JPH10214710A - Magnetic silica gel and method for producing the same - Google Patents
Magnetic silica gel and method for producing the sameInfo
- Publication number
- JPH10214710A JPH10214710A JP9013848A JP1384897A JPH10214710A JP H10214710 A JPH10214710 A JP H10214710A JP 9013848 A JP9013848 A JP 9013848A JP 1384897 A JP1384897 A JP 1384897A JP H10214710 A JPH10214710 A JP H10214710A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- silica gel
- magnetic silica
- producing
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/44—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids
- H01F1/445—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of magnetic liquids, e.g. ferrofluids the magnetic component being a compound, e.g. Fe3O4
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/01—Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicon Compounds (AREA)
- Catalysts (AREA)
- Hard Magnetic Materials (AREA)
Abstract
(57)【要約】
【課題】吸着剤や吸着用担体、抽出剤や抽出用担体、触
媒担体等に使用できるような、形状、粒径、細孔径、強
度物性を有する磁性シリカゲル及びその製造方法を提供
する。
【解決の手段】磁性体の含有量が全量の5〜50重量
%、平均粒径が1〜200μm、平均細孔径が3〜20
0nm、細孔容積が0.1〜2.5ミリリットル/g、
BET比表面積が100〜800m2/gである磁性シ
リカゲル及び、SiアルコキシドよりSiアルコキシド
ポリマーを生成させ、これに磁性体を担持させる製造方
法を用いる。[PROBLEMS] To provide a magnetic silica gel having a shape, particle size, pore diameter, and strength physical properties, and a method for producing the same, which can be used as an adsorbent, an adsorption carrier, an extractant, an extraction carrier, a catalyst carrier, and the like. I will provide a. SOLUTION: The content of the magnetic substance is 5 to 50% by weight of the total amount, the average particle diameter is 1 to 200 μm, and the average pore diameter is 3 to 20.
0 nm, pore volume of 0.1-2.5 ml / g,
A magnetic silica gel having a BET specific surface area of 100 to 800 m 2 / g and a production method in which a Si alkoxide polymer is produced from a Si alkoxide and a magnetic substance is supported on the polymer.
Description
【0001】[0001]
【発明の属する技術分野】本発明は吸着剤や吸着用担
体、抽出剤や抽出用担体、触媒担体等に使用することが
可能な磁性及び強度を有し、その磁性体含有量や形状、
粒径、細孔特性の制御が可能なシリカゲル及びその製造
方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has magnetism and strength that can be used as an adsorbent, an adsorption carrier, an extractant, an extraction carrier, a catalyst carrier, etc.
The present invention relates to a silica gel whose particle size and pore characteristics can be controlled and a method for producing the same.
【0002】[0002]
【従来の技術】従来より吸着剤や吸着用の固相担体とし
てはシリカゲル等が良く知られているが、これらを用い
る場合、その回収のためには遠心分離法や、あるいはフ
ィルターによる濾過等を行わなければならず、簡便な方
法ではなかった。また、吸着、抽出操作においては、目
的とする吸着物や抽出物とそれ以外の他の物質とを分離
する必要があるが、従来の遠心分離法、カラム分離法、
電気泳動法等の手法では分離のみでも長時間を要し、簡
便な方法ではないという課題を有していた。2. Description of the Related Art Conventionally, silica gel and the like are well known as an adsorbent and a solid phase carrier for adsorption. In the case of using these, a centrifugal separation method or filtration with a filter is used for their recovery. It had to be done and was not a convenient method. In addition, in the adsorption and extraction operations, it is necessary to separate the target adsorbate or extract from other substances, but conventional centrifugation, column separation,
In a technique such as an electrophoresis method, there is a problem that it takes a long time only for separation, and it is not a simple method.
【0003】そのため、目的の物質を分離する手段とし
て、特開昭60−244251に記載のように、粒子に
強磁性体を付加し、磁場を与えることにより、目的の粒
子を回収するという方法はあった。しかし、この方法で
は、吸着、抽出、反応操作等において、粒子が均一に分
散した状態にてその操作を実施したい場合においても強
磁性体自身が自己会合してしまい、粒子の存在状態を自
由に制御できないという欠点を有していた。[0003] Therefore, as a means for separating a target substance, a method of adding a ferromagnetic substance to a particle and applying a magnetic field to recover the target particle as described in JP-A-60-244251 has been proposed. there were. However, in this method, even when it is desired to carry out the operation in a state where the particles are uniformly dispersed in the adsorption, extraction, reaction operation, etc., the ferromagnetic material itself self-associates, and the state of the particles can be freely determined. It had the disadvantage that it could not be controlled.
【0004】近年、強磁性体自身の自己会合をなくす方
法として、特開昭61−181967に記載のように、
磁性体として超常磁性体を用いた方法が開示されてい
る。また、特表平4−501957に記載のように、検
体を固定する固相として超常磁性体を含んだ磁気粒子を
用い、蛋白質、細胞、DNAの分離、分析等に利用でき
ることが開示されている。更に、特許番号255425
0号には、ゲルマトリックスに超常磁性磁気反応性物質
を捕捉させ運動性の高い試薬担体について開示してい
る。これらに記載の超常磁性磁気粒子は、酸化鉄等の強
磁性体を永久磁性を維持するのに必要な磁区の大きさよ
り小さい微粒子にして粒子中に含ませたもので、外部磁
場により強磁性を示す性質を有する。その性質を利用
し、分散させる時には外部磁場をかけず、凝集させる時
に外部磁場をかけて溶液中の粒子を凝集させる方法であ
る。しかしながら、これらの方法においても、磁性粒子
の物性を充分に制御した方法により得たものとはいえ
ず、磁性粒子を種々の用途に応じてその物性を充分に制
御し、最適な磁性粒子を製造する方法が望まれていた。In recent years, as a method of eliminating self-association of a ferromagnetic material itself, as described in Japanese Patent Application Laid-Open No. 61-181967,
A method using a superparamagnetic material as a magnetic material is disclosed. Further, as described in Japanese Patent Application Laid-Open No. 4-501957, it is disclosed that magnetic particles containing a superparamagnetic substance can be used as a solid phase for immobilizing a sample, and can be used for separation, analysis, and the like of proteins, cells, and DNA. . Further, Patent No. 255425
No. 0 discloses a reagent carrier having high mobility in which a superparamagnetic magnetically reactive substance is captured in a gel matrix. The superparamagnetic magnetic particles described in the above are ferromagnetic materials such as iron oxide formed into fine particles smaller than the size of a magnetic domain necessary for maintaining permanent magnetism and contained in the particles. It has the properties shown. Utilizing this property, it is a method in which an external magnetic field is not applied when dispersing, and an external magnetic field is applied when aggregating, so that particles in a solution are aggregated. However, even in these methods, it cannot be said that the magnetic particles are obtained by a method in which the physical properties of the magnetic particles are sufficiently controlled, and the physical properties of the magnetic particles are sufficiently controlled in accordance with various uses to produce optimal magnetic particles. A way to do that was desired.
【0005】又、磁性シリカゲルを得る方法としては特
開平7−235407に記載のように、ケイ酸ナトリウ
ムの中和反応によりシリカゾルを得て、このゾル中に磁
性体を添加し、更にゲル化させる方法がある。しかし、
この方法では磁性体の沈殿のために一定量の磁性体を導
入することができず、更に、磁性粒子の物性を制御する
ことができないという欠点があった。又、ケイ酸ナトリ
ウム中に磁性粒子を添加し、ゲル化させることにより磁
性ゲルを得る方法でも、目的量の磁性体を含有させるこ
とはできず、磁性粒子の物性を制御することができない
という課題を有していた。As a method for obtaining magnetic silica gel, as described in JP-A-7-235407, a silica sol is obtained by a neutralization reaction of sodium silicate, a magnetic substance is added to the sol, and the gel is further gelled. There is a way. But,
In this method, a certain amount of the magnetic substance cannot be introduced due to the precipitation of the magnetic substance, and further, the physical properties of the magnetic particles cannot be controlled. In addition, even with a method of obtaining a magnetic gel by adding magnetic particles to sodium silicate and gelling the same, the desired amount of a magnetic substance cannot be contained, and the physical properties of the magnetic particles cannot be controlled. Had.
