[go: up one dir, main page]

JPH10209973A - Optical wavelength multiplex transmission circuit - Google Patents

Optical wavelength multiplex transmission circuit

Info

Publication number
JPH10209973A
JPH10209973A JP9019607A JP1960797A JPH10209973A JP H10209973 A JPH10209973 A JP H10209973A JP 9019607 A JP9019607 A JP 9019607A JP 1960797 A JP1960797 A JP 1960797A JP H10209973 A JPH10209973 A JP H10209973A
Authority
JP
Japan
Prior art keywords
wavelength
optical
output
transmission
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9019607A
Other languages
Japanese (ja)
Inventor
Yasushi Hara
康 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9019607A priority Critical patent/JPH10209973A/en
Priority to FR9800545A priority patent/FR2759511A1/en
Publication of JPH10209973A publication Critical patent/JPH10209973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/572Wavelength control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/506Multiwavelength transmitters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate the setting of optical transmission wavelength by measuring the output wavelength of each optical transmitter in an optical wavelength multiplex transmission circuit based on an electric reference value without utilizing the wavelength characteristics of optical element. SOLUTION: Optical transmission units 11-13 respectively generate the optical signal of single wavelength with respectively different wavelengths and the wavelengths of respective optical signals are respectively controlled by wavelength control circuits 21-23. The optical signals of optical transmission units 11-13 are multiplexed in wavelengths by an optical synthesizer 1. The wavelength arrangement of transmission optical signals is outputted as the change of peak power on time base from a wavelength variable filter 4 by a sawtooth wave impressed from a sweep control circuit 3. At a wavelength monitor circuit 7, the time from the start of sweep to the input of every peak power is measured, the quantity of deviation from reference time is supplied to the wavelength control circuits 21-23 as a control signal and when the quantity of deviation exceeds a prescribed value, an alarm is outputted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光波長多重送信回
路における各光波長の所定値からの偏移量を監視し、ま
た、監視結果に基づいて各光波長を適正値に制御する手
段に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a means for monitoring the amount of deviation of each optical wavelength from a predetermined value in an optical wavelength multiplexing transmission circuit and controlling each optical wavelength to an appropriate value based on the monitoring result. .

【0002】[0002]

【従来の技術】従来、この種の波長監視機能付き光波長
多重送信回路として、例えば1995年電子情報通信学
会通信ソサイエティ大会講演論文集2、366頁,B−
699、宮地他、「高密度波長多重伝送における波長安
定化方式」が知られている。
2. Description of the Related Art Conventionally, as this kind of optical wavelength division multiplexing transmission circuit with a wavelength monitoring function, for example, Proceedings of the Communication Society Conference of the Institute of Electronics, Information and Communication Engineers 1995, p.
699, Miyaji et al., "Wavelength Stabilization Method in Dense Wavelength Division Multiplexing Transmission".

【0003】図4及び図5は、前記従来の光波長多重送
信回路のブロック図及び動作説明図であり、光波長λ
1,λ2,λ3の光信号をそれぞれ出力する光送信回路
161〜163、光波長λ1,λ2,λ3に対して図5
(A)に示すような透過特性を有する光合波器101、
光分波器102、光/電気変換回路103、増幅回路1
04、掛算器151〜153及び制御回路105によっ
て構成されている。
FIGS. 4 and 5 are a block diagram and an operation explanatory diagram of the conventional optical wavelength division multiplexing transmission circuit, respectively.
5 for the optical wavelengths λ1, λ2, and λ3.
An optical multiplexer 101 having transmission characteristics as shown in FIG.
Optical splitter 102, optical / electrical conversion circuit 103, amplifier circuit 1
04, multipliers 151 to 153 and the control circuit 105.

【0004】各光送信回路161〜163は、半導体レ
ーザ(以下LDという)141〜143を駆動するため
の電流を供給するバイアス回路111〜113と、それ
ぞれ固有の周波数f1,f2,f3を発振する発振器1
21〜123と、加算回路131〜133を備えてい
る。
[0004] Each of the optical transmission circuits 161 to 163 oscillates a bias circuit 111 to 113 for supplying a current for driving a semiconductor laser (hereinafter referred to as an LD) 141 to 143 and a unique frequency f1, f2, f3. Oscillator 1
21 to 123 and adders 131 to 133.

