[go: up one dir, main page]

JPH10205913A - Magnetic refrigerating machine - Google Patents

Magnetic refrigerating machine

Info

Publication number
JPH10205913A
JPH10205913A JP9012677A JP1267797A JPH10205913A JP H10205913 A JPH10205913 A JP H10205913A JP 9012677 A JP9012677 A JP 9012677A JP 1267797 A JP1267797 A JP 1267797A JP H10205913 A JPH10205913 A JP H10205913A
Authority
JP
Japan
Prior art keywords
magnetic
regenerator
magnetic body
contact
magnetic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9012677A
Other languages
Japanese (ja)
Inventor
Kenji Nakamichi
憲治 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9012677A priority Critical patent/JPH10205913A/en
Publication of JPH10205913A publication Critical patent/JPH10205913A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2321/00Details of machines, plants or systems, using electric or magnetic effects
    • F25B2321/002Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects
    • F25B2321/0021Details of machines, plants or systems, using electric or magnetic effects by using magneto-caloric effects with a static fixed magnet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of partial contact between a cold heat reservoir and a magnetic substance that may occur during the movement of the former so that the effective heat transfer surface area therebetween can be increased and the output of the refrigerating machine, expanded. SOLUTION: A magnetic refrigerating machine is equipped with a magnetic substance 12, superconductive magnet 29 which excites the magnetic substance 12, thermal switch 8 which discharges the heat evolved from the magnetic substance 12 during excitation by the magnet 29, and a cold heat reservoir 13 which by contact with the magnetic substance 12 effects heat exchange. In this instance the magnetic refrigerating machine is one provided with sliding guide members 22a, 22b of low friction coefficient disposed at parts where the magnetic substance 12 has its upper and lower surfaces in contact with the cold heat reservoir 13 and, in addition to the sliding guide members 22a, 22b, with guides 23a, 23b disposed in contact with the upper and lower surfaces of the magnetic substance 12 and designed to suppress its vertical movement.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、蓄冷器を用いた磁
気冷凍機に関する。
The present invention relates to a magnetic refrigerator using a regenerator.

【0002】[0002]

【従来の技術】従来の蓄冷過程を含む磁気冷凍サイクル
を用いたエリクソン型磁気冷凍機について、図3により
説明する。
2. Description of the Related Art A conventional Ericsson-type magnetic refrigerator using a magnetic refrigeration cycle including a cold storage process will be described with reference to FIG.

【0003】図3において、1は侵入熱を低減するため
の断熱真空容器、2は断熱真空容器のフランジ部であ
る。3は常温部分からの輻射熱をシールドするための液
体窒素槽、4は液体窒素である。5は補助冷凍機で、例
えばギフォード・マクマホンサイクルを用いたGM冷凍
機を用いる。6は補助冷凍機5の寒冷ヘッドで、7は排
熱スイッチ可動部8と寒冷ヘッド6を熱的に結合する銅
ブロックである。
[0003] In FIG. 3, reference numeral 1 denotes an insulated vacuum container for reducing invasion heat, and 2 denotes a flange portion of the insulated vacuum container. Reference numeral 3 denotes a liquid nitrogen tank for shielding radiant heat from a room temperature portion, and reference numeral 4 denotes liquid nitrogen. Reference numeral 5 denotes an auxiliary refrigerator, for example, a GM refrigerator using a Gifford McMahon cycle. Reference numeral 6 denotes a cold head of the auxiliary refrigerator 5, and reference numeral 7 denotes a copper block that thermally connects the movable portion 8 of the exhaust heat switch and the cold head 6.

【0004】上記排熱スイッチ可動部8は、超伝導マグ
ネット29の磁場をパルス的に変化させたときに発生す
る渦電流による発熱を少なくするための電気絶縁物で、
磁気冷凍サイクルの温度範囲で熱伝導率の大きい水晶等
を用いる。
[0004] The heat removal switch movable section 8 is an electrical insulator for reducing heat generation due to eddy current generated when the magnetic field of the superconducting magnet 29 is changed in a pulsed manner.
Quartz or the like having high thermal conductivity in the temperature range of the magnetic refrigeration cycle is used.