【0006】一方、このような磁性粒子を触媒担体とし
て使用する時は、反応効率が良く、固定床として利用で
きたり、反応又は処理後に分離回収するために、その形
状、物性として、球状で多孔性であり、しかも耐圧強度
の大きな磁性粒子を製造する方法が望まれていた。On the other hand, when such magnetic particles are used as a catalyst carrier, they have high reaction efficiency and can be used as a fixed bed, or they can be separated and recovered after the reaction or treatment. There has been a demand for a method for producing magnetic particles having high pressure resistance and high pressure resistance.
【0007】[0007]
【発明が解決しようとする課題】本発明の目的は、上記
に記載した従来の課題等を解決する、すなわち、吸着剤
や吸着用担体、抽出剤や抽出用担体、触媒担体等に使用
できるような、形状、粒径、細孔径、強度物性を有する
磁性シリカゲル及びその製造方法を提供するものであ
る。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and the like, that is, to provide an adsorbent and a carrier for extraction, an extractant and a carrier for extraction, a catalyst carrier and the like. An object of the present invention is to provide a magnetic silica gel having a suitable shape, particle size, pore size, and strength properties, and a method for producing the same.
【0008】[0008]
【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意検討を重ねた結果、一定量の磁性体
をシリカゲルに含ませて磁性を付与し、その平均粒径、
平均細孔径、細孔容積、BET比表面積といった形状、
粒径、細孔特性等の物性を制御することで種々の吸着用
担体、抽出用担体、触媒担体として有用となること、更
にその製造方法として、Siアルコキシドポリマーと磁
性体を接触させて球状化し、その後ゲル化させ、洗浄、
乾燥処理を施すことで容易に製造できることを見出だ
し、本発明を完成させるに至った。Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, a certain amount of a magnetic substance has been added to silica gel to provide magnetism, and the average particle size and
Shapes such as average pore diameter, pore volume, BET specific surface area,
By controlling physical properties such as particle size and pore characteristics, it will be useful as various adsorption carriers, extraction carriers, and catalyst carriers.Furthermore, as a method of producing the same, a Si alkoxide polymer is brought into contact with a magnetic material to form a spheroid. , Then gel, wash,
It has been found that the composition can be easily manufactured by performing a drying treatment, and the present invention has been completed.
【0009】すなわち、本発明は、磁性体の含有量が全
量の5〜50重量%、平均粒径が1〜200μm、平均
細孔径が3〜200nm、細孔容積が0.1〜2.5ミ
リリットル/g、BET比表面積が100〜800m2
/gである磁性シリカゲル及びその製造方法である。That is, according to the present invention, the content of the magnetic substance is 5 to 50% by weight of the total amount, the average particle diameter is 1 to 200 μm, the average pore diameter is 3 to 200 nm, and the pore volume is 0.1 to 2.5. Milliliter / g, BET specific surface area 100-800 m 2
/ G of magnetic silica gel and a method for producing the same.
【0010】以下、本発明を詳細に説明する。Hereinafter, the present invention will be described in detail.
【0011】まず、本発明の磁性シリカゲルについて説
明する。First, the magnetic silica gel of the present invention will be described.
【0012】本発明の磁性シリカゲルにおいて用いられ
る磁性体とは、磁力を与えられることで強い磁性を発生
し、磁力が無くなるとその磁性も無くなる、いわゆる超
常磁性を示すものである。このような性質を示すものと
しては、例えば、スピネル型やプランバイト型のフェラ
イトや、鉄,ニッケル,コバルト等を主成分とした合金
が挙げられる。これらの中でも、マグネタイトやフェラ
イトの超微粒子を水や有機溶媒に懸濁させて得られる磁
性流体が好ましく用いられる。The magnetic material used in the magnetic silica gel of the present invention is a material that exhibits so-called superparamagnetism that generates strong magnetism when given a magnetic force and loses the magnetism when the magnetic force is lost. Examples of those exhibiting such properties include spinel-type and plumbite-type ferrites and alloys containing iron, nickel, cobalt, or the like as a main component. Among these, a magnetic fluid obtained by suspending ultrafine particles of magnetite or ferrite in water or an organic solvent is preferably used.
【0013】ここで、本発明で使用される磁性流体につ
いて更に詳しく述べると、磁性流体とは、その直径が約
10nm以下のマグネタイトやフェライトなどの磁性微
粒子を水や有機溶媒中に懸濁させたコロイド状の流体で
あり、以下で述べる本発明の磁性シリカゲルを製造する
方法においては、磁性流体中の磁性微粒子を溶媒中に安
定化させるために界面活性剤を添加して使用することも
できる。Here, the magnetic fluid used in the present invention will be described in more detail. The term "magnetic fluid" refers to a magnetic fluid having a diameter of about 10 nm or less, such as magnetite or ferrite, suspended in water or an organic solvent. In the method for producing a magnetic silica gel of the present invention described below, which is a colloidal fluid, a surfactant may be added for stabilizing the magnetic fine particles in the magnetic fluid in a solvent.
【0014】この磁性体をシリカゲルに含ませ、磁性を
有したシリカゲルが得られるわけであるが、磁性体の含
有量としては、磁性シリカゲル全量の5〜50重量%の
範囲であることが必須である。磁性体の含有量が5重量
%未満である場合には、得られた磁性シリカゲルの磁性
が充分ではないため、実際の用途面において反応効率、
分離操作において問題となり、50重量%を越える場合
には、磁性シリカゲルの形状が球状化できなかったり、
充分な多孔性を付与できなかったりといった物性面で問
題があり、更に、得られる磁性シリカゲルの表面を化学
的に修飾させることが困難となることがあるため好まし
くない。This magnetic material is included in silica gel to obtain a silica gel having magnetism. The content of the magnetic material must be in the range of 5 to 50% by weight based on the total amount of the magnetic silica gel. is there. When the content of the magnetic material is less than 5% by weight, the magnetic properties of the obtained magnetic silica gel are not sufficient, so that the reaction efficiency,
If the amount exceeds 50% by weight, the shape of the magnetic silica gel cannot be spherical,
There is a problem in physical properties such that sufficient porosity cannot be imparted, and furthermore, it is difficult to chemically modify the surface of the obtained magnetic silica gel, which is not preferable.
【0015】本発明の磁性シリカゲルの平均粒径の範囲
としては、1〜200μmである。平均粒径が1μm未
満の場合には、粒子が小さすぎるため、分離の際に時間
がかかり過ぎたり、触媒用担体として固定床にて利用す
る際に望ましい流速が得られないなどの問題があるた
め、好ましくなく、200μmを越える場合には、実際
の使用面においてゲルが破壊されたりしてその形状を維
持できなるなどの問題が生じ、好ましくない。The average particle size of the magnetic silica gel of the present invention is in the range of 1 to 200 μm. When the average particle size is less than 1 μm, there are problems that the particles are too small, so that it takes too much time for separation, and that a desired flow rate cannot be obtained when the catalyst is used in a fixed bed as a carrier for a catalyst. Therefore, when the thickness is more than 200 μm, there is a problem that the gel is broken on an actual surface of use and the shape cannot be maintained, which is not preferable.
【0016】本発明の磁性シリカゲルの平均細孔径の範
囲としては、3〜200nmである。平均細孔径が3n
m未満の場合には径が小さすぎて吸着、抽出、触媒等の
担体としての反応効率が悪くなり、200nmを越える
場合にはその形状保持性が悪くなるため好ましくない。The range of the average pore diameter of the magnetic silica gel of the present invention is from 3 to 200 nm. Average pore size is 3n
If it is less than m, the diameter is too small and the reaction efficiency as a carrier for adsorption, extraction, and catalyst is deteriorated. If it is more than 200 nm, the shape retention is deteriorated, which is not preferable.
【0017】本発明の磁性シリカゲルの細孔容積の範囲
としては、0.1〜2.5ミリリットル/gである。細
孔容積が0.1ミリリットル/g未満の場合にはその用
途面である担体としての性能、特に反応効率が悪くな
り、2.5ミリリットル/gを越える場合にはその形状
保持性が悪くなるため好ましくない。The range of the pore volume of the magnetic silica gel of the present invention is 0.1 to 2.5 ml / g. When the pore volume is less than 0.1 ml / g, the performance as a carrier, particularly the reaction efficiency, is deteriorated, and when the pore volume exceeds 2.5 ml / g, the shape retention is deteriorated. Therefore, it is not preferable.