【0005】次に、その動作について説明する。LD1
41〜143を駆動するバイアス回路111〜113の
出力には発振器121〜123の出力がそれぞれ加算さ
れているので、LD141〜143の出力する光信号
は、それぞれ周波数f1〜f3によって振幅変調された
ものとなっている。光合波器101によって波長多重さ
れた出力は分波器102において分岐され、光/電気変
換回路103で電気信号に変換される。光/電気変換回
路103の出力は増幅回路104で増幅された後、掛算
器151〜153において変調信号に同期した周波数f
1〜f3の信号と掛け合わせることにより同期検波され
る。
Next, the operation will be described. LD1
Since the outputs of the oscillators 121 to 123 are respectively added to the outputs of the bias circuits 111 to 113 for driving 41 to 143, the optical signals output from the LDs 141 to 143 are amplitude-modulated by the frequencies f1 to f3, respectively. It has become. The output wavelength-multiplexed by the optical multiplexer 101 is split by the splitter 102 and converted into an electric signal by the optical / electrical conversion circuit 103. After the output of the optical / electrical conversion circuit 103 is amplified by the amplifier circuit 104, the multipliers 151 to 153 output the frequency f synchronized with the modulation signal.
Synchronous detection is performed by multiplying the signals by 1 to f3.

【0006】したがって、光送信回路161〜163か
ら出力される光信号の波長が光合波器101の固有透過
波長からずれると、光損失が増加し、変調信号f1〜f
3の振幅も光信号の減衰に比例して小さくなる。このた
め、掛算器151〜153から出力される同期検波出力
の大きさは、図5(B)に示すように光合波器101の
透過波長特性とLD141〜143の出力する光波長に
依存し、光合波器101の透過中心波長とLD141〜
143の光出力波長が一致したときに最大となり、LD
141〜143の光出力波長が光合波器101の透過中
心波長からずれるに従って小さくなる。
Therefore, when the wavelength of the optical signal output from the optical transmission circuits 161 to 163 deviates from the inherent transmission wavelength of the optical multiplexer 101, the optical loss increases, and the modulated signals f1 to f
3 also decreases in proportion to the attenuation of the optical signal. Therefore, the magnitude of the synchronous detection output output from the multipliers 151 to 153 depends on the transmission wavelength characteristic of the optical multiplexer 101 and the optical wavelength output from the LDs 141 to 143, as shown in FIG. The transmission center wavelength of the optical multiplexer 101 and the LD 141 to
143 is the maximum when the optical output wavelengths match, and LD
The light output wavelengths of 141 to 143 become smaller as they deviate from the transmission center wavelength of the optical multiplexer 101.

【0007】この同期検波出力を制御回路105にて各
光波長ごとに監視し、同期検波出力が常に最大となるよ
うにLD141〜143の出力波長を制御することによ
り、光送信波長を光合波器101の透過波長特性に適合
させている。
The synchronous detection output is monitored by the control circuit 105 for each optical wavelength, and the output wavelengths of the LDs 141 to 143 are controlled so that the synchronous detection output is always maximized. 101 is adapted to the transmission wavelength characteristic.

【0008】[0008]

【発明が解決しようとする課題】このように従来の光波
長多重送信回路においては、光合波器101の透過波長
特性に適合するように、LD141〜143の出力光波
長が制御されているので、その出力光波長は光合波器1
01の透過波長特性によって一義的に決定されてしま
い、透過特性の波長間隔が狭すぎる場合には隣接する波
長間での干渉の問題が生じ、また、波長間隔が広すぎる
場合には限られた帯域内での効率的な波長配置ができ
ず、必ずしも伝送特性に最適な波長に設定されないとい
う問題があった。
As described above, in the conventional optical wavelength multiplexing transmission circuit, the output light wavelengths of the LDs 141 to 143 are controlled so as to conform to the transmission wavelength characteristics of the optical multiplexer 101. The output light wavelength is the optical multiplexer 1
01 is unambiguously determined by the transmission wavelength characteristic. If the wavelength interval of the transmission characteristic is too narrow, there is a problem of interference between adjacent wavelengths, and if the wavelength interval is too wide, it is limited. There has been a problem that efficient wavelength arrangement within a band cannot be performed, and the wavelength is not always set to an optimum value for transmission characteristics.

