリーン成形体を大気中、1400
℃にて2時間焼成を行った。D. The above green compact was placed in air at 1400
Calcination was performed at 2 ° C. for 2 hours.
【0034】E.得られた焼結体からJIS R−160
1に準拠した抗折試験片を加工採取し、密度、強度、硬
度の機械的性質および結晶構造をX線回折によって測定
した。E. JIS R-160 from the obtained sintered body
A bending test specimen according to No. 1 was processed and sampled, and the mechanical properties of density, strength, hardness and crystal structure were measured by X-ray diffraction.
【0035】(3) 粉末および再焼結体の特性評価 A.粉末評価 オートクレーブ処理によって得られた粉末の物性につい
て測定した。(3) Evaluation of characteristics of powder and re-sintered body A. Evaluation of powder The physical properties of the powder obtained by the autoclave treatment were measured.
【0036】平均1次粒子径;透過型電子顕微鏡を用い
て観察し、得られた視野から粉末の平均粒子径を横断法
により測定したところ、0.2μmであった。Average primary particle size: Observed using a transmission electron microscope, and the average particle size of the powder was 0.2 μm as measured by a transverse method from the obtained visual field.
【0037】平均2次粒子径;レーザー散乱法により測
定したところ、0.18μmであった。Average secondary particle diameter: 0.18 μm as measured by a laser scattering method.
【0038】このことから、単分散粒子であることがわ
かった。From this, it was found that the particles were monodisperse particles.
【0039】加熱処理後の粉末をX線回折を用いて結晶
構造を同定したところ、単斜晶85%、残りは正方晶お
よび立方晶の和が15%であった。The crystal structure of the powder after the heat treatment was identified by X-ray diffraction. As a result, it was found that monoclinic crystal was 85%, and the balance of tetragonal crystal and cubic crystal was 15%.
【0040】B.焼結体の測定評価 機械的性質;密度5.96グラム/立方センチメート
ル、強度1100MPa、ビッカース硬度1250であ
った。B. Measurement and Evaluation of Sintered Body Mechanical properties: density: 5.96 g / cubic centimeter, strength: 1100 MPa, Vickers hardness: 1250.
【0041】結晶構造;X線回折により行い、単斜晶7
%、正方晶93%で立方晶は実質的に含まれていなかっ
た。Crystal structure: X-ray diffraction: monoclinic 7
%, And 93% of tetragonal crystals, and substantially no cubic crystals.
【0042】[0042]
【発明の効果】本発明は従来化学的に安定とされていた
セラミックスを簡単な処理によってリサイクルすること
が可能となり、資源を有効に利用できる。According to the present invention, ceramics which have been conventionally chemically stable can be recycled by simple processing, and resources can be used effectively.
Claims (6)
て、加熱処理によりジルコニア粉末を調製し、再び焼結
を行うことを特徴とするジルコニア焼結体の製造方法。1. A method for producing a zirconia sintered body, comprising preparing a zirconia powder by heat treatment from a sintered body having zirconia as a raw material, and performing sintering again.
ジルコニアを有する焼結体を原料とすることを特徴とす
る請求項1記載のジルコニア焼結体の製造方法。2. The method for producing a zirconia sintered body according to claim 1, wherein a sintered body having zirconia containing 1.5 to 5% by mole of yttria is used as a raw material.
上を単斜晶にすることを特徴とする請求項1記載のジル
コニア焼結体の製造方法。3. The method for producing a zirconia sintered body according to claim 1, wherein 50% or more of the zirconia is made monoclinic by a heat treatment.
500℃にて、5時間から200時間とすることを特徴
とする請求項1記載のジルコニア焼結体の製造方法。4. The method for producing a zirconia sintered body according to claim 1, wherein the heat treatment is performed in pure water at 150 ° C. to 500 ° C. for 5 hours to 200 hours.
粒子径が0.3μm以下であることを特徴とする請求項
1記載のジルコニア焼結体の製造方法。5. The method for producing a zirconia sintered body according to claim 1, wherein the average primary particle diameter of the powder prepared by the heat treatment is 0.3 μm or less.
り、粉末の平均凝集粒子径が0.5μmから1.5μm
以下とすることを特徴とする請求項1記載のジルコニア
焼結体の製造方法。6. After the heat treatment and before the sintering, the powder is pulverized so that the average agglomerated particle size of the powder is 0.5 μm to 1.5 μm.
The method for producing a zirconia sintered body according to claim 1, wherein:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9020249A JPH10218662A (en) | 1997-02-03 | 1997-02-03 | Production of zirconia sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9020249A JPH10218662A (en) | 1997-02-03 | 1997-02-03 | Production of zirconia sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10218662A true JPH10218662A (en) | 1998-08-18 |
Family
ID=12021931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9020249A Pending JPH10218662A (en) | 1997-02-03 | 1997-02-03 | Production of zirconia sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10218662A (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001078168A1 (en) * | 2000-04-11 | 2001-10-18 | Japan Energy Corporation | Positive electrode material for lithium secondary cell and lithium secondary cell using the same |
JPWO2003100131A1 (en) * | 2002-05-28 | 2005-09-22 | 独立行政法人産業技術総合研究所 | Low temperature molding method of ultrafine particle brittle material and ultrafine particle brittle material used therefor |
JP2006327924A (en) * | 2005-04-28 | 2006-12-07 | Kyocera Corp | Ceramic blade and method for manufacturing the same |
JP2009286657A (en) * | 2008-05-29 | 2009-12-10 | Nippon Shokubai Co Ltd | Production method of recycled zirconia powder, recycled zirconia powder and production method of zirconia sintered compact using the same |
JP2010027359A (en) * | 2008-07-18 | 2010-02-04 | Nippon Shokubai Co Ltd | Manufacturing method of recycled zirconia powder, recycled zirconia powder by the manufacturing method, and manufacturing method of zirconia sintered body using the same |
JP2010027358A (en) * | 2008-07-18 | 2010-02-04 | Nippon Shokubai Co Ltd | Manufacturing method of recycled zirconia powder, recycled zirconia powder by the manufacturing method, and manufacturing method of zirconia sintered body using the same |
WO2010113893A1 (en) * | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | Method for producing aluminum titanate ceramic body |
WO2010113895A1 (en) * | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | Method for producing aluminum titanate ceramic body |
WO2011049202A1 (en) | 2009-10-23 | 2011-04-28 | 株式会社日本触媒 | Process for production of scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the process, and scandia-stabilised zirconia sintered powder |
JP2011168493A (en) * | 2005-04-28 | 2011-09-01 | Kyocera Corp | Ceramic-made blade and method of manufacturing the same |
JP2013049622A (en) * | 2012-10-15 | 2013-03-14 | Nippon Shokubai Co Ltd | Raw material zirconia powder for solid oxide type fuel cell, zirconia sintered compact, electrolyte for solid oxide type fuel cell, and solid oxide type fuel cell |
CN106946576A (en) * | 2017-04-12 | 2017-07-14 | 潮州三环(集团)股份有限公司 | A kind of method that ceramic powder is prepared with ceramic solid waste |
CN115010487A (en) * | 2022-07-01 | 2022-09-06 | 江苏锡沂高新材料产业技术研究院有限公司 | A kind of preparation method of whisker toughened zirconia ceramics |
WO2024203161A1 (en) * | 2023-03-31 | 2024-10-03 | 国立研究開発法人物質・材料研究機構 | Method for producing recycled zirconia |
WO2025070478A1 (en) * | 2023-09-27 | 2025-04-03 | 東ソー株式会社 | Method for recycling sintered object |
-
1997
- 1997-02-03 JP JP9020249A patent/JPH10218662A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001078168A1 (en) * | 2000-04-11 | 2001-10-18 | Japan Energy Corporation | Positive electrode material for lithium secondary cell and lithium secondary cell using the same |
JPWO2003100131A1 (en) * | 2002-05-28 | 2005-09-22 | 独立行政法人産業技術総合研究所 | Low temperature molding method of ultrafine particle brittle material and ultrafine particle brittle material used therefor |
JP2007314889A (en) * | 2002-05-28 | 2007-12-06 | National Institute Of Advanced Industrial & Technology | Ultra fine particle brittle material used in low temperature forming method of ultra fine particle brittle material |
JP2011168493A (en) * | 2005-04-28 | 2011-09-01 | Kyocera Corp | Ceramic-made blade and method of manufacturing the same |
JP2006327924A (en) * | 2005-04-28 | 2006-12-07 | Kyocera Corp | Ceramic blade and method for manufacturing the same |
JP2009286657A (en) * | 2008-05-29 | 2009-12-10 | Nippon Shokubai Co Ltd | Production method of recycled zirconia powder, recycled zirconia powder and production method of zirconia sintered compact using the same |
JP2010027359A (en) * | 2008-07-18 | 2010-02-04 | Nippon Shokubai Co Ltd | Manufacturing method of recycled zirconia powder, recycled zirconia powder by the manufacturing method, and manufacturing method of zirconia sintered body using the same |
JP2010027358A (en) * | 2008-07-18 | 2010-02-04 | Nippon Shokubai Co Ltd | Manufacturing method of recycled zirconia powder, recycled zirconia powder by the manufacturing method, and manufacturing method of zirconia sintered body using the same |
WO2010113893A1 (en) * | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | Method for producing aluminum titanate ceramic body |
WO2010113895A1 (en) * | 2009-03-30 | 2010-10-07 | 住友化学株式会社 | Method for producing aluminum titanate ceramic body |
US8673044B2 (en) | 2009-03-30 | 2014-03-18 | Sumitomo Chemical Company, Limited | Process for producing aluminum titanate-based ceramics body |
JP2011105589A (en) * | 2009-10-23 | 2011-06-02 | Nippon Shokubai Co Ltd | Method for producing scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the method, and scandia-stabilized zirconia sintered powder |
WO2011049202A1 (en) | 2009-10-23 | 2011-04-28 | 株式会社日本触媒 | Process for production of scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the process, and scandia-stabilised zirconia sintered powder |
US9601795B2 (en) | 2009-10-23 | 2017-03-21 | Nippon Shokubai Co., Ltd. | Process for production of scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the process, and scandia-stabilized zirconia sintered powder |
JP2013049622A (en) * | 2012-10-15 | 2013-03-14 | Nippon Shokubai Co Ltd | Raw material zirconia powder for solid oxide type fuel cell, zirconia sintered compact, electrolyte for solid oxide type fuel cell, and solid oxide type fuel cell |
CN106946576A (en) * | 2017-04-12 | 2017-07-14 | 潮州三环(集团)股份有限公司 | A kind of method that ceramic powder is prepared with ceramic solid waste |
CN115010487A (en) * | 2022-07-01 | 2022-09-06 | 江苏锡沂高新材料产业技术研究院有限公司 | A kind of preparation method of whisker toughened zirconia ceramics |
CN115010487B (en) * | 2022-07-01 | 2023-12-08 | 江苏锡沂高新材料产业技术研究院有限公司 | Preparation method of whisker toughened zirconia ceramic |
WO2024203161A1 (en) * | 2023-03-31 | 2024-10-03 | 国立研究開発法人物質・材料研究機構 | Method for producing recycled zirconia |
WO2025070478A1 (en) * | 2023-09-27 | 2025-04-03 | 東ソー株式会社 | Method for recycling sintered object |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10218662A (en) | Production of zirconia sintered compact | |
JP4471223B2 (en) | Creep-resistant refractory material used in glass manufacturing equipment | |
JP2594023B2 (en) | Fused ceramic beads | |
EP2077980B1 (en) | Preparation for producing refractory materials | |
EP0414910A1 (en) | Alumina ceramic, production thereof, and throwaway tip made therefrom | |
JP3080873B2 (en) | Abrasion resistant alumina ceramics and method for producing the same | |
JPH03187978A (en) | Coating ceramic particles and manufacture thereof | |
AU709521B2 (en) | Moulded spherical ceramic body, a manufacturing process for this, and the use thereof | |
US5338713A (en) | Sintered body of alumina and partially stabilized zirconia, a process for making the same and a method of preparing a powder for sintering | |
US4849142A (en) | Superplastic forging of zirconia ceramics | |
EP0406578B1 (en) | Process for making a sintered body of alumina and partially stabilized zirconia and method of preparing a powder for sintering. | |
US5908588A (en) | Incipient flocculation molding of particulate inorganic materials | |
CN114206803A (en) | Wear-resistant aluminum oxide sintered body | |
US6214069B1 (en) | Process for the manufacture of a sintered, ceramic abrasive and grinding tools with this abrasive | |
EP0351827B1 (en) | Zirconia-based sintered material and process for producing the same | |
JP2004075425A (en) | Partially stabilized zirconia sintered compact | |
CN113698202A (en) | Water gap and preparation method and application thereof | |
JP2900118B2 (en) | Abrasion resistant alumina ceramics | |
JP4597320B2 (en) | Crushing / dispersing / mixing media and manufacturing method thereof | |
JP2004137128A (en) | Partially stabilized sintered zirconia | |
JP2676008B2 (en) | Abrasion resistant zirconia sintered body and method for producing the same | |
JP2001526175A (en) | Dense refractories with improved heat shock resistance | |
JPH06234526A (en) | Powdery zirconia composition for rolling granulation | |
JPH061654A (en) | Manufacture of calcia clinker | |
JPH0615191A (en) | Member for crushing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050622 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050622 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060530 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060627 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060921 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20061020 |