【0018】本発明の磁性シリカゲルのBET比表面積
の範囲としては、100〜800m2/gである。BE
T比表面積が100m2/g未満の場合は磁性シリカゲ
ルの表面積が小さいため、その用途面である担体として
の性能、特に反応効率が悪くなり、800m2/gを越
える場合にはその形状保持性が悪くなるため好ましくな
い。The range of the BET specific surface area of the magnetic silica gel of the present invention is 100 to 800 m 2 / g. BE
Since T ratio surface area is of less than 100 m 2 / g smaller surface area of the magnetic silica gel, performance as a carrier, which is the application surface, in particular the reaction efficiency is deteriorated, its shape retention when exceeding 800 m 2 / g Is not preferred because it becomes worse.
【0019】次に、本発明の磁性シリカゲルの製造方法
について説明する。Next, a method for producing the magnetic silica gel of the present invention will be described.
【0020】本発明の磁性シリカゲル中の磁性体の出発
原料としては、磁性流体であることが望ましく、その製
造方法は公知の方法により実施できるが、以下の工程か
らなる製造方法により、更に容易に製造できる。The starting material of the magnetic substance in the magnetic silica gel of the present invention is desirably a magnetic fluid, and its production method can be carried out by a known method. Can be manufactured.
【0021】a)Siアルコキシドを酸で加水分解しS
iアルコキシドポリマーを生成する工程 b)アルコキシドポリマーに磁性体を加える工程 c)アルコキシドポリマーと磁性体の混合溶液を水に分
散させ球状化し、アルカリでゲル化する工程 d)ゲルを水洗後、溶媒置換し、乾燥させる工程 ここで、本発明の製造方法において使用されるSiアル
コキシドとしては、以下に示す製造方法において、加水
分解によりポリマーを生成するものであれば特に制限な
く用いることができ、例えば、Si(OCH3)4、Si
(OC2H5)4、Si(O−n−C3H7)4、Si(O−
i−C3H7)4、Si(O−n−C4H9)4、Si(O−
i−C4H9)4等を挙げることができる。また、本発明
の製造方法においては、Siアルコキシド以外に、他の
金属アルコキシドを添加してもよい。A) Hydrolysis of Si alkoxide with acid to form S
i) a step of forming an alkoxide polymer b) a step of adding a magnetic substance to the alkoxide polymer c) a step of dispersing a mixed solution of the alkoxide polymer and the magnetic substance in water to form a spheroid and gelling with an alkali d) washing the gel with water and replacing the solvent with water Then, the drying step Here, as the Si alkoxide used in the production method of the present invention, in the production method described below, it can be used without particular limitation as long as it produces a polymer by hydrolysis, for example, Si (OCH 3 ) 4 , Si
(OC 2 H 5) 4, Si (O-n-C 3 H 7) 4, Si (O-
i-C 3 H 7) 4 , Si (O-n-C 4 H 9) 4, Si (O-
i-C 4 H 9) can be given 4 or the like. In the production method of the present invention, other metal alkoxides may be added in addition to the Si alkoxide.
【0022】まずSiのアルコキシドを酸性溶液中でゲ
ル化しない程度に部分的に加水分解する。酸性溶液とし
ては酸、水および有機溶媒の混合溶液が好ましい。この
とき使用される酸としては、塩酸,硫酸,硝酸等の無機
酸、酢酸,ギ酸等の有機酸が挙げられる。有機溶媒とし
ては酸、水及びSiアルコキシドと均一に混合するもの
が好ましく、特にメタノール,エタノール等のアルコー
ルが好ましい。添加する水の量はSiアルコキシドを部
分的に加水分解する量、すなわちSiアルコキシド1モ
ルに対して4モル以内であることが好ましい。加水分解
反応の条件としては、Siアルコキシドの加水分解を均
一に行わせるため、混合溶液を10〜80℃の温度の範
囲で、30分〜5時間撹拌させることで良い。First, the alkoxide of Si is partially hydrolyzed in an acidic solution so as not to gel. As the acidic solution, a mixed solution of an acid, water and an organic solvent is preferable. Examples of the acid used at this time include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, and organic acids such as acetic acid and formic acid. As the organic solvent, those which are uniformly mixed with an acid, water and a Si alkoxide are preferable, and alcohols such as methanol and ethanol are particularly preferable. The amount of water to be added is preferably an amount that partially hydrolyzes the Si alkoxide, that is, within 4 moles per mole of the Si alkoxide. As a condition of the hydrolysis reaction, the mixed solution may be stirred at a temperature of 10 to 80 ° C. for 30 minutes to 5 hours in order to uniformly hydrolyze the Si alkoxide.
【0023】Siアルコキシドの加水分解終了後、次に
上記Siアルコキシド溶液を重合する。重合条件として
は、10〜200℃の温度の範囲で1 〜48時間行なう
ことで良く、反応後、溶媒あるいは反応で生成したアル
コール等を留去してSiアルコキシドポリマーを得る。
Siアルコキシドポリマーの重合度は水の量、重合温
度、重合時間等により制御することができる。Siアル
コキシドポリマーの重合度と粘度の間には相関があり、
Siアルコキシドポリマーの重合度が高くなるほど粘度
は高くなる。Siアルコキシドポリマーの重合度は室温
における粘度で10センチポイズ以上でゲル化が起こら
ない程度であればよい。例えば、JIS−K−7117
−1987に準拠し、25℃における粘度を測定するこ
とで確認できる。更に、磁性体を添加する際に均一に分
散させるためにはSiアルコキシドポリマーの重合度は
25℃における粘度が20〜1000mPa・s(=セ
ンチポイズ)であることが好ましい。粘度がこの範囲に
あればゲル化時において球状のゲルを得ることできる。After completion of the hydrolysis of the Si alkoxide, the Si alkoxide solution is polymerized. The polymerization may be carried out at a temperature in the range of 10 to 200 ° C. for 1 to 48 hours. After the reaction, the solvent or the alcohol produced by the reaction is distilled off to obtain a Si alkoxide polymer.
The polymerization degree of the Si alkoxide polymer can be controlled by the amount of water, the polymerization temperature, the polymerization time and the like. There is a correlation between the degree of polymerization and the viscosity of the Si alkoxide polymer,
The higher the degree of polymerization of the Si alkoxide polymer, the higher the viscosity. The degree of polymerization of the Si alkoxide polymer may be at least 10 centipoise in viscosity at room temperature, and may be such that gelation does not occur. For example, JIS-K-7117
It can be confirmed by measuring the viscosity at 25 ° C according to -1987. Furthermore, in order to uniformly disperse the magnetic material when it is added, the polymerization degree of the Si alkoxide polymer is preferably 20 to 1000 mPa · s (= centipoise) at 25 ° C. If the viscosity is in this range, a spherical gel can be obtained during gelation.
【0024】得られたSiアルコキシドポリマーはその
ままあるいは有機溶媒で希釈する。Siアルコキシドポ
リマーを有機溶媒で希釈する場合に用いる有機溶媒とし
ては、シクロヘキサン,ベンゼン等の炭化水素、1−ブ
タノール,2−ブタノ−ル,1−ペンタノール,2−ペ
ンタノール,1−ヘキサノール,2−ヘキサノール等の
アルコール等の、水にほとんど溶解しないものが好まし
い。また、有機溶媒で希釈する場合のSiアルコキシド
ポリマーの濃度としては、球状のゲルを得るために希釈
された溶液全量に対して20重量%以上であることが好
ましい。The obtained Si alkoxide polymer is diluted as it is or with an organic solvent. Examples of the organic solvent used for diluting the Si alkoxide polymer with an organic solvent include hydrocarbons such as cyclohexane and benzene, 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 1-hexanol, Those which hardly dissolve in water, such as alcohols such as hexanol, are preferred. Further, the concentration of the Si alkoxide polymer when diluted with an organic solvent is preferably 20% by weight or more based on the total amount of the solution diluted to obtain a spherical gel.
【0025】次にSiアルコキシドポリマーに磁性体を
加える。使用される磁性体は水又は有機溶媒に分散させ
て懸濁液状又は溶液状としたものを使用できる。磁性体
としては、Siアルコキシドポリマーへの分散性の面か
ら磁性流体が好ましく用いられ、この磁性流体として
は、市販品等をそのままあるいは溶媒置換等を実施して
用いることができる。Next, a magnetic substance is added to the Si alkoxide polymer. The magnetic substance used may be a suspension or a solution dispersed in water or an organic solvent. As the magnetic material, a magnetic fluid is preferably used from the viewpoint of dispersibility in the Si alkoxide polymer. As the magnetic fluid, a commercially available product or the like can be used as it is or after performing solvent substitution or the like.