【0009】また、光合波器の固有波長に合わせて制御
を行っており、波長間隔の監視を行っていないため、光
合波器の経時変化や制御系の異常によって波長が変動し
てもその波長変動のずれ量を監視することができない。
In addition, since the control is performed in accordance with the specific wavelength of the optical multiplexer and the wavelength interval is not monitored, even if the wavelength changes due to the aging of the optical multiplexer or abnormality of the control system, the wavelength is not changed. The deviation amount of fluctuation cannot be monitored.

【0010】更に、LDの光波長を制御する目的で光送
信信号に制御用の変調信号を重畳しているため信号波形
のアイ開口度が劣化し、その結果信号のSN比が劣化す
るという問題があった。
Further, since a modulation signal for control is superimposed on the optical transmission signal for the purpose of controlling the optical wavelength of the LD, the eye opening degree of the signal waveform deteriorates, and as a result, the SN ratio of the signal deteriorates. was there.

【0011】[0011]

【課題を解決するための手段】本願発明は、半導体レー
ザの出力波長を、光学素子の波長特性を利用せずに電気
的な基準値の設定に基づいて制御するようにしたもので
あり、光波長の異なる少なくとも2個以上の光送信ユニ
ットを有する光波長多重送信回路において、前記各光送
信ユニットから出力される光波長を時間軸上の信号に変
換する波長掃引手段と、該波長掃引手段からの出力に基
づいて各送信ユニットから出力される光の波長を監視す
る手段とを備えていることを特徴とするものである。
According to the present invention, an output wavelength of a semiconductor laser is controlled based on the setting of an electrical reference value without using the wavelength characteristics of an optical element. In an optical wavelength multiplexing transmission circuit having at least two or more optical transmission units having different wavelengths, a wavelength sweeping unit for converting an optical wavelength output from each of the optical transmission units into a signal on a time axis, And means for monitoring the wavelength of the light output from each transmitting unit based on the output of the transmitting unit.

【0012】[0012]