【0005】9は排熱スイッチ可動部8を上下動させる
ための上下動機構で、10は上下動機構9と排熱スイッ
チ可動部8を結合するロッドである。11は排熱スイッ
チ可動部8と磁性体12と蓄冷器13を収める容器であ
る。この容器11は、ヘリウムガス14で満たされてい
る。このヘリウムガス14は排熱スイッチ可動部8と磁
性体12、および、磁性体12と蓄冷器13の間の伝熱
促進に利用される。
[0005] Reference numeral 9 denotes a vertical movement mechanism for vertically moving the exhaust heat switch movable section 8, and reference numeral 10 denotes a rod connecting the vertical movement mechanism 9 and the exhaust heat switch movable section 8. Numeral 11 denotes a container for accommodating the movable part 8 of the exhaust heat switch, the magnetic body 12, and the regenerator 13. This container 11 is filled with a helium gas 14. The helium gas 14 is used for promoting heat transfer between the heat-dissipating switch movable section 8 and the magnetic body 12 and between the magnetic body 12 and the regenerator 13.

【0006】磁性体12は、例えば20kレベルでエリ
クソンサイクルを運転する場合、20kに磁気転位温度
をもつDyNi2 を用いる。蓄冷器13には、低温で体
積比熱の大きい、例えばPb(鉛)を用いる。
For example, when the Ericsson cycle is operated at a level of 20 k, DyNi 2 having a magnetic transition temperature at 20 k is used as the magnetic body 12. For the regenerator 13, for example, Pb (lead) having a low volume and a large specific heat is used.

【0007】15は蓄冷器13を上下動するための上下
動機構で、16は蓄冷器13と上下動機構15を結合す
るためのロッドである。17は磁性体12を蓄冷器13
に押さえつけるためのバネである。
Reference numeral 15 denotes a vertical movement mechanism for moving the regenerator 13 up and down. Reference numeral 16 denotes a rod for connecting the regenerator 13 and the vertical movement mechanism 15. 17 is a magnetic storage unit
It is a spring to press down on.

【0008】18は磁性体12を固定するための吊下げ
棒で、熱伝導率の小さいFRPなどを用いる。19は冷
凍出力計測用のヒータで、20は超伝導マグネット29
を冷却するための液体ヘリウム、21は液体ヘリウム2
0を収める液体ヘリウム槽である。
Reference numeral 18 denotes a suspension rod for fixing the magnetic body 12, using FRP or the like having a low thermal conductivity. 19 is a heater for measuring the refrigerating power, 20 is a superconducting magnet 29
Helium for cooling the helium, 21 is the liquid helium 2
It is a liquid helium tank that stores 0.

【0009】上記構成の磁気冷凍機において、エリクソ
ンサイクルを実現するための動作について、以下に説明
する。蓄冷器13の上端と磁性体12の接触時に、超伝
導マグネット29を励磁し、次に、蓄冷器13を上昇さ
せ、蓄冷器13の下端と磁性体12の接触時に、超伝導
マグネット29を消磁した後、再び蓄冷器13を下降さ
せる。
An operation for realizing an Ericsson cycle in the magnetic refrigerator having the above configuration will be described below. When the upper end of the regenerator 13 contacts the magnetic body 12, the superconducting magnet 29 is excited. Then, the regenerator 13 is raised, and when the lower end of the regenerator 13 contacts the magnetic body 12, the superconducting magnet 29 is demagnetized. After that, the regenerator 13 is lowered again.

【0010】以上の動作を繰り返すことにより、蓄冷器
13には上端が高温TH で、下端が低温TL の温度分布
が形成され、磁気エリクソンサイクルの運転を開始する
ことができる。
By repeating the above operation, the regenerator 13 has a temperature distribution in which the upper end has a high temperature TH and the lower end has a low temperature TL, and the operation of the magnetic Ericsson cycle can be started.