【0026】ここで、磁性体をポリマーへ分散させるに
あたっては、Siアルコキシドポリマーやその希釈溶媒
との混合溶液に磁性体を均一に分散させることが好まし
く、このため、磁性体と混合する溶媒としては、極性の
低い有機溶媒を用いると良い。この有機溶媒としては、
例えば、シクロヘキサン,ベンゼン等の炭化水素、1−
ブタノール,2−ブタノ−ル,1−ペンタノール,2−
ペンタノール,1−ヘキサノール,2−ヘキサノール等
のアルコール等が挙げられる。Here, in dispersing the magnetic substance into the polymer, it is preferable to uniformly disperse the magnetic substance in a mixed solution of the Si alkoxide polymer and its diluting solvent. It is preferable to use a low-polarity organic solvent. As this organic solvent,
For example, hydrocarbons such as cyclohexane and benzene, 1-
Butanol, 2-butanol, 1-pentanol, 2-butanol
Examples include alcohols such as pentanol, 1-hexanol, and 2-hexanol.
【0027】更に、溶媒と混合された磁性体や磁性流体
中の磁性体を分散させ、安定化させるために、磁性体の
表面や表面付近を界面活性剤等で処理したり、界面活性
剤を添加するすることが好ましい。又、磁性体をSiア
ルコキシドポリマーと混合する際に、磁性体を均一に分
散させるために、Siアルコキシドポリマーは、その重
合度を低くすることが好ましく、特にSiアルコキシド
ポリマーの25℃における粘度として、20〜200m
Pa・sにすることが好ましい。Further, in order to disperse and stabilize the magnetic substance mixed with the solvent or the magnetic substance in the magnetic fluid, the surface of the magnetic substance or the vicinity of the surface is treated with a surfactant or the like. It is preferable to add. Further, when mixing the magnetic material with the Si alkoxide polymer, in order to uniformly disperse the magnetic material, the Si alkoxide polymer preferably has a low degree of polymerization, and in particular, the viscosity of the Si alkoxide polymer at 25 ° C. 20-200m
Preferably, the pressure is Pa · s.
【0028】このように、磁性体の選択、Siアルコキ
シドポリマーの重合度、Siアルコキシドポリマーの希
釈溶媒を組み合わせることにより、磁性体をSiアルコ
キシドポリマーへ均一に分散させることができる。As described above, by combining the selection of the magnetic substance, the degree of polymerization of the Si alkoxide polymer, and the dilution solvent of the Si alkoxide polymer, the magnetic substance can be uniformly dispersed in the Si alkoxide polymer.
【0029】次に、Siアルコキシドポリマー又はこれ
に希釈溶媒を加えた混合溶液と磁性体との混合液又は混
合物を、撹拌下に水中に分散させ球状化する。ここで、
この混合物を分散させる水へ界面活性剤、ポリビニルア
ルコール等の分散剤を添加してもよい。Next, a mixed solution or a mixture of the Si alkoxide polymer or a mixed solution obtained by adding a diluting solvent to the Si alkoxide polymer and a magnetic material is dispersed in water with stirring to form a spheroid. here,
A dispersant such as a surfactant and polyvinyl alcohol may be added to water for dispersing the mixture.
【0030】球状化後、上記記載の混合液又は混合物へ
塩基性物質を添加してゲル化する。こので使用される塩
基性物質としては、アンモニア,水酸化ナトリウム,水
酸化カリウム等の無機塩基性化合物、アミン,尿素等の
有機塩基性化合物が挙げられる。ゲル化の際にSiアル
コキシドポリマー中のアルコキシ基を完全に加水分解す
るためには、pH8〜11、30〜100℃の温度範囲
で、1〜10時間撹拌することで良い。After spheroidization, a basic substance is added to the above-mentioned mixed solution or mixture to gel. Examples of the basic substance used here include inorganic basic compounds such as ammonia, sodium hydroxide and potassium hydroxide, and organic basic compounds such as amines and urea. In order to completely hydrolyze the alkoxy group in the Si alkoxide polymer at the time of gelation, stirring may be performed at a pH of 8 to 11 and a temperature of 30 to 100 ° C. for 1 to 10 hours.
【0031】生成したゲルは濾過、遠心分離等により分
離し、水洗後乾燥する。濾過、分離の方法としては公知
の方法を用いることができる。又、洗浄の際に使用する
水としては、水、温水等の通常使用できる水であれば良
い。The formed gel is separated by filtration, centrifugation, etc., washed with water and dried. A known method can be used as a method of filtration and separation. The water used for washing may be any water that can be used normally, such as water or warm water.
【0032】更に、乾燥条件としては、ゲル内部及びゲ
ル表面の水分を直接蒸発させるとゲルが収縮し、凝集す
るため以下の3つのいずれかの方法で乾燥する。Further, as for drying conditions, the gel shrinks and coagulates when the water inside the gel and the surface of the gel are directly evaporated, so that the gel is dried by any of the following three methods.
【0033】第一の方法は、ゲル中の水分を有機溶媒で
置換した後、有機溶媒を加熱除去する方法である。ここ
で用いられる有機溶媒としては、水より低表面張力の溶
媒が好ましく、水と任意の割合で溶け合うものが更に好
ましい。ここで、水より低表面張力の溶媒とは、水のW
ilhelm法による25℃における空気に対する表面
張力が72dyn/cm(=10-3Nm-1)であること
から、これより小さい表面張力を有する溶媒が選択でき
る。この溶媒の選択については、以下に示す第一の方法
や第二の方法においても同様である。水、溶媒の留去は
通常、常圧で行なうが減圧下で行なってもよい。また、
この方法で、ゲルの凝集が強い場合は再度、水や有機溶
媒中に分散させた後、有機溶媒に置換し、有機溶媒を加
熱除去することにより、ゲルの凝集をなくすことができ
る。The first method is to replace the water in the gel with an organic solvent and then remove the organic solvent by heating. As the organic solvent used here, a solvent having a lower surface tension than water is preferable, and a solvent that dissolves in water at an arbitrary ratio is more preferable. Here, the solvent having a lower surface tension than water is defined as W of water.
Since the surface tension against air at 25 ° C. by the ilhelm method is 72 dyn / cm (= 10 −3 Nm −1 ), a solvent having a surface tension smaller than this can be selected. The selection of the solvent is the same in the first method and the second method described below. The distillation of water and the solvent is usually performed at normal pressure, but may be performed under reduced pressure. Also,
In this method, when the aggregation of the gel is strong, the gel is dispersed again in water or an organic solvent, then replaced with an organic solvent, and the organic solvent is removed by heating, whereby the aggregation of the gel can be eliminated.
【0034】第二の方法は、ゲル中の水分を有機溶媒で
置換した後、有機溶媒を加熱除去する方法である。ここ
で用いられる有機溶媒としては、水より高沸点、低表面
張力の溶媒が好ましく、水と任意の割合で溶け合うもの
が更に好ましい。例えば、ホルムアミド、N,N−ジメ
チルホルムアミド、エチレングリコール、プロピレング
リコール等が挙げられる。水と任意の割合で溶け合わな
い溶媒の場合は水および置換溶媒と任意の割合で溶け合
う溶媒と混合することにより使用できる。このような溶
媒の組み合わせとしては、1−ブタノール,1−ペンタ
ノール,2−ペンタノール,1−ヘキサノール,2−ヘ
キサノール等の高沸点アルコールと、メタノール,エタ
ノール等の低沸点アルコールとの組み合わせが挙げられ
る。The second method is to replace the water in the gel with an organic solvent and then remove the organic solvent by heating. As the organic solvent used here, a solvent having a higher boiling point and a lower surface tension than water is preferable, and a solvent which dissolves in water at an arbitrary ratio is more preferable. For example, formamide, N, N-dimethylformamide, ethylene glycol, propylene glycol and the like can be mentioned. In the case of a solvent that does not dissolve in water at an arbitrary ratio, the solvent can be used by mixing with a solvent that dissolves in an arbitrary ratio with water and a substitution solvent. Examples of such a combination of solvents include a combination of a high-boiling alcohol such as 1-butanol, 1-pentanol, 2-pentanol, 1-hexanol, and 2-hexanol and a low-boiling alcohol such as methanol and ethanol. Can be
【0035】第三の方法は、有機溶媒を加えて加熱し
て、その溶媒と共にゲル中の水を留去する方法である。
ここで用いられる有機溶媒としては、水より高沸点、低
表面張力の溶媒が好ましく、水と共沸するものが更に好
ましい。例えば1−ブタノール,イソブチルアルコー
ル,1−ペンタノール,2−ペンタノール,3−ペンタ
ノール,イソアミルアルコール等のアルコール、酪酸メ
チル,酪酸エチル等のエステル、シクロペンタノン,3
−ヘプタノン,4−ヘプタノン等のケトン等が挙げられ
る。水、溶媒の留去は通常、常圧で行なうが減圧下で行
なってもよい。The third method is a method in which an organic solvent is added and heated, and water in the gel is distilled off together with the solvent.