【発明の実施の形態】以下に、本発明の実施の形態を図
面に基づいて説明する。図1は、本発明による波長多重
送信回路の一例を示すものである。光送信ユニット11
〜13はそれぞれ波長が異なる単一波長の光信号を発生
し、各光信号の波長はそれぞれ波長制御回路21〜23
によって制御されている。光送信ユニット11〜13の
光信号は光合波器1において波長多重され、光分波器2
で二分岐されて一方は送信出力となり、他方の出力は波
長監視用として利用される。光合波器1としては波長無
依存型の光合波器が用いられるが、アレイ導波路格子
(AWG:Arrayed Waveguide Grating)を使用しても
良い。光分波器2の波長監視用出力は電圧制御形波長可
変フィルタ4に入力されて特定の波長成分のみが抽出さ
れ、光/電気変換回路5に入力される。電圧制御形波長
可変フィルタ4は掃引制御回路3からの制御電圧により
その透過光の中心波長が変化するように構成されてお
り、例えば市販されている誘電体多層膜干渉フィルタを
使用したものが用いられる。掃引制御回路3は電圧制御
形波長可変フィルタ4の透過中心波長を掃引するために
例えば鋸波状の制御電圧を出力する。光/電気変換回路
5は電圧制御形波長可変フィルタ4から出力された光パ
ワーレベルを電圧に変換する。ピーク検出回路6は光/
電気変換回路5からの出力電圧の変化を検出することに
よりピーク電圧を検出するものであり、ピーク電圧が検
出されたときにパルス信号を出力する。波長監視回路7
は掃引制御回路3からの掃引開始信号とピーク検出回路
6からのパルス信号に基づいて、各パルス信号の時間間
隔を検出する。即ち、ピーク検出回路6から出力される
1番目、2番目、・・・、n番目のパルスにはそれぞれ
掃引開始からの掃引時間間隔の基準値が予め設定されて
おり、波長監視回路7はそれぞれのパルス検出時間と掃
引時間間隔の基準値とを比較してその差分情報を波長制
御回路21〜23に出力する。また波長監視回路7はパ
ルス検出時間と基準値の差の監視も行っており、その時
間差が所定値以上となったときには警報信号を出力す
る。波長制御回路21〜23はそれぞれ波長監視回路7
からの差分情報に応じた制御信号を光送信ユニット11
〜13に送出し、各光送信ユニットの送信光波長を制御
する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a wavelength division multiplexing transmission circuit according to the present invention. Optical transmission unit 11
To 13 generate optical signals of a single wavelength having different wavelengths, and the wavelengths of the optical signals are respectively set to wavelength control circuits 21 to 23
Is controlled by The optical signals of the optical transmission units 11 to 13 are wavelength-multiplexed in the optical multiplexer 1,
, One of which becomes a transmission output, and the other output is used for wavelength monitoring. Although a wavelength-independent optical multiplexer is used as the optical multiplexer 1, an arrayed waveguide grating (AWG) may be used. The wavelength monitoring output of the optical demultiplexer 2 is input to a voltage control type tunable filter 4 to extract only a specific wavelength component, and is input to an optical / electrical conversion circuit 5. The voltage control type wavelength tunable filter 4 is configured such that the center wavelength of the transmitted light is changed by the control voltage from the sweep control circuit 3. For example, a filter using a commercially available dielectric multilayer interference filter is used. Can be The sweep control circuit 3 outputs, for example, a sawtooth control voltage in order to sweep the transmission center wavelength of the voltage control type tunable filter 4. The optical / electrical conversion circuit 5 converts the optical power level output from the voltage control type tunable filter 4 into a voltage. The peak detection circuit 6 outputs light /
The peak voltage is detected by detecting a change in the output voltage from the electric conversion circuit 5, and a pulse signal is output when the peak voltage is detected. Wavelength monitoring circuit 7
Detects the time interval between each pulse signal based on the sweep start signal from the sweep control circuit 3 and the pulse signal from the peak detection circuit 6. That is, the first, second,..., And n-th pulses output from the peak detection circuit 6 have preset reference values for the sweep time interval from the start of the sweep, respectively. Is compared with the reference value of the sweep time interval, and the difference information is output to the wavelength control circuits 21 to 23. The wavelength monitoring circuit 7 also monitors the difference between the pulse detection time and the reference value, and outputs an alarm signal when the time difference becomes equal to or greater than a predetermined value. The wavelength control circuits 21 to 23 each include a wavelength monitoring circuit 7
Control signal corresponding to the difference information from the optical transmission unit 11
To 13 to control the transmission light wavelength of each optical transmission unit.

【0013】図2は図1の波長監視回路7の更に詳細な
構成を示すブロック図である。ピーク検出回路6からの
信号は時間間隔検出回路8に入力される。また、タイミ
ング回路9は掃引制御回路3からの掃引タイミング信号
を入力し、掃引開始時間情報を時間間隔検出回路8に出
力する。時間間隔検出回路8は掃引開始時間とパルス入
力の時間差を検出し、1番目のパルス入力時間情報を時
間差検出回路31に、2番目のパルス入力時間情報を時
間差検出回路32に、・・・n番目のパルス入力時間情
報を時間差検出回路33に出力する。時間差検出回路3
1〜33は入力された時間間隔情報とそれぞれ固有の基
準値(Ref.1〜Ref.n)とを比較し、差分信号
を時間差出力としてそれぞれに対応した波長制御回路2
1〜23に出力する。また、時間差検出回路31〜33
の時間差出力は比較回路41に入力され、検出パルス入
力時間と基準値との時間差が所定の時間の範囲内である
か否かが判定され、所定の時間以上となった場合には警
報信号が出力される。
FIG. 2 is a block diagram showing a more detailed configuration of the wavelength monitoring circuit 7 of FIG. The signal from the peak detection circuit 6 is input to the time interval detection circuit 8. Further, the timing circuit 9 receives the sweep timing signal from the sweep control circuit 3 and outputs sweep start time information to the time interval detection circuit 8. The time interval detecting circuit 8 detects the time difference between the sweep start time and the pulse input, and outputs the first pulse input time information to the time difference detecting circuit 31, the second pulse input time information to the time difference detecting circuit 32,. The second pulse input time information is output to the time difference detection circuit 33. Time difference detection circuit 3
Reference numerals 1 to 33 compare the input time interval information with their respective reference values (Ref. 1 to Ref.n), and use the difference signal as a time difference output to control the corresponding wavelength control circuit 2.
1 to 23. Further, the time difference detection circuits 31 to 33
Is output to the comparison circuit 41, and it is determined whether or not the time difference between the detection pulse input time and the reference value is within a predetermined time range. If the time difference is longer than the predetermined time, an alarm signal is output. Is output.