【0011】磁性体12が蓄冷器13の高温端に移動
し、温度がTH になると、超伝導マグネット29の磁場
を0から最大値まで励磁する。このとき、磁性体12の
温度は上昇するため、排熱スイッチ可動部8を磁性体1
2に接触させ、補助冷凍機5へ排熱する(等温磁化過
程)。
When the magnetic body 12 moves to the high temperature end of the regenerator 13 and the temperature reaches TH, the magnetic field of the superconducting magnet 29 is excited from 0 to the maximum value. At this time, since the temperature of the magnetic body 12 rises, the heat removal switch movable section 8 is moved to the magnetic body 1.
2 and is exhausted to the auxiliary refrigerator 5 (isothermal magnetization process).

【0012】磁性体12の温度が再びTH に達すると、
超伝導マグネット29の磁場を最大値に保ったままで、
蓄冷器13を上下動ロッド16により上昇させる。磁性
体12は蓄冷器13と熱交換し、温度がTH からTL ま
で下がる(等磁場冷却過程)。
When the temperature of the magnetic body 12 reaches TH again,
While keeping the magnetic field of the superconducting magnet 29 at the maximum value,
The regenerator 13 is raised by the vertically moving rod 16. The magnetic body 12 exchanges heat with the regenerator 13 and the temperature drops from TH to TL (equal magnetic field cooling process).

【0013】磁性体12が蓄冷器13の低温端に移動
し、温度がTL になるし、超伝導マグネット29の磁場
を最大値から0まで消磁する。このとき、磁性体12の
温度は下がり、ヒータ19がONになり、磁性体12は
吸熱する(等温消磁過程)。
The magnetic body 12 moves to the low temperature end of the regenerator 13, the temperature becomes TL, and the magnetic field of the superconducting magnet 29 is demagnetized from its maximum value to zero. At this time, the temperature of the magnetic body 12 decreases, the heater 19 is turned on, and the magnetic body 12 absorbs heat (isothermal demagnetization process).

【0014】磁性体12の温度が再びTL に達すると、
超伝導マグネット29の磁場を0に保ったままで、蓄冷
器13を上下動ロッド16により下降させる。磁性体1
2は蓄冷器13と熱交換し、温度がTL からTH まで上
昇する(等磁場加熱過程)。
When the temperature of the magnetic body 12 reaches TL again,
With the magnetic field of the superconducting magnet 29 kept at 0, the regenerator 13 is lowered by the vertically moving rod 16. Magnetic body 1
2 exchanges heat with the regenerator 13 and the temperature rises from TL to TH (isomagnetic field heating process).

【0015】以上に説明したような四つの過程により構
成されるサイクルを繰り返すことにより、図3に示した
エリクソン型磁気冷凍機は、間欠的に低温を発生するこ
とができる。
By repeating the cycle composed of the four steps as described above, the Ericsson type magnetic refrigerator shown in FIG. 3 can generate a low temperature intermittently.

【0016】[0016]

【発明が解決しようとする課題】従来の磁気冷凍機にお
いては、図4(a)に示すように磁性体12はバネ17
によって蓄冷器13に押さえつけられているため、蓄冷
器13が移動すると、磁性体12と蓄冷器13の間には
バネ17の圧縮圧に比例した摩擦力が作用する。
In a conventional magnetic refrigerator, as shown in FIG.
When the regenerator 13 moves, a frictional force proportional to the compression pressure of the spring 17 acts between the magnetic body 12 and the regenerator 13.

【0017】そのため、磁性体12は図4(b)に示す
ように蓄冷器13に引きずられて片当り状態となる。さ
らに、蓄冷器13が移動すると、磁性体12と蓄冷器1
3の伝熱面は図4(c)に示すように一層離れる。
As a result, as shown in FIG. 4B, the magnetic body 12 is dragged by the regenerator 13 so as to be brought into a single hit state. Further, when the regenerator 13 moves, the magnetic body 12 and the regenerator 1 are moved.
The heat transfer surface 3 is further away as shown in FIG.

【0018】その結果、蓄冷器13と磁性体12の間の
有効な伝熱面積は減少し、伝熱が不十分となり、蓄冷過
程に多くの時間を必要とすることとなって、冷凍機の冷
凍出力が低下する。本発明は上記の課題を解決しようと
するものである。
As a result, the effective heat transfer area between the regenerator 13 and the magnetic body 12 is reduced, the heat transfer becomes insufficient, and a long time is required for the regenerative process. Refrigeration output decreases. The present invention seeks to solve the above problems.

【0019】[0019]

【課題を解決するための手段】[Means for Solving the Problems]

(1)請求項1に記載の発明は、磁性体と、同磁性体に
磁場を付加するための超伝導マグネットと、同超伝導マ
グネットの励磁中に発熱する上記磁性体から熱を排熱す
る熱スイッチと、上記磁性体と接触して熱交換を行う蓄
冷器とを備えた磁気冷凍機において、上記磁性体の上下
面の上記蓄冷器との接触部分に摩擦係数が少なくとも上
記磁性体より小さい滑り案内部材を設置してなることを
特徴としている。
(1) According to the first aspect of the present invention, heat is removed from a magnetic material, a superconducting magnet for applying a magnetic field to the magnetic material, and the magnetic material that generates heat during excitation of the superconducting magnet. In a magnetic refrigerator including a heat switch and a regenerator that performs heat exchange by coming into contact with the magnetic body, a friction coefficient of an upper and lower surface of the magnetic body at a contact portion with the regenerator is at least smaller than the magnetic body. A sliding guide member is provided.

【0020】上記において、蓄冷器が移動して磁性体と
蓄冷器の接触が片当り状態となったとき、磁性体の上下
面に設置した摩擦係数の小さい物質からなる滑り室内部
材が蓄冷器と接触する。
In the above, when the regenerator moves and the contact between the magnetic material and the regenerator becomes one-sided, the sliding chamber member made of a substance having a small coefficient of friction and installed on the upper and lower surfaces of the magnetic material serves as the regenerator. Contact.

【0021】このとき、磁性体は上記滑り案内部材によ
り滑りやすくなっているため、磁性体と蓄冷器の片当り
状態は直ちに解消され、有効な伝熱面積が増加し、磁性
体と蓄冷器間の伝熱性能の向上が可能となる。
At this time, since the magnetic body is easily slipped by the slide guide member, the one-sided contact state between the magnetic body and the regenerator is immediately eliminated, an effective heat transfer area is increased, and the magnetic body and the regenerator are cooled. The heat transfer performance can be improved.

【0022】(2)請求項2に記載の発明は、上記発明
(1)に記載の磁気冷凍機において、上記磁性体の上下
面に接し、その上下動を抑えるガイドを設けてなること
を特徴としている。
(2) According to a second aspect of the present invention, in the magnetic refrigerator according to the first aspect of the present invention, a guide is provided which comes into contact with the upper and lower surfaces of the magnetic body and suppresses the vertical movement thereof. And

【0023】本発明においては、上記滑り案内部材に加
えてさらにガイドを設けているために、磁性体が蓄冷器
の移動方向に引きずられなくなる。そのため、蓄冷器は
磁性体と緊密に接触しながら移動することができ、蓄冷
器と磁性体の間の伝熱性能の一層の向上が可能となる。
In the present invention, since the guide is provided in addition to the sliding guide member, the magnetic material is not dragged in the moving direction of the regenerator. Therefore, the regenerator can move while being in close contact with the magnetic body, and the heat transfer performance between the regenerator and the magnetic body can be further improved.

【0024】[0024]

【発明の実施の形態】本発明の実施の一形態に係る磁気
冷凍機について、図1により説明する。なお、本実施形
態は、上部にフランジ部2が設けられた断熱真空容器1
内に配設された液体窒素槽3、同液体窒素槽3の内側に
配設された容器11内に設けられた蓄冷器13、同蓄冷
器13の両側に配設され容器11の側壁との間にバネ1
7が設けられた磁性体12、同それぞれの磁性体12の
下方に設けられたヒータ19、上記液体窒素槽3と容器
11との間に設けられた液体ヘリウム槽21内に配設さ
れ上記磁性体12を励磁する超伝導マグネット29、上
記容器11内に設けられた排熱スイッチ可動部8に寒冷
ヘッド6と銅ブロック7を介して接続され上記断熱真空
容器1の上側に設けられた補助冷凍機5、および上記断
熱真空容器1の上側に設けられロッド10,16を介し
て上記排熱スイッチ可動部8と蓄冷器13にそれぞれ接
続された上下動機構9,15を備えた磁気冷凍機に関す
るものであり、この部分については従来の装置と同様の
ため、その詳細な説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A magnetic refrigerator according to an embodiment of the present invention will be described with reference to FIG. In this embodiment, the heat insulating vacuum vessel 1 provided with the flange 2
And a regenerator 13 provided in a container 11 disposed inside the liquid nitrogen tank 3, and a side wall of the container 11 disposed on both sides of the regenerator 13. Spring 1 between
, A heater 19 provided below each magnetic body 12, and a liquid helium tank 21 provided between the liquid nitrogen tank 3 and the container 11. A superconducting magnet 29 that excites the body 12, an auxiliary refrigeration unit that is connected to the movable exhaust heat switch 8 provided in the container 11 via the cold head 6 and the copper block 7 and that is provided above the adiabatic vacuum container 1. Machine 5 and a magnetic refrigerator provided with up-and-down movement mechanisms 9 and 15 which are provided above the adiabatic vacuum vessel 1 and are connected to the heat-discharge switch movable section 8 and the regenerator 13 via rods 10 and 16, respectively. Since this part is the same as that of the conventional device, detailed description thereof is omitted.

【0025】図1に示す実施形態は、上記磁気冷凍機に
おいて、それぞれの磁性体12の上面と下面の蓄冷器1
3との接触部分にそれぞれ設けられたテフロン等の低摩
擦係数物質よりなる滑り案内部材22a,22b、およ
び上記それぞれの磁性体12の上面と下面に接しそれぞ
れ端部が容器11の側壁内面に固定され磁性体12の上
下動を防止するガイド23a,23bを備えている。
In the embodiment shown in FIG. 1, in the above-mentioned magnetic refrigerator, the regenerators 1 on the upper surface and the lower surface of each magnetic body 12 are provided.
The sliding guide members 22a and 22b made of a low coefficient of friction material such as Teflon provided at the contact portions with the magnetic material 12 and the upper and lower surfaces of the respective magnetic members 12 are fixed to the inner surface of the side wall of the container 11 respectively. And guides 23a and 23b for preventing the magnetic body 12 from moving up and down.

【0026】上記において、蓄冷器13が移動し、図2
(a)に示す状態から図2(b)に示す磁性体12と蓄
冷器13が片当りする状態となると、磁性体12の上下
面に設置した低摩擦係数物質よりなる滑り案内部材22
a,22bが蓄冷器13と接触する。
In the above, the regenerator 13 moves,
When the magnetic body 12 and the regenerator 13 are brought into a state in which the magnetic body 12 and the regenerator 13 shown in FIG. 2B come into contact with each other from the state illustrated in FIG.
a, 22b contact the regenerator 13.

【0027】このとき、磁性体12は、上記滑り案内部
材22a,22bにより滑りやすくなるため、図2
(c)に示す面接触の状態に戻りやすい。また、ガイド
を設けているために、磁性体12が蓄冷器13の移動方
向に引きずられることがなくなる。
At this time, since the magnetic body 12 is easily slid by the slide guide members 22a and 22b, FIG.
It is easy to return to the state of surface contact shown in (c). Further, since the guide is provided, the magnetic body 12 is not dragged in the moving direction of the regenerator 13.

【0028】その結果、蓄冷過程において蓄冷器13が
移動しても、磁性体12が蓄冷器13の移動方向に引き
ずられなくなり、蓄冷器13と磁性体12の伝熱面の距
離を小さく保つことができるため、有効な伝熱面積が増
加する。
As a result, even if the regenerator 13 moves in the cold storage process, the magnetic body 12 is not dragged in the moving direction of the regenerator 13 and the distance between the regenerator 13 and the heat transfer surface of the magnetic body 12 is kept small. Can increase the effective heat transfer area.

【0029】従って、蓄冷過程における磁性体12と蓄
冷器13の接触面の伝熱性能を向上させ、蓄冷過程に要
する時間を短くできるため、高性能な磁気冷凍機を実現
することができる。
Therefore, the heat transfer performance of the contact surface between the magnetic material 12 and the regenerator 13 in the cold storage process can be improved and the time required for the cold storage process can be shortened, so that a high-performance magnetic refrigerator can be realized.

【0030】[0030]

【発明の効果】本発明は、磁性体と、同磁性体を励磁す
る超伝導マグネットと、このマグネットによる励磁中に
発熱する上記磁性体からの熱を排熱する熱スイッチと、
上記磁性体と接触して熱交換を行う蓄冷器とを備えた磁
気冷凍機において、上記磁性体の上下面の蓄冷器との接
触部分に配設された低摩擦係数の滑り案内部材を備えた
ことによって、蓄冷器は磁性体と緊密に接触した状態で
移動させることができるため、有効な伝熱面積が増加
し、蓄冷器と磁性体の間の伝熱性能が向上し、その結
果、蓄冷過程に要する時間が短くなるため、冷凍出力が
大きい高性能な磁気冷凍機の実現が可能となる。
According to the present invention, there is provided a magnetic material, a superconducting magnet for exciting the magnetic material, a heat switch for discharging heat from the magnetic material, which generates heat during excitation by the magnet,
A magnetic refrigerator having a regenerator that performs heat exchange by contacting with the magnetic material, wherein a sliding guide member having a low coefficient of friction is provided at a contact portion between the upper and lower surfaces of the magnetic material and the regenerator. This allows the regenerator to be moved in close contact with the magnetic material, increasing the effective heat transfer area and improving the heat transfer performance between the regenerator and the magnetic material. Since the time required for the process is shortened, a high-performance magnetic refrigerator having a large refrigeration output can be realized.

【0031】また、上記滑り案内部材に加えて磁性体の
上下面に接して配設されその上下動を抑えるガイドを備
えたことによって、蓄熱器と磁性体の間の伝熱性能の一
層の向上が可能となる。
Further, in addition to the sliding guide member, a guide is provided in contact with the upper and lower surfaces of the magnetic body and suppresses the vertical movement thereof, so that the heat transfer performance between the heat storage unit and the magnetic body is further improved. Becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る磁気冷凍機の断面
図である。
FIG. 1 is a sectional view of a magnetic refrigerator according to an embodiment of the present invention.

【図2】上記一実施形態に係る作用説明図で、(a)は
蓄冷器が静止しており磁性体と面接触している状態、
(b)は蓄冷器が移動しており磁性体と片当りしている
状態、(c)は蓄冷器が更に移動し磁性体との間が面接
触となった状態である。
FIG. 2 is an operation explanatory view according to the embodiment, in which (a) shows a state in which a regenerator is stationary and is in surface contact with a magnetic body;
(B) is a state where the regenerator is moving and is in one-side contact with the magnetic body, and (c) is a state where the regenerator is further moved and the magnetic body is in surface contact.

【図3】従来の磁気冷凍機の断面図である。FIG. 3 is a sectional view of a conventional magnetic refrigerator.

【図4】従来の磁気冷凍機の作用説明図である。FIG. 4 is a diagram illustrating the operation of a conventional magnetic refrigerator.

【符号の説明】[Explanation of symbols]

1 断熱真空容器 2 フランジ部 3 液体窒素槽 4 液体窒素 5 補助冷凍機 6 寒冷ヘッド 7 銅ブロック 8 排熱スイッチ可動部 9 上下動機構 10 ロッド 11 容器 12 磁性体 13 蓄冷器 14 ヘリウムガス 15 蓄冷器上下動機構 16 ロッド 17 バネ 18 吊下げ棒 19 ヒータ 20 液体ヘリウム 21 ヘリウム槽 22a,22b 滑り案内部材 23a,23b ガイド 29 超伝導マグネット DESCRIPTION OF SYMBOLS 1 Insulated vacuum container 2 Flange part 3 Liquid nitrogen tank 4 Liquid nitrogen 5 Auxiliary refrigerator 6 Cold head 7 Copper block 8 Exhaust switch movable part 9 Vertical movement mechanism 10 Rod 11 Container 12 Magnetic body 13 Regenerator 14 Helium gas 15 Regenerator Vertical movement mechanism 16 Rod 17 Spring 18 Hanging rod 19 Heater 20 Liquid helium 21 Helium tank 22a, 22b Sliding guide member 23a, 23b Guide 29 Superconducting magnet

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁性体と、同磁性体に磁場を付加するた
めの超伝導マグネットと、同超伝導マグネットの励磁中
に発熱する上記磁性体から熱を排熱する熱スイッチと、
上記磁性体と接触して熱交換を行う蓄冷器とを備えた磁
気冷凍機において、上記磁性体の上下面の上記蓄冷器と
の接触部分に摩擦係数が少なくとも上記磁性体より小さ
い滑り案内部材を設置してなることを特徴とする磁気冷
凍機。
1. A magnetic body, a superconducting magnet for applying a magnetic field to the magnetic body, and a thermal switch for exhausting heat from the magnetic body that generates heat during excitation of the superconducting magnet;
In a magnetic refrigerator including a regenerator that performs heat exchange by contacting with the magnetic material, a sliding guide member having a friction coefficient smaller than that of the magnetic material at least in a contact portion between the upper and lower surfaces of the magnetic material and the regenerator. A magnetic refrigerator characterized by being installed.
【請求項2】 請求項1に記載の磁気冷凍機において、
上記磁性体の上下面に接し、その上下動を抑えるガイド
を設けてなることを特徴とする磁気冷凍機。
2. The magnetic refrigerator according to claim 1, wherein
A magnetic refrigerator comprising a guide which is in contact with the upper and lower surfaces of the magnetic body and suppresses vertical movement thereof.
JP9012677A 1997-01-27 1997-01-27 Magnetic refrigerating machine Pending JPH10205913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9012677A JPH10205913A (en) 1997-01-27 1997-01-27 Magnetic refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9012677A JPH10205913A (en) 1997-01-27 1997-01-27 Magnetic refrigerating machine

Publications (1)

Publication Number Publication Date
JPH10205913A true JPH10205913A (en) 1998-08-04

Family

ID=11812017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9012677A Pending JPH10205913A (en) 1997-01-27 1997-01-27 Magnetic refrigerating machine

Country Status (1)

Country Link
JP (1) JPH10205913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003028532A (en) * 2001-07-16 2003-01-29 Sumitomo Special Metals Co Ltd Working substance and equipment for magnetic refrigeration, and cool storage type heat exchanger

Similar Documents

Publication Publication Date Title
EP0496530B1 (en) A static magnetic refrigerator
JPH0357389B2 (en)
US4674288A (en) Method of magnetic refrigeration and a magnetic refrigerating apparatus
JP2634140B2 (en) Heat pump operating method and heat pump for low temperature generation
JP3285751B2 (en) Magnetic refrigerator
JPH10205913A (en) Magnetic refrigerating machine
JP3233811B2 (en) Magnetic refrigerator
JP4799757B2 (en) Superconducting magnet
JP3310863B2 (en) Magnetic refrigeration equipment
JP3310847B2 (en) Magnetic refrigeration equipment
JP2877495B2 (en) Magnetic refrigerator
JP3281740B2 (en) Refrigeration equipment
JPH09113048A (en) Cryotemperature apparatus
JP3046457B2 (en) Magnetic chiller for cooling liquid helium
JPH08203726A (en) Superconducting coil device
JP3572087B2 (en) Magnetic refrigerator for cooling pressurized liquid helium
JP3310872B2 (en) Magnetic refrigerator
JP2945153B2 (en) Stationary magnetic refrigerator
JPH07294035A (en) Superconducting magnet apparatus
JPH0663675B2 (en) Magnetic refrigerator
JP3247714B2 (en) Element heating / cooling test equipment
JPH0918062A (en) Superconducting magnet device
JPH09145195A (en) Magnetic refrigerating machine
JPH06325930A (en) Cooling system of ac magnet using oxide superconducting wire
JPH05291034A (en) Superconducting magnet device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041124