As the organic solvent used here, a solvent having a higher boiling point and a lower surface tension than water is preferable, and a solvent azeotropic with water is more preferable. For example, alcohols such as 1-butanol, isobutyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, isoamyl alcohol, esters such as methyl butyrate and ethyl butyrate, cyclopentanone, 3
And ketones such as -heptanone and 4-heptanone. The distillation of water and the solvent is usually performed at normal pressure, but may be performed under reduced pressure.
【0036】また、ゲルの乾燥前や後にゲルと同容量程
度の水と共にオートクレーブ中で100〜300℃に加
熱して1〜24時間水熱処理を行なうこともできる。こ
の処理の際に、温度、時間、液のpHを変えることによ
り細孔分布、細孔容積を制御することができる。Before or after drying the gel, the gel may be heated to 100 to 300 ° C. in an autoclave together with about the same volume of water as the gel and subjected to hydrothermal treatment for 1 to 24 hours. During this treatment, the pore distribution and pore volume can be controlled by changing the temperature, time, and pH of the liquid.
【0037】以上の手法により、磁性体の含有量が全量
の5〜50重量%、平均粒径が1 〜200μm、平均細
孔径が3〜200nm、細孔容積が0.1〜2.5ミリ
リットル/g、比表面積が100〜800m2/gであ
る本発明の磁性シリカゲルが得られる。By the above method, the content of the magnetic substance is 5 to 50% by weight of the total amount, the average particle diameter is 1 to 200 μm, the average pore diameter is 3 to 200 nm, and the pore volume is 0.1 to 2.5 ml. / G and a magnetic silica gel of the present invention having a specific surface area of 100 to 800 m 2 / g are obtained.
【0038】また、本発明の磁性シリカゲルは吸着、抽
出、反応用として、そのまま使用することができると共
に、表面を化学修飾し、生物由来材料である、抗体、酵
素等の蛋白質、ペプチドや核酸などと結合させ、免疫測
定、核酸の測定等の各種の測定法やアフィニティークロ
マトグラフィー等の分離手段などに用いられる固定化担
体として使用することもできる。The magnetic silica gel of the present invention can be used as it is for adsorption, extraction, and reaction, and its surface is chemically modified to produce biologically-derived materials such as proteins such as antibodies and enzymes, peptides and nucleic acids. It can also be used as an immobilized carrier used in various measuring methods such as immunoassay and nucleic acid measurement, and separation means such as affinity chromatography.
【0039】[0039]
【実施例】以下、実施例により本発明を具体的に説明す
るが、これらに実施例により本発明はなんら限定される
ものでない。なお、各評価は以下に示した方法によって
実施した。EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples. In addition, each evaluation was implemented by the method shown below.
【0040】実施例で使用した磁性流体について、その
磁気ヒステリシスを振動試料型磁力計(VSM)(理研
電子製、型式:BHV−50)を用いて、その磁気ヒス
テリシスを測定したところ、超常磁性を示すものであっ
た。The magnetic hysteresis of the magnetic fluid used in the examples was measured using a vibrating sample magnetometer (VSM) (manufactured by Riken Denshi, Model: BHV-50). It was shown.
【0041】(1)磁性体の含有量 Siについては、磁性シリカゲルを王水により分解後、
過塩素酸処理し、重量法により測定した。Fe(鉄)に
ついては、硝酸・フッ化水素酸により分解後、過塩素酸
処理し、ICP発光法により測定した。(1) Content of magnetic substance For Si, magnetic silica gel was decomposed with aqua regia,
It was treated with perchloric acid and measured by a gravimetric method. Fe (iron) was decomposed with nitric acid / hydrofluoric acid, treated with perchloric acid, and measured by ICP emission method.
【0042】(2)平均粒径 磁性シリカゲルの一部を、走査型電子顕微鏡ISI−1
30(COULTER社製)で観察し、インタセプト法
により求めた。(2) Average Particle Size A part of the magnetic silica gel was subjected to scanning electron microscope ISI-1
30 (manufactured by COULTER) and determined by an intercept method.
【0043】(3)平均細孔径及び細孔容積 ポアサイザ9320(MICROMERITICS社
製)を用い、水銀圧入法により0〜207MPaの圧力
範囲で測定した。(3) Average Pore Size and Pore Volume The pores were measured using a pore sizer 9320 (manufactured by MICROMERITICS) in a pressure range of 0 to 207 MPa by a mercury intrusion method.
【0044】(4)BET比表面積 MONOSORB(米国QUANTACHROME社
製)を用い、BET式1点法により測定した。(4) BET Specific Surface Area BON specific surface area was measured by MONOSORB (manufactured by QUANTACHROME, USA) by the BET one-point method.
【0045】(5)粘度 JIS−K−7118−1987に準拠し、B型粘度計
(東京計器社製、型式:BH)により、25℃における
粘度を測定した。(5) Viscosity The viscosity at 25 ° C. was measured with a B-type viscometer (Model: BH, manufactured by Tokyo Keiki Co., Ltd.) in accordance with JIS-K-7118-1987.
【0046】(6)ゲルの表面分析 X線光電子分光分析装置(Perkin−Elmer社
製、ESCA5400MC)により、表面のFeとSi
を分析した。(6) Surface Analysis of Gel Fe and Si on the surface were measured with an X-ray photoelectron spectrometer (ESCA5400MC, manufactured by Perkin-Elmer).
Was analyzed.
【0047】(7)ゲルの内部分析 磁性体が磁性シリカゲルの内部に分布していることを以
下の方法により測定した。すなわち、磁性シリカゲルを
エポキシ樹脂で包埋し、ミクロトームにて切断した。こ
こ後、表面をC(カーボン)蒸着し、これをJCMA−
733(日本電子社製)を用いて、先ず走査型電子顕微
鏡(SEM)観察し、更にXMAによるSi、Feの面
分析を行なった。(7) Internal Analysis of Gel The distribution of the magnetic substance inside the magnetic silica gel was measured by the following method. That is, magnetic silica gel was embedded in an epoxy resin and cut with a microtome. After this, C (carbon) is deposited on the surface, and this is JCMA-
Using 733 (manufactured by JEOL Ltd.), first, scanning electron microscope (SEM) observation was performed, and further, Si and Fe surface analysis was performed by XMA.