【0014】次に、図1の回路の動作について、図3の
波形図を参照して説明する。光送信ユニット11〜13
から出力された光信号は光合波器1で合波され、その出
力の光スペクトラムは図3(A)のようになる。ここで
λ1は光送信回路11の光送信波長、λ2は光送信回路
12の光送信波長、λnは光送信回路13の光送信波長
である。光合波器1で合波された光信号は光分波器2で
分岐され、一部が波長監視用として電圧制御形波長可変
フィルタ4に導かれる。電圧制御形波長可変フィルタ4
は掃引制御回路3によってその透過中心波長が制御され
る。掃引制御回路3の出力波形は図3(B)に示すよう
な鋸波となっており、時間に対する電圧の変化は高精度
で制御される。なお、掃引波形は三角波でも良い。電圧
制御形波長可変フィルタ4は掃引制御回路3の制御電圧
に比例してその透過中心波長が変化するため、透過中心
波長は図3(C)に示すように時間に比例して変化す
る。また、透過中心波長の変化範囲は、制御対象となる
光波長の下限から上限の範囲をカバーするように設定さ
れている。この掃引の結果、図3(D)に示すように電
圧制御形波長可変フィルタ4の透過中心波長と光送信信
号の波長λ1,λ2,・・・λnが一致した時間t1,
t2,・・・tnにピークパワーが出力される。即ち、
光送信信号の波長配列が時間軸上のピークパワーの変化
に変換される。電圧制御形波長可変フィルタ4を透過し
た光は、光/電気変換回路5で電圧に変換され、ピーク
検出回路6に印加される。ピーク検出回路6でピークパ
ワーが検出されると,図3(E)に示すようなピークパ
ルス信号が波長監視回路7に出力される。波長監視回路
7では掃引を開始した時間からそれぞれのピークパルス
信号が入力されるまでの時間を測定し、前記予め設定さ
れている基準の時間と比較することにより設定された波
長と実際の波長の差を時間差情報として検出してその情
報を波長制御回路21〜23送出する。波長制御回路2
1〜23は、波長監視回路7から送出された時間差情報
に応じて各光送信ユニット11〜13の光信号波長がそ
れぞれ設定された波長となるように制御する。また、波
長監視回路7は、図3(F)に示すように、各時間差検
出回路31〜33から出力される時間差情報を所定時間
±Δtと比較し、上記の時間差が所定時間±Δtの範囲
を超えた場合には警報信号を出力する。
Next, the operation of the circuit of FIG. 1 will be described with reference to the waveform diagram of FIG. Optical transmission units 11 to 13
The optical signals output from are output by the optical multiplexer 1, and the optical spectrum of the output is as shown in FIG. Here, λ1 is the optical transmission wavelength of the optical transmission circuit 11, λ2 is the optical transmission wavelength of the optical transmission circuit 12, and λn is the optical transmission wavelength of the optical transmission circuit 13. The optical signal multiplexed by the optical multiplexer 1 is branched by the optical demultiplexer 2 and a part is guided to the voltage control type tunable filter 4 for wavelength monitoring. Voltage control type tunable filter 4
Is controlled by the sweep control circuit 3. The output waveform of the sweep control circuit 3 has a sawtooth waveform as shown in FIG. 3B, and the change in voltage with respect to time is controlled with high accuracy. Note that the sweep waveform may be a triangular wave. Since the transmission center wavelength of the voltage control type tunable filter 4 changes in proportion to the control voltage of the sweep control circuit 3, the transmission center wavelength changes in proportion to time as shown in FIG. The change range of the transmission center wavelength is set to cover the range from the lower limit to the upper limit of the light wavelength to be controlled. As a result of this sweep, as shown in FIG. 3 (D), the time t1, when the transmission center wavelength of the voltage control type tunable filter 4 and the wavelengths λ1, λ2,.
Peak power is output at t2,... tn. That is,
The wavelength array of the optical transmission signal is converted into a change in peak power on the time axis. The light transmitted through the voltage control type tunable filter 4 is converted into a voltage by an optical / electrical conversion circuit 5 and applied to a peak detection circuit 6. When the peak power is detected by the peak detection circuit 6, a peak pulse signal as shown in FIG. The wavelength monitoring circuit 7 measures the time from the start of the sweep to the input of each peak pulse signal, and compares the set wavelength with the actual reference wavelength by comparing with the preset reference time. The difference is detected as time difference information, and the information is transmitted to the wavelength control circuits 21 to 23. Wavelength control circuit 2
1 to 23 control the optical signal wavelengths of the optical transmission units 11 to 13 so as to be the set wavelengths, respectively, according to the time difference information transmitted from the wavelength monitoring circuit 7. Further, as shown in FIG. 3F, the wavelength monitoring circuit 7 compares the time difference information output from each of the time difference detection circuits 31 to 33 with a predetermined time ± Δt. If it exceeds, an alarm signal is output.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
光学的波長特性を有する光合波器を用いる必要がないの
で、光送信波長を任意に設定することができ、また、光
送信信号の波長分布を電気的パルスの時間的な間隔に変
換しているので、容易に光送信波長の監視をすることが
できる。更に、主信号である光送信信号に対して、制御
のための特別の信号を重畳する必要がないので、光送信
信号が劣化することはない。
As described above, according to the present invention,
Since it is not necessary to use an optical multiplexer having an optical wavelength characteristic, the optical transmission wavelength can be set arbitrarily, and the wavelength distribution of the optical transmission signal is converted into a time interval between electric pulses. Therefore, it is possible to easily monitor the optical transmission wavelength. Furthermore, since there is no need to superimpose a special signal for control on the optical transmission signal as the main signal, the optical transmission signal does not deteriorate.

【0016】[0016]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による波長多重送信回路の実施例を示す
ブロック図である。
FIG. 1 is a block diagram showing an embodiment of a wavelength division multiplexing transmission circuit according to the present invention.

【図2】本発明による波長多重送信回路における波長監
視回路の一例を示すブロック図である。
FIG. 2 is a block diagram illustrating an example of a wavelength monitoring circuit in the wavelength division multiplexing transmission circuit according to the present invention.

【図3】図1における各部の動作を示す波形図である。FIG. 3 is a waveform chart showing the operation of each unit in FIG.

【図4】従来の波長多重送信回路のブロック図である。FIG. 4 is a block diagram of a conventional wavelength multiplex transmission circuit.

【図5】図4の動作説明図である。FIG. 5 is an operation explanatory diagram of FIG. 4;

【符号の説明】[Explanation of symbols]

1 光合波器 2 光分波器 3 掃引制御回路 4 電圧制御形波長可変フィルタ 5 光/電気変換回路 6 ピーク検出回路 7 波長監視回路 8 時間間隔検出回路 9 タイミング制御回路 11〜13 光送信ユニット 21〜23 波長制御回路 31〜33 時間差検出回路 41 比較回路 101 光合波器 102 光分波器 103 光/電気変換回路 104 増幅回路 105 CPU(光波長制御回路) 111〜113 LDバイアス制御回路 121〜123 発信器 131〜133 加算回路 141〜143 半導体レーザ(LD) 151〜153 掛算器 162〜163 光送信ユニット DESCRIPTION OF SYMBOLS 1 Optical multiplexer 2 Optical demultiplexer 3 Sweep control circuit 4 Voltage control type wavelength variable filter 5 Optical / electrical conversion circuit 6 Peak detection circuit 7 Wavelength monitoring circuit 8 Time interval detection circuit 9 Timing control circuit 11-13 Optical transmission unit 21 -23 wavelength control circuit 31-33 time difference detection circuit 41 comparison circuit 101 optical multiplexer 102 optical demultiplexer 103 optical / electrical conversion circuit 104 amplifier circuit 105 CPU (optical wavelength control circuit) 111-113 LD bias control circuit 121-123 Oscillator 131-133 Addition circuit 141-143 Semiconductor laser (LD) 151-153 Multiplier 162-163 Optical transmission unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】光波長の異なる少なくとも2個以上の光送
信ユニットを有する光波長多重送信回路において、前記
各光送信ユニットから出力される光波長を時間軸上の信
号に変換する波長掃引手段と、該波長掃引手段からの出
力に基づいて各送信ユニットから出力される光の波長を
監視する手段とを備えることを特徴とする光波長多重送
信回路。
1. An optical wavelength division multiplexing transmission circuit having at least two optical transmission units having different optical wavelengths, a wavelength sweeping means for converting an optical wavelength output from each of the optical transmission units into a signal on a time axis. Means for monitoring the wavelength of light output from each transmission unit based on the output from the wavelength sweeping means.
【請求項2】波長掃引手段として電圧制御形波長可変フ
ィルタと波長掃引制御回路を備えていることを特徴とす
る請求項1記載の光波長多重送信回路。
2. The optical wavelength division multiplexing transmission circuit according to claim 1, further comprising a voltage control type wavelength tunable filter and a wavelength sweep control circuit as wavelength sweep means.
【請求項3】前記波長掃引手段から出力される信号のピ
ークレベルを検出する光レベル検出手段と、前記時間軸
上に変換された信号の各ピークレベル位置をそれぞれ対
応する基準時間位置と比較することにより各送信ユニッ
トから出力される各光波長の基準値からのずれ量を検出
する手段と、前記ずれ量に基づいて前記各送信ユニット
から出力される光波長を制御する手段とを有することを
特徴とする請求項1記載の光波長多重送信回路。
3. A light level detecting means for detecting a peak level of a signal outputted from said wavelength sweeping means, and each peak level position of the signal converted on said time axis is compared with a corresponding reference time position. Means for detecting the amount of deviation of each optical wavelength output from each transmission unit from the reference value, and means for controlling the optical wavelength output from each transmission unit based on the amount of deviation. 2. The optical wavelength division multiplexing transmission circuit according to claim 1, wherein:
【請求項4】前記波長掃引手段から出力される信号のピ
ークレベルを検出する光レベル検出手段と、前記時間軸
上に変換された信号の各ピークレベル位置をそれぞれ対
応する基準時間位置と比較することにより各送信ユニッ
トから出力される各光波長の基準値からのずれ量を検出
する手段と、前記ずれ量が所定値を越えたことを検出す
る手段を有することを特徴とする請求項1記載の光波長
多重送信回路。
4. A light level detecting means for detecting a peak level of a signal output from said wavelength sweeping means, and each peak level position of the signal converted on said time axis is compared with a corresponding reference time position. 2. The apparatus according to claim 1, further comprising means for detecting an amount of deviation of each optical wavelength output from each transmission unit from a reference value, and means for detecting that the amount of deviation exceeds a predetermined value. WDM transmission circuit.
JP9019607A 1997-01-20 1997-01-20 Optical wavelength multiplex transmission circuit Pending JPH10209973A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP9019607A JPH10209973A (en) 1997-01-20 1997-01-20 Optical wavelength multiplex transmission circuit
FR9800545A FR2759511A1 (en) 1997-01-20 1998-01-20 WAVELENGTH MULTIPLEXING TRANSMITTER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9019607A JPH10209973A (en) 1997-01-20 1997-01-20 Optical wavelength multiplex transmission circuit

Publications (1)

Publication Number Publication Date
JPH10209973A true JPH10209973A (en) 1998-08-07

Family

ID=12003891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9019607A Pending JPH10209973A (en) 1997-01-20 1997-01-20 Optical wavelength multiplex transmission circuit

Country Status (2)

Country Link
JP (1) JPH10209973A (en)
FR (1) FR2759511A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915584A2 (en) * 1997-11-04 1999-05-12 TRW Inc. High capacity wavelength division multiplexer
US6498871B1 (en) 2000-01-21 2002-12-24 Hitachi, Ltd. Wavelength stabilized light source
US7474854B2 (en) 2003-01-15 2009-01-06 Fujitsu Limited Optical transmission system
JP2010154062A (en) * 2008-12-24 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter, and method for setting transmission wavelength
KR101210593B1 (en) 2008-12-22 2012-12-11 한국전자통신연구원 Apparatus and Method for measuring performance of WDM-TDM hybrid signal, Apparatus for selecting signal

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1010456C2 (en) * 1998-11-03 2000-05-04 Koninkl Kpn Nv Monitoring system for optical signal transmission network uses optical sampling gate and photo-diode to produce electrical sample signal
JP4107841B2 (en) * 1999-08-23 2008-06-25 富士通株式会社 Wavelength multiplexer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0915584A2 (en) * 1997-11-04 1999-05-12 TRW Inc. High capacity wavelength division multiplexer
EP0915584A3 (en) * 1997-11-04 2003-10-15 TRW Inc. High capacity wavelength division multiplexer
US6498871B1 (en) 2000-01-21 2002-12-24 Hitachi, Ltd. Wavelength stabilized light source
US7474854B2 (en) 2003-01-15 2009-01-06 Fujitsu Limited Optical transmission system
KR101210593B1 (en) 2008-12-22 2012-12-11 한국전자통신연구원 Apparatus and Method for measuring performance of WDM-TDM hybrid signal, Apparatus for selecting signal
JP2010154062A (en) * 2008-12-24 2010-07-08 Nippon Telegr & Teleph Corp <Ntt> Optical transmitter, and method for setting transmission wavelength

Also Published As

Publication number Publication date
FR2759511A1 (en) 1998-08-14

Similar Documents

Publication Publication Date Title
JP3072047B2 (en) WDM optical transmission device and optical repeater
US6240109B1 (en) Wavelength stabilization of wavelength division multiplexed channels
EP0235919B1 (en) Frequency locking radiation beams
US20020154372A1 (en) Power and optical frequency monitoring system and transmission system of frequency-modulated optical signal
US6891995B2 (en) Wavelength division multiplex transmission system
US6498871B1 (en) Wavelength stabilized light source
JP2002207230A (en) System and method for optical heterodyne detection of optical signal including optical preselection adjusted to accurately track local oscillator signal
US6862303B2 (en) Multiwavelength locking method and apparatus using acousto-optic tunable filter
JP2003060578A (en) Optical transmitter, optical receiver and optical wavelength division multiplexing system
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
US10038515B2 (en) Optical communication device, optical communication system and optical transmission method
JPH10209973A (en) Optical wavelength multiplex transmission circuit
JPH1048582A (en) Modulating device, transmitting device, modulating method and communication system
US6724786B2 (en) Variable optical attenuator using wavelength locked loop tuning
US20020057476A1 (en) Collective detection method and detection system for wavelength fluctuations in wavelength division multiplexing optical communication system, and wavelength division multiplexing optical transmission apparatus equipped with this detection system
JPH08293853A (en) Wavelength control method
JPH0685783A (en) Optical FDM transmitter
JP2000286500A (en) Frequency stabilizing device for wavelength division multiplexing light source
JP2002071512A (en) Measuring device of dependency on chromatic dispersion and loss wavelength
JP3269461B2 (en) Multi-wavelength light source device
JP3699854B2 (en) Light source frequency stabilization device
KR100325685B1 (en) Optical signal wavelength and optical power monitoring apparatus, monitoring method and recording medium therefor
JP3317025B2 (en) Optical frequency division multiplex transmission equipment
JP2005252601A (en) Automatic dispersion compensator
JP2977919B2 (en) Measuring and controlling device for optical frequency shift of semiconductor laser