【0048】実施例1 Si(OC2H5)4 150.0gとエタノール 6
2.7gの混合溶液を40℃で30分撹拌した。この混
合溶液を40℃で撹拌しながら1/100N−塩酸水溶
液 14.9gを滴下した。この溶液を1時間撹拌した
後、90℃で4時間、更に165℃で12時間撹拌して
留出物を除去し、Siアルコキシドポリマーを得た。こ
の操作は窒素雰囲気中で行なった。得られたSiアルコ
キシドポリマーの粘度を前記した方法により測定したと
ころ、粘度は室温で50センチポイズであった。得られ
たSiアルコキシドポリマーのうち70.0gを1−ペ
ンタノール70.0gに溶解した。この溶液に市販の磁
性流体((株)フェローテック製、:全量に対して、磁
性体量35重量%、界面活性剤量10重量%、1−ブタ
ノール溶液含有) 20mlを添加し、均一溶液を得
た。この溶液を撹拌しながら80℃の5%ポリビニルア
ルコール水溶液 560.0gに投入した。30分撹拌
後、5%のNH4OH水溶液 12.5ミリリットルを
加え、80℃で3時間撹拌した。得られた懸濁液を70
℃の温水 1000ミリリットルに投入し、固体を濾取
後、温水で洗浄した。洗浄後、2−プロパノールで3回
置換し、真空乾燥し、球状の磁性シリカゲルを得た。得
られた磁性シリカゲルのFe含有量、Si/Fe組成
(A)、ESCAによる表面組成分析からの表面Si/
Feモル比(B)、表面Si分布を示す表面Si/Fe
モル比とSi/Fe組成の比(B/A)、平均粒径、B
ET比表面積、水銀圧入法による平均細孔径、細孔容積
等を前記した方法により測定し、その結果を表1に示し
た。Example 1 150.0 g of Si (OC 2 H 5 ) 4 and ethanol 6
2.7 g of the mixed solution was stirred at 40 ° C. for 30 minutes. While stirring this mixed solution at 40 ° C., 14.9 g of a 1/100 N aqueous hydrochloric acid solution was added dropwise. After the solution was stirred for 1 hour, the mixture was stirred at 90 ° C. for 4 hours and further at 165 ° C. for 12 hours to remove distillate, thereby obtaining a Si alkoxide polymer. This operation was performed in a nitrogen atmosphere. When the viscosity of the obtained Si alkoxide polymer was measured by the method described above, the viscosity was 50 centipoise at room temperature. 70.0 g of the obtained Si alkoxide polymer was dissolved in 70.0 g of 1-pentanol. To this solution, 20 ml of a commercially available magnetic fluid (manufactured by Ferrotec Co., Ltd .: 35% by weight of magnetic substance, 10% by weight of surfactant, containing 1-butanol solution, based on the total amount) was added, and the homogeneous solution was added. Obtained. This solution was added to 560.0 g of a 5% aqueous solution of polyvinyl alcohol at 80 ° C. while stirring. After stirring for 30 minutes, 12.5 ml of a 5% aqueous NH 4 OH solution was added, and the mixture was stirred at 80 ° C. for 3 hours. The resulting suspension is
The mixture was poured into 1000 ml of warm water at ℃, and the solid was collected by filtration and washed with warm water. After washing, the mixture was replaced with 2-propanol three times and dried under vacuum to obtain spherical magnetic silica gel. The Fe content of the obtained magnetic silica gel, the Si / Fe composition (A), and the surface Si /
Fe molar ratio (B), surface Si / Fe showing surface Si distribution
Molar ratio and Si / Fe composition ratio (B / A), average particle size, B
The ET specific surface area, the average pore diameter by the mercury intrusion method, the pore volume, and the like were measured by the methods described above, and the results are shown in Table 1.
【0049】[0049]
【表1】 [Table 1]
【0050】実施例2 実施例1と同様の方法により、水洗処理まで行なったゲ
ルに1−ブタノール1000ミリリットルを加え、13
0℃に加熱して水を共沸留去後、1−ブタノールを留去
した。得られた粉末を真空乾燥することにより、球状の
磁性シリカゲルを得た。得られた磁性シリカゲルを実施
例と同様の方法により測定し、その結果を表1に示し
た。Example 2 In the same manner as in Example 1, 1000 ml of 1-butanol was added to the gel which had been subjected to the water washing treatment.
After heating to 0 ° C and azeotropic distillation of water, 1-butanol was distilled off. The resulting powder was dried under vacuum to obtain spherical magnetic silica gel. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0051】実施例3 実施例1と同様の方法により、水洗処理まで行なったゲ
ルをN,N−ジメチルホルムアミドで溶媒置換し、真空
乾燥を行なうことにより、球状の磁性シリカゲルを得
た。得られた磁性シリカゲルを実施例と同様の方法によ
り測定し、その結果を表1に示した。Example 3 In the same manner as in Example 1, the gel which had been subjected to the water washing treatment was replaced with N, N-dimethylformamide as a solvent, and vacuum-dried to obtain spherical magnetic silica gel. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0052】実施例4 1/100N−塩酸水溶液の添加量を16.8gにした
以外は実施例1と同様にし、球状の磁性シリガゲルを得
た。この時、得られたSiアルコキシドポリマーの粘度
を前記した方法により測定したところ、粘度は室温で9
50センチポイズであった。得られた磁性シリカゲルを
実施例と同様の方法により測定し、その結果を表1に示
した。Example 4 A spherical magnetic silica gel was obtained in the same manner as in Example 1 except that the amount of the 1 / 100N-hydrochloric acid aqueous solution was changed to 16.8 g. At this time, the viscosity of the obtained Si alkoxide polymer was measured by the method described above.
It was 50 centipoise. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0053】実施例5 Siアルコキシドポリマーの希釈溶液として1−ペンタ
ノールを30g使用した以外は実施例1と同様にし、球
状の磁性シリガゲルを得た。得られた磁性シリカゲルを
実施例と同様の方法により測定し、その結果を表1に示
した。Example 5 A spherical magnetic silica gel was obtained in the same manner as in Example 1 except that 30 g of 1-pentanol was used as a dilute solution of the Si alkoxide polymer. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0054】実施例6 磁性流体の添加量を10mlにした以外は実施例1と同
様にし、球状の磁性シリガゲルを得た。得られた磁性シ
リカゲルを実施例と同様の方法により測定し、その結果
を表1に示した。Example 6 A spherical magnetic silica gel was obtained in the same manner as in Example 1 except that the amount of the magnetic fluid was changed to 10 ml. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0055】実施例7 磁性流体の添加量を30mlにした以外は実施例1と同
様にし、球状の磁性シリカゲルを得た。得られた磁性シ
リカゲルを実施例と同様の方法により測定し、その結果
を表1に示した。Example 7 Spherical magnetic silica gel was obtained in the same manner as in Example 1 except that the amount of the magnetic fluid was changed to 30 ml. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0056】比較例1 1/100N−塩酸水溶液の添加量を12.0gにした
以外は実施例1と同様にした。この時、得られたSiア
ルコキシドポリマーの粘度を前記した方法により測定し
たところ、粘度は室温で8センチポイズであった。得ら
れたゲルは球状にはならず、不定形であった。得られた
磁性シリカゲルを平均細孔径及び細孔容積を除いて実施
例と同様の方法により測定し、その結果を表1に示し
た。Comparative Example 1 The procedure of Example 1 was repeated except that the amount of the 1 / 100N aqueous hydrochloric acid solution was changed to 12.0 g. At this time, when the viscosity of the obtained Si alkoxide polymer was measured by the method described above, the viscosity was 8 centipoise at room temperature. The obtained gel did not become spherical but was amorphous. The obtained magnetic silica gel was measured in the same manner as in the example except for the average pore diameter and the pore volume, and the results are shown in Table 1.
【0057】比較例2 Siアルコキシドポリマーの希釈溶媒としてエタノール
を使用した以外は実施例1と同様にした。この場合は磁
性流体を添加したとき、磁性流体中の磁性体が沈殿して
しまった。得られた磁性シリカゲルを実施例と同様の方
法により測定し、その結果を表1に示した。Comparative Example 2 The procedure of Example 1 was repeated except that ethanol was used as a solvent for diluting the Si alkoxide polymer. In this case, when the magnetic fluid was added, the magnetic substance in the magnetic fluid precipitated. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0058】比較例3 磁性体量が35重量%、界面活性剤の量が0重量%、溶
媒が1−ブタノールである磁性流体を使用した以外は実
施例1と同様にした。この場合は磁性流体を添加したと
き、磁性流体中の磁性体が沈殿してしまった。得られた
磁性シリカゲルを実施例と同様の方法により測定し、そ
の結果を表1に示した。Comparative Example 3 The procedure of Example 1 was repeated except that a magnetic fluid containing 35% by weight of a magnetic substance, 0% by weight of a surfactant, and 1-butanol as a solvent was used. In this case, when the magnetic fluid was added, the magnetic substance in the magnetic fluid precipitated. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0059】比較例4 Siアルコキシドポリマーの希釈溶媒の1−ペンタノー
ルの量を280gとした以外は実施例1と同様にした。
得られたゲルは球状にはならず、不定形であった。得ら
れた磁性シリカゲルを平均細孔径及び細孔容積を除いて
実施例と同様の方法により測定し、その結果を表1に示
した。Comparative Example 4 The procedure of Example 1 was repeated except that the amount of 1-pentanol as a diluting solvent for the Si alkoxide polymer was changed to 280 g.
The obtained gel did not become spherical but was amorphous. The obtained magnetic silica gel was measured in the same manner as in the example except for the average pore diameter and the pore volume, and the results are shown in Table 1.
【0060】比較例5 15重量%の硫酸水溶液25gが入った反応容器を20
℃に設定し撹拌した。この反応容器に、撹拌しながらS
iO2濃度が12重量%のケイ酸ナトリウム水溶液を7
1g添加し、ケイ酸を得た。更に、この溶液に市販の磁
性流体((株)フェローテック製:全量に対して、磁性
体量35重量%、界面活性剤量10重量%、1−ブタノ
ール溶液含有)を22mlを添加し、1時間反応させて
ゲル化させ、更に80℃に昇温して2時間反応させてゲ
ル化を完了させた。温水にて洗浄後、乾燥させ、磁性ゲ
ルを得た。この時、磁性流体を添加した際に磁性体が凝
集して沈殿してしまい、シリカゲル中に分散しなかっ
た。又、ゲルも球状にならず不定形であった。得られた
磁性シリカゲルを平均細孔径及び細孔容積を除いて実施
例と同様の方法により測定し、その結果を表1に示し
た。Comparative Example 5 A reaction vessel containing 25 g of a 15% by weight aqueous sulfuric acid solution was placed in a 20
C. and stirred. In this reaction vessel, while stirring,
An aqueous solution of sodium silicate having an iO 2 concentration of 12% by weight
1 g was added to obtain silicic acid. Further, 22 ml of a commercially available magnetic fluid (manufactured by Ferrotech Co., Ltd .: 35% by weight of magnetic substance, 10% by weight of surfactant, containing 1-butanol solution, based on the total amount) was added to this solution, and 1 The mixture was allowed to react for a period of time to form a gel, and the temperature was further raised to 80 ° C., and the mixture was reacted for 2 hours to complete the gelation. After washing with warm water and drying, a magnetic gel was obtained. At this time, when the magnetic fluid was added, the magnetic substance aggregated and precipitated, and was not dispersed in the silica gel. In addition, the gel was not spherical, but was amorphous. The obtained magnetic silica gel was measured in the same manner as in the example except for the average pore diameter and the pore volume, and the results are shown in Table 1.
【0061】比較例6 比較例5と同様にしてゲル化を完了させ、温水にて洗浄
後、水に分散させ、湿式粉砕し、次いで、入り口温度1
00℃、出口温度60℃にセットしたディスク式のスプ
レードライヤーにより噴霧乾燥し、磁性シリカゲルを得
た。この時、磁性流体を添加した際に磁性体が凝集して
沈殿してしまい、シリカゲル中に分散しなかった。得ら
れた磁性シリカゲルを実施例と同様の方法により測定
し、その結果を表1に示した。Comparative Example 6 Gelation was completed in the same manner as in Comparative Example 5, washed with warm water, dispersed in water, wet-pulverized, and then cooled to an inlet temperature of 1%.
Spray-drying was performed with a disk-type spray dryer set at 00 ° C and an outlet temperature of 60 ° C to obtain magnetic silica gel. At this time, when the magnetic fluid was added, the magnetic substance aggregated and precipitated, and was not dispersed in the silica gel. The obtained magnetic silica gel was measured in the same manner as in the examples, and the results are shown in Table 1.
【0062】[0062]
【発明の効果】本発明の磁性シリカゲルは球状であり、
その内部に充分な量の磁性体を含有し、かつ大きな細孔
容積を持ち、更にその強度も大きいことが明らかである
ことから吸着剤や吸着用担体、抽出剤や抽出用担体、触
媒担体として好適に使用できる。また、本発明の製造方
法によれば、種々の用途に応じた細孔特性を有する磁性
シリカゲルを容易に製造することが可能である。The magnetic silica gel of the present invention is spherical,
It contains a sufficient amount of magnetic material inside, has a large pore volume, and it is clear that its strength is also large, so it can be used as an adsorbent, an adsorption carrier, an extractant, an extraction carrier, a catalyst carrier. It can be suitably used. Further, according to the production method of the present invention, it is possible to easily produce magnetic silica gel having pore characteristics according to various uses.
Claims (9)
の含有量が全量の5〜50重量%、平均粒径が1〜20
0μm、平均細孔径が3〜200nm、細孔容積が0.
1〜2.5ミリリットル/g、BET比表面積が100
〜800m2/gであることを特徴とする磁性シリカゲ
ル。1. A silica gel containing a magnetic substance, wherein the content of the magnetic substance is 5 to 50% by weight of the total amount and the average particle size is 1 to 20%.
0 μm, average pore diameter of 3 to 200 nm, pore volume of 0.
1 to 2.5 ml / g, BET specific surface area is 100
A magnetic silica gel characterized by having a molecular weight of 800800 m 2 / g.
とした請求項1記載の磁性シリカゲル。2. The magnetic silica gel according to claim 1, wherein the magnetic material has a superparamagnetic structure.
した請求項1又は請求項2に記載の磁性シリカゲル。3. The magnetic silica gel according to claim 1, wherein the magnetic silica gel is spherical.
かつ表面はシリカ層構造を有することを特徴とした請求
項1ないし3のいずれかに記載の磁性シリカゲル。4. The magnetic substance is present inside a magnetic silica gel,
4. The magnetic silica gel according to claim 1, wherein the surface has a silica layer structure.
た状態で存在することを特徴とした請求項4に記載の磁
性シリカゲル。5. The magnetic silica gel according to claim 4, wherein the magnetic substance is present in a state of being uniformly dispersed inside the silica gel.
とする請求項1ないし5のいずれかに記載の磁性シリカ
ゲルの製造方法。 a)Siアルコキシドを酸で加水分解し、Siアルコキ
シドポリマーを生成する工程 b)アルコキシドポリマーに磁性体を加える工程 c)アルコキシドポリマーと磁性体の混合物を水と接触
させて球状化し、さらにアルカリと接触させてゲル化す
る工程 d)ゲルを洗浄後、溶媒置換し、乾燥させる工程6. The method for producing magnetic silica gel according to claim 1, wherein the production process comprises the following steps. a) a step of hydrolyzing a Si alkoxide with an acid to form a Si alkoxide polymer b) a step of adding a magnetic substance to the alkoxide polymer c) a mixture of the alkoxide polymer and the magnetic substance is brought into contact with water to form a spheroid, and further contacted with an alkali D) a step of washing the gel, replacing the solvent, and drying the gel
法の工程a)において、Siアルコキシドポリマーの粘
度が25℃において20〜1000mPa・sであるこ
とを特徴とする磁性シリカゲルの製造方法。7. A method for producing a magnetic silica gel according to claim 6, wherein in step a) of the method for producing a magnetic silica gel according to claim 6, the viscosity of the Si alkoxide polymer is 20 to 1000 mPa · s at 25 ° C.
ゲルの製造方法の工程b)において、磁性体の原料とし
て磁性流体を使用することを特徴とする磁性シリカゲル
の製造方法。8. A method for producing a magnetic silica gel according to claim 6 or 7, wherein in step b) of the method for producing a magnetic silica gel according to claim 6 or 7, a magnetic fluid is used as a raw material of the magnetic substance.
シリカゲルの製造方法の工程d)において、その処理が
ゲル中の水分を、水より低表面張力の有機溶媒で置換し
た後、除去することを特徴とする磁性シリカゲルの製造
方法。9. The method according to claim 6, wherein in the step d) of the method for producing a magnetic silica gel, the treatment comprises replacing water in the gel with an organic solvent having a lower surface tension than water. A method for producing a magnetic silica gel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01384897A JP3735990B2 (en) | 1997-01-28 | 1997-01-28 | Method for producing magnetic silica gel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01384897A JP3735990B2 (en) | 1997-01-28 | 1997-01-28 | Method for producing magnetic silica gel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10214710A true JPH10214710A (en) | 1998-08-11 |
JP3735990B2 JP3735990B2 (en) | 2006-01-18 |
Family
ID=11844709
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01384897A Expired - Fee Related JP3735990B2 (en) | 1997-01-28 | 1997-01-28 | Method for producing magnetic silica gel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3735990B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003071281A (en) * | 2001-09-06 | 2003-03-11 | Fukui Prefecture | Porous photocatalyst and method for manufacturing the same |
JP2003528455A (en) * | 2000-03-24 | 2003-09-24 | キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング | Porous ferromagnetic or ferrimagnetic glass particles for molecular isolation |
KR100406851B1 (en) * | 2001-08-21 | 2003-11-21 | 이종협 | Production Method of Mesoporous Silica comprising Magnetite used for Heavy Metal Ion Adsorbents |
JP2005200426A (en) * | 1999-10-18 | 2005-07-28 | Ferx Inc | Magnetic targeted carrier |
WO2005052581A3 (en) * | 2003-11-25 | 2005-09-09 | Magnamedics Gmbh | Spherical and magnetic silicagel carriers having an increase surface for purifying nucleic acids |
JP2008222527A (en) * | 2007-03-15 | 2008-09-25 | Japan Science & Technology Agency | Method for producing porous silica gel and silica glass |
US7601491B2 (en) | 2003-02-06 | 2009-10-13 | Becton, Dickinson And Company | Pretreatment method for extraction of nucleic acid from biological samples and kits therefor |
JP2010083739A (en) * | 2008-10-02 | 2010-04-15 | Dowa Electronics Materials Co Ltd | Magnetic particle, carrier core material and manufacturing method of the same, and carrier and developer |
KR100995981B1 (en) | 2008-12-30 | 2010-11-23 | 서울대학교산학협력단 | Method for preparing nano Fenton system wastewater treatment agent using magnetic nanoparticles / polymer core-cell nanoparticles |
JP2013527594A (en) * | 2010-03-08 | 2013-06-27 | コンセホ スペリオール デ インベスティガシオネス シエンティフィカス(セエセイセ) | Method for obtaining materials with superparamagnetic behavior |
JP2014228282A (en) * | 2013-05-17 | 2014-12-08 | 学校法人慈恵大学 | Aggregate of radioactive material decontamination particle, production method thereof, and decontamination method of contaminant |
JP5658666B2 (en) * | 2009-07-29 | 2015-01-28 | 株式会社東芝 | Oil adsorbent |
JP2015024407A (en) * | 2014-09-12 | 2015-02-05 | 株式会社東芝 | Oil adsorbent and method for manufacturing oil adsorbent |
JP2015523299A (en) * | 2012-05-07 | 2015-08-13 | マサチューセッツ インスティテュート オブ テクノロジー | Compositions, methods and systems for separation of carbon-based nanostructures |
CN113559830A (en) * | 2021-08-11 | 2021-10-29 | 天津博蕴纯化装备材料科技有限公司 | Magnetic porous spherical silica gel microspheres and preparation method thereof |
CN118370421A (en) * | 2024-06-25 | 2024-07-23 | 上海元纶新材料有限公司 | Silica gel impregnated glove and preparation method thereof |
-
1997
- 1997-01-28 JP JP01384897A patent/JP3735990B2/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005200426A (en) * | 1999-10-18 | 2005-07-28 | Ferx Inc | Magnetic targeted carrier |
JP2003528455A (en) * | 2000-03-24 | 2003-09-24 | キアゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング | Porous ferromagnetic or ferrimagnetic glass particles for molecular isolation |
JP2012106241A (en) * | 2000-03-24 | 2012-06-07 | Qiagen Gmbh | Porous ferromagnetic or ferrimagnetic glass particle for isolating molecule |
KR100406851B1 (en) * | 2001-08-21 | 2003-11-21 | 이종협 | Production Method of Mesoporous Silica comprising Magnetite used for Heavy Metal Ion Adsorbents |
JP2003071281A (en) * | 2001-09-06 | 2003-03-11 | Fukui Prefecture | Porous photocatalyst and method for manufacturing the same |
US7601491B2 (en) | 2003-02-06 | 2009-10-13 | Becton, Dickinson And Company | Pretreatment method for extraction of nucleic acid from biological samples and kits therefor |
US7919333B2 (en) | 2003-11-25 | 2011-04-05 | Magnamedics Gmbh | Spherical and magnetical silicagel carriers having an increase surface for purifying nucleic acids |
WO2005052581A3 (en) * | 2003-11-25 | 2005-09-09 | Magnamedics Gmbh | Spherical and magnetic silicagel carriers having an increase surface for purifying nucleic acids |
JP2008222527A (en) * | 2007-03-15 | 2008-09-25 | Japan Science & Technology Agency | Method for producing porous silica gel and silica glass |
JP2010083739A (en) * | 2008-10-02 | 2010-04-15 | Dowa Electronics Materials Co Ltd | Magnetic particle, carrier core material and manufacturing method of the same, and carrier and developer |
KR100995981B1 (en) | 2008-12-30 | 2010-11-23 | 서울대학교산학협력단 | Method for preparing nano Fenton system wastewater treatment agent using magnetic nanoparticles / polymer core-cell nanoparticles |
JP5658666B2 (en) * | 2009-07-29 | 2015-01-28 | 株式会社東芝 | Oil adsorbent |
JP2013527594A (en) * | 2010-03-08 | 2013-06-27 | コンセホ スペリオール デ インベスティガシオネス シエンティフィカス(セエセイセ) | Method for obtaining materials with superparamagnetic behavior |
JP2015523299A (en) * | 2012-05-07 | 2015-08-13 | マサチューセッツ インスティテュート オブ テクノロジー | Compositions, methods and systems for separation of carbon-based nanostructures |
EP2847130B1 (en) * | 2012-05-07 | 2022-08-24 | Massachusetts Institute of Technology | Methods for separating carbon-based nanostructures |
JP2014228282A (en) * | 2013-05-17 | 2014-12-08 | 学校法人慈恵大学 | Aggregate of radioactive material decontamination particle, production method thereof, and decontamination method of contaminant |
JP2015024407A (en) * | 2014-09-12 | 2015-02-05 | 株式会社東芝 | Oil adsorbent and method for manufacturing oil adsorbent |
CN113559830A (en) * | 2021-08-11 | 2021-10-29 | 天津博蕴纯化装备材料科技有限公司 | Magnetic porous spherical silica gel microspheres and preparation method thereof |
CN113559830B (en) * | 2021-08-11 | 2023-08-18 | 天津博蕴纯化装备材料科技有限公司 | Magnetic porous spherical silica gel microspheres and preparation method thereof |
CN118370421A (en) * | 2024-06-25 | 2024-07-23 | 上海元纶新材料有限公司 | Silica gel impregnated glove and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3735990B2 (en) | 2006-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3735990B2 (en) | Method for producing magnetic silica gel | |
JP2757964B2 (en) | Magnetic attractive particles and method for producing the same | |
Xiao et al. | Preparation and highlighted applications of magnetic microparticles and nanoparticles: a review on recent advances | |
CN101559951B (en) | A kind of method for preparing nanometer silicon dioxide hollow microsphere | |
JPH03504303A (en) | encapsulated superparamagnetic particles | |
CN108250495A (en) | Monodisperse agarose superparamagnetism method for preparing microsphere | |
CN105126715A (en) | Magnetic mesoporous silica microsphere material with yolk structure and preparing method thereof | |
JP2005263550A (en) | Highly dispersed silica nano hollow particles and method for producing the same | |
CN109850953A (en) | A kind of preparation method of the magnetic composite microsphere based on the efficient package assembly of ferroferric oxide nano granules | |
Liu et al. | Easy access to selective binding and recyclable separation of histidine-tagged proteins using Ni2+-decorated superparamagnetic nanoparticles | |
JP2000012314A (en) | Large pore magnetic silica particles and method for producing the same | |
WO2012167593A1 (en) | Preparation of disordered porous silicon dioxide material and use of peregal in preparation thereof | |
JP2000040608A (en) | Magnetic silica particles and method for producing the same | |
CN103213995B (en) | Preparation method of silica sol containing potassium with controllable particle size | |
CN1480251A (en) | Ferromagnetic porous silica gel microspheres and preparation method thereof | |
CN108144592B (en) | Superparamagnetic composite nanoparticle, preparation method thereof and method for efficiently and selectively recovering phosphate | |
CN1232553C (en) | Ferromagnetic microsphere medium made from urea-formaldehyde resin and its preparation method | |
JP4196459B2 (en) | Magnetic carrier, method for producing the same, and method for extracting nucleic acid using the same | |
CN112675821B (en) | Magnetic covalent organic framework material for glycopeptide enrichment based on amphiphilic site and preparation method and application thereof | |
Shao et al. | Characterization and optimization of mesoporous magnetic nanoparticles for immobilization and enhanced performance of porcine pancreatic lipase | |
CN105087552B (en) | A method of extraction animal tissue nucleic acid | |
CN109616308B (en) | Magnetic powder extracted from spherical nanometer iridium oxide DNA and production method thereof | |
CN104004226A (en) | Modified aluminum hydroxide and preparation method thereof | |
JPS62138310A (en) | Monodisperse metal oxide preparation method | |
JP2000012313A (en) | Magnetic silica particles and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051004 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051017 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091104 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101104 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111104 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121104 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131104 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |