[go: up one dir, main page]

JPH10205898A - Freezing device - Google Patents

Freezing device

Info

Publication number
JPH10205898A
JPH10205898A JP9009710A JP971097A JPH10205898A JP H10205898 A JPH10205898 A JP H10205898A JP 9009710 A JP9009710 A JP 9009710A JP 971097 A JP971097 A JP 971097A JP H10205898 A JPH10205898 A JP H10205898A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
gas
compressor
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9009710A
Other languages
Japanese (ja)
Other versions
JP3690030B2 (en
Inventor
Hirotsugu Takeuchi
裕嗣 武内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00971097A priority Critical patent/JP3690030B2/en
Publication of JPH10205898A publication Critical patent/JPH10205898A/en
Application granted granted Critical
Publication of JP3690030B2 publication Critical patent/JP3690030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0013Ejector control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/197Pressures of the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioning device capable of preventing a reduction in freezing capability under an application of the most suitable value of an evaporating pressure in a freezing cycle or a nozzle efficiency. SOLUTION: A freezing cycle 9 is constructed such that a compressor 11, a condenser 12, an ejector 13 and a gas-liquid separator 14 are connected in a ring-form by a refrigerant pipe 17, a liquid refrigerant outlet section 26 of the gas-liquid separator 14 and a suction part 22 of the ejector 13 are connected by a bypass pipe 27 and an evaporator 16 is arranged at the midway part of the bypass pipe 27. A refrigerant pump 15 for forcedly supplying liquid refrigerant to the evaporator 16 is installed in the midway part of the bypass pipe 27 for connecting the liquid refrigerant outlet section 26 of the gas-liquid separator 14 and an inlet side of the evaporator 16. Then, a flow rate of refrigerant sucked into the compressor 11 is kept at a specified value in such a way that a rotational speed of the refrigerant pump 15 is controlled in response to a rotational speed of the compressor 11.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エジェクタを組み
込んだ冷凍サイクルを備えた冷凍装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system having a refrigeration cycle incorporating an ejector.

【0002】[0002]

【従来の技術】従来より、特開平5−312421号公
報には、冷媒圧縮機、冷媒凝縮器、エジェクタ、第1冷
媒蒸発器および気液分離器を冷媒配管により環状に連結
すると共に、気液分離器で気相冷媒と分離された液相冷
媒を減圧装置、第2冷媒蒸発器を設置したバイパス配管
を介してエジェクタの吸引部に吸引させるようにした冷
凍サイクルを備えた冷凍装置が提案されている。
2. Description of the Related Art Conventionally, Japanese Unexamined Patent Publication No. Hei 5-212421 discloses that a refrigerant compressor, a refrigerant condenser, an ejector, a first refrigerant evaporator, and a gas-liquid separator are annularly connected by refrigerant pipes, A refrigeration system having a refrigeration cycle has been proposed in which a liquid-phase refrigerant separated from a gas-phase refrigerant by a separator is sucked into a suction unit of an ejector through a pressure reducing device and a bypass pipe provided with a second refrigerant evaporator. ing.

【0003】そして、上記の従来の冷凍装置の冷凍サイ
クルは、図5に示したように、エジェクタ101のノズ
ル102を通過する冷媒流量を調整して冷媒圧縮機の低
速運転時の冷凍能力を増大させるか、あるいは高速運転
時に余裕のある冷凍能力を適正化するために、エジェク
タ101内のノズル102に、ノズル径を増減するため
の可変絞り弁103を設けている。
The refrigeration cycle of the above-described conventional refrigeration system increases the refrigeration capacity of the refrigerant compressor during low-speed operation by adjusting the flow rate of the refrigerant passing through the nozzle 102 of the ejector 101, as shown in FIG. In order to make the refrigerating capacity with a margin at the time of high-speed operation, the nozzle 102 in the ejector 101 is provided with a variable throttle valve 103 for increasing or decreasing the nozzle diameter.

【0004】[0004]

【発明が解決しようとする課題】ところが、従来の技術
においては、エジェクタ101のノズル102内に可変
絞り弁103を設置して、ノズル102の入口乾き度
(またはサブクール度)を調整することにより冷媒流量
を制御しているので、ノズル出口径が冷媒流量に対して
常に最適な出口径になるとは限らず、ノズル効率の低下
を招き(図6参照)、充分な冷凍能力が得られないとい
う問題が生じる。
However, in the prior art, a variable throttle valve 103 is installed in the nozzle 102 of the ejector 101 to adjust the dryness (or subcooling) of the inlet of the nozzle 102 to reduce the refrigerant. Since the flow rate is controlled, the nozzle outlet diameter is not always the optimum outlet diameter for the refrigerant flow rate, causing a reduction in nozzle efficiency (see FIG. 6) and a problem that sufficient refrigeration capacity cannot be obtained. Occurs.

【0005】そこで、図7に示したように、ニードル弁
104によりノズル出口径を可変できるノズル105も
提案されているが、そのニードル弁104もノズル10
5内を流れる冷媒の抵抗部材となるため、上記と同様
に、ノズル出口径が冷媒流量に対して常に最適な出口径
になるとは限らず、ノズル効率の低下を招く(図8参
照)。また、ノズル効率が低下した場合に、第2冷媒蒸
発器に供給される冷媒流量が充分得られないので、エジ
ェクタ101内の昇圧が低下してしまう(図9参照)。
これにより、冷媒圧縮機の吸入圧力が低下するため、冷
凍サイクル内を循環する冷媒の循環量が低下し、冷凍サ
イクルの冷凍能力が低下するという問題が生じている。
Therefore, as shown in FIG. 7, a nozzle 105 whose nozzle outlet diameter can be varied by a needle valve 104 has been proposed.
As described above, the nozzle outlet diameter does not always become the optimum outlet diameter with respect to the refrigerant flow rate, as described above, so that the nozzle efficiency decreases (see FIG. 8). Further, when the nozzle efficiency is reduced, the flow rate of the refrigerant supplied to the second refrigerant evaporator cannot be sufficiently obtained, so that the pressure increase in the ejector 101 is reduced (see FIG. 9).
As a result, since the suction pressure of the refrigerant compressor decreases, the amount of the refrigerant circulating in the refrigeration cycle decreases, which causes a problem that the refrigeration capacity of the refrigeration cycle decreases.

【0006】[0006]

【発明の目的】本発明の目的は、ノズル効率に影響を与
えないエジェクタの吸引側に冷媒ポンプを設置すること
により、ノズル効率が低下した時でも充分な冷凍能力を
確保することのできる冷凍装置を提供することにある。
また、冷凍サイクルの蒸発圧力やノズル効率を最適値で
使用して冷凍サイクルの冷凍能力の低下を防止すること
のできる冷凍装置を提供することにある。さらに、冷媒
圧縮機の回転速度の増減に拘らず冷凍サイクルの冷凍能
力を略一定値に保つことのできる冷凍装置を提供するこ
とにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refrigerating apparatus which can secure a sufficient refrigerating capacity even when the nozzle efficiency is reduced by installing a refrigerant pump on the suction side of an ejector which does not affect the nozzle efficiency. Is to provide.
Another object of the present invention is to provide a refrigeration apparatus that can prevent a decrease in refrigeration capacity of a refrigeration cycle by using an evaporation pressure and a nozzle efficiency of the refrigeration cycle at optimal values. Another object of the present invention is to provide a refrigeration apparatus that can maintain the refrigeration capacity of the refrigeration cycle at a substantially constant value regardless of the increase or decrease in the rotation speed of the refrigerant compressor.

【0007】[0007]

【課題を解決するための手段】請求項1に記載の発明に
よれば、エジェクタのノズルに冷媒流量調整手段を設け
るのではなく、冷凍サイクルの気液分離器の液相冷媒側
とエジェクタの吸引部とを連結するバイパス流路の途中
に、冷媒蒸発器に気液分離器内の液相冷媒を圧送する冷
媒圧送手段を設けることにより、ノズル効率にあまり影
響を与えない。また、冷媒蒸発器に強制的に冷媒を循環
させることにより、昇圧性能が向上し、冷凍サイクルの
蒸発圧力やノズル効率が最適値となるので、冷凍サイク
ルの冷凍能力の低下を抑えることができる。
According to the first aspect of the present invention, instead of providing the refrigerant flow rate adjusting means at the nozzle of the ejector, the liquid-phase refrigerant side of the gas-liquid separator of the refrigeration cycle and the suction of the ejector are provided. By providing a refrigerant pumping means for pumping the liquid-phase refrigerant in the gas-liquid separator to the refrigerant evaporator in the middle of the bypass flow path connecting the parts, the nozzle efficiency is not significantly affected. Further, by forcibly circulating the refrigerant through the refrigerant evaporator, the boosting performance is improved, and the evaporating pressure and the nozzle efficiency of the refrigeration cycle become optimal values, so that a decrease in the refrigeration capacity of the refrigeration cycle can be suppressed.

【0008】請求項2に記載の発明によれば、過熱度検
出手段で検出した冷媒蒸発器の出口側の過熱度が設定値
となるように冷媒ポンプの回転速度を増速または減速す
ることにより、冷媒蒸発器に供給される冷媒流量の変化
が抑えられるので、冷媒蒸発器での熱伝達率が大幅に低
下することはない。
According to the second aspect of the present invention, the rotational speed of the refrigerant pump is increased or decreased so that the superheat degree on the outlet side of the refrigerant evaporator detected by the superheat degree detection means becomes a set value. Since the change in the flow rate of the refrigerant supplied to the refrigerant evaporator is suppressed, the heat transfer coefficient in the refrigerant evaporator is not significantly reduced.

【0009】請求項3に記載の発明によれば、回転速度
検出手段で検出した冷媒圧縮機の回転速度が増加すれば
する程、冷媒ポンプの回転速度を遅くすることにより、
冷媒蒸発器に供給される冷媒の変動分を吸収できる。そ
れによって、冷媒圧縮機の吸入圧力を制御することによ
り、冷媒圧縮機の吸入比容積を変化させて、冷媒圧縮機
に吸引される冷媒流量を略一定値に保つこともできる。
According to the third aspect of the present invention, the rotational speed of the refrigerant pump is decreased as the rotational speed of the refrigerant compressor detected by the rotational speed detecting means increases.
The fluctuation of the refrigerant supplied to the refrigerant evaporator can be absorbed. Thus, by controlling the suction pressure of the refrigerant compressor, the suction specific volume of the refrigerant compressor can be changed, and the flow rate of the refrigerant sucked into the refrigerant compressor can be maintained at a substantially constant value.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例の構成〕図1ないし図4は本発明の実施例を示
したもので、図1(a)は車両用空気調和装置の冷凍サ
イクルを示した図で、図1(b)は車両用空気調和装置
の通風系を示した図で、図2は車両用空気調和装置の制
御系を示した図である。
1 to 4 show an embodiment of the present invention. FIG. 1A is a view showing a refrigeration cycle of an air conditioner for a vehicle, and FIG. 1B is a view showing a vehicle. FIG. 2 is a diagram illustrating a ventilation system of the vehicle air conditioner, and FIG. 2 is a diagram illustrating a control system of the vehicle air conditioner.

【0011】本実施例の車両用空気調和装置は、車両走
行用の動力エンジンを搭載する車両の車室内を空調する
空調ユニット1の各空調手段を、後記する空調制御装置
10によって制御するようにしたエアコンである。空調
ユニット1は、車室内に空調空気を導く空気通路を形成
する空調ケース2と、この空調ケース2の上流端に結合
された送風機3とを備えている。
In the vehicle air conditioner of this embodiment, each air conditioning unit of the air conditioning unit 1 for air conditioning the interior of a vehicle equipped with a power engine for driving the vehicle is controlled by an air conditioning controller 10 described later. Air conditioner. The air-conditioning unit 1 includes an air-conditioning case 2 that forms an air passage for guiding conditioned air into the vehicle interior, and a blower 3 coupled to an upstream end of the air-conditioning case 2.

【0012】空調ケース2内には、後記する冷凍サイク
ル9の一構成を成すエバポレータ、およびこのエバポレ
ータを通過した冷風を再加熱するヒータコア4が設けら
れている。そして、ヒータコア4の上流側と下流側とに
は、ヒータコア4を通過する空気量とヒータコア4を迂
回する空気量とを調節する2個のエアミックスドア5が
取り付けられている。
The air-conditioning case 2 is provided with an evaporator, which constitutes a configuration of a refrigeration cycle 9 described later, and a heater core 4 for reheating the cold air passing through the evaporator. Two air mix doors 5 that adjust the amount of air passing through the heater core 4 and the amount of air bypassing the heater core 4 are attached to the upstream side and the downstream side of the heater core 4.

【0013】送風機3は、空調ケース2の空気通路内に
おいて車室内に向かう空気流を発生させる遠心式ファン
6、この遠心式ファン6を回転駆動するブロワモータ
7、および遠心式ファン6を回転自在に収容するスクロ
ールケーシング8等から構成されている。なお、スクロ
ールケーシング8は、例えば空調ケース2の上流端に一
体的に結合されている。
The blower 3 has a centrifugal fan 6 for generating an airflow toward the passenger compartment in the air passage of the air-conditioning case 2, a blower motor 7 for rotating the centrifugal fan 6, and a rotatable centrifugal fan 6. It is composed of a scroll casing 8 to be accommodated. In addition, the scroll casing 8 is integrally connected to, for example, the upstream end of the air conditioning case 2.

【0014】次に、本実施例の冷凍サイクル9の構成を
図1(a)に基づいて説明する。冷凍サイクル9は、所
謂エジェクタサイクルであって、車両に搭載された動力
エンジンの駆動力によって気相冷媒(以下ガス冷媒と呼
ぶ)を圧縮するコンプレッサ(冷媒圧縮機)11と、圧
縮されたガス冷媒を凝縮液化させるコンデンサ(冷媒凝
縮器)12と、凝縮液化された液相冷媒(以下液冷媒と
呼ぶ)を減圧膨張させるエジェクタ13と、減圧膨張さ
れた気液二相冷媒を気液分離する気液分離器14と、液
冷媒を吸引する冷媒ポンプ15と、流入した冷媒を蒸発
気化させるエバポレータ(冷媒蒸発器)16とから構成
されている。
Next, the configuration of the refrigeration cycle 9 of this embodiment will be described with reference to FIG. The refrigeration cycle 9 is a so-called ejector cycle, and includes a compressor (refrigerant compressor) 11 that compresses a gas-phase refrigerant (hereinafter, referred to as a gas refrigerant) by a driving force of a power engine mounted on a vehicle, and a compressed gas refrigerant. (Refrigerant condenser) 12 for condensing and liquefying the liquid, an ejector 13 for decompressing and expanding the condensed and liquefied liquid refrigerant (hereinafter, referred to as liquid refrigerant), and a gas for separating the decompressed and expanded gas-liquid two-phase refrigerant into gas and liquid. It comprises a liquid separator 14, a refrigerant pump 15 for sucking liquid refrigerant, and an evaporator (refrigerant evaporator) 16 for evaporating and evaporating the inflowing refrigerant.

【0015】コンプレッサ11は、コンデンサ12、エ
ジェクタ13および気液分離器14と共に、冷媒配管
(冷媒流路)17によって環状に連結されている。この
コンプレッサ11には、動力エンジンからコンプレッサ
11への回転動力の伝達を断続する電磁クラッチ(図2
参照)18が連結されている。この電磁クラッチ18が
通電された時に、動力エンジンの回転動力がコンプレッ
サ11に伝達されてエバポレータ16による空気冷却作
用が行われる。コンデンサ12の近傍には、このコンデ
ンサ12内を流れる冷媒を冷却する冷却風を送る冷却フ
ァン19が設置されている。
The compressor 11, together with the condenser 12, the ejector 13 and the gas-liquid separator 14, are connected in a ring by a refrigerant pipe (refrigerant flow path) 17. This compressor 11 has an electromagnetic clutch (FIG. 2) for intermittently transmitting rotational power from the power engine to the compressor 11.
18) are connected. When the electromagnetic clutch 18 is energized, the rotational power of the power engine is transmitted to the compressor 11 and the evaporator 16 performs the air cooling action. In the vicinity of the condenser 12, a cooling fan 19 for sending cooling air for cooling the refrigerant flowing through the condenser 12 is provided.

【0016】エジェクタ13は、コンデンサ12から流
入した液冷媒をノズル21より噴出することによって減
圧霧化すると共に、吸引部22よりガス冷媒を吸引し
て、ディフューザ23内で液冷媒とガス冷媒とを混合す
ると共に昇圧した後に気液分離器14へ気液二相状態の
冷媒を送る減圧手段である。気液分離器14は、冷媒入
口部24とガス冷媒出口部25と液冷媒出口部(液相冷
媒側)26とを有している。
The ejector 13 ejects the liquid refrigerant flowing from the condenser 12 from the nozzle 21 to atomize the gas refrigerant under reduced pressure, and at the same time, sucks the gas refrigerant from the suction part 22 to separate the liquid refrigerant and the gas refrigerant in the diffuser 23. It is a decompression unit that sends a refrigerant in a gas-liquid two-phase state to the gas-liquid separator 14 after mixing and pressurizing. The gas-liquid separator 14 has a refrigerant inlet 24, a gas refrigerant outlet 25, and a liquid refrigerant outlet (liquid-phase refrigerant side) 26.

【0017】冷媒ポンプ15は、本発明の冷媒圧送手段
に相当する部品で、気液分離器14の液冷媒出口部26
とエジェクタ13の吸引部22とを連結するバイパス配
管(バイパス流路)27のうちエバポレータ16よりも
上流側(の入口側)に設置されている。この冷媒ポンプ
15は、ON/OFFの間隔を変更することによって、
エバポレータ16に流入する冷媒流量を調節する部品で
ある。例えば冷媒ポンプ15のON時間を長くとれば長
くとる程、エバポレータ16に流入する冷媒流量が多く
なる。エバポレータ16は、上記のバイパス配管27の
途中に設置され、内部を流れる冷媒と空調ケース2内を
通過する空気とを熱交換して空気を冷却する空気冷却手
段である。
The refrigerant pump 15 is a component corresponding to the refrigerant pumping means of the present invention, and is a liquid refrigerant outlet 26 of the gas-liquid separator 14.
The bypass pipe (bypass flow path) 27 that connects the suction port 22 of the ejector 13 with the suction section 22 is disposed upstream (at the entrance side) of the evaporator 16. By changing the ON / OFF interval, the refrigerant pump 15
This is a component for adjusting the flow rate of the refrigerant flowing into the evaporator 16. For example, the longer the ON time of the refrigerant pump 15 is, the longer the flow rate of the refrigerant flowing into the evaporator 16 becomes. The evaporator 16 is an air cooling unit that is installed in the middle of the bypass pipe 27 and exchanges heat between the refrigerant flowing inside and the air passing through the air conditioning case 2 to cool the air.

【0018】空調制御装置10は、本発明の空調制御手
段に相当する部品で、イグニッションスイッチがオンさ
れたときにバッテリ30から電源が供給されて、車室内
前面に設けられた操作パネル上の各スイッチからのスイ
ッチ信号を入力し、各種の制御処理を行う。なお、空調
制御装置10内には、CPU、ROM、RAM等からな
る周知のマイクロコンピュータが設けられ、リレーコイ
ル34を通電することによりリレースイッチ35が閉じ
て冷媒ポンプ15を通電し、リレーコイル36を通電す
ることによりリレースイッチ37が閉じて電磁クラッチ
18が通電される。
The air-conditioning control device 10 is a component corresponding to the air-conditioning control means of the present invention. The power is supplied from the battery 30 when the ignition switch is turned on, and each of the air-conditioning control devices 10 on an operation panel provided on the front of the vehicle compartment is provided. A switch signal is input from the switch to perform various control processes. A known microcomputer including a CPU, a ROM, a RAM, and the like is provided in the air-conditioning control device 10. When the relay coil 34 is energized, the relay switch 35 is closed to energize the refrigerant pump 15, and the relay coil 36 is energized. , The relay switch 37 is closed and the electromagnetic clutch 18 is energized.

【0019】また、空調制御装置10は、エバポレータ
16の出口側の温度を検出する出口温度センサ31、エ
バポレータ16の出口側の圧力(冷凍サイクル9の低圧
圧力、蒸発圧力)を検出する出口圧力センサ32、およ
びコンプレッサ11の回転速度を検出する回転速度セン
サ33等の各センサからセンサ信号を入力する。出口温
度センサ31と出口圧力センサ32は、本発明の過熱度
検出手段に相当する部品であり、回転速度センサ33
は、本発明の回転速度検出手段に相当する部品である。
The air-conditioning control device 10 has an outlet temperature sensor 31 for detecting the temperature on the outlet side of the evaporator 16 and an outlet pressure sensor for detecting the pressure on the outlet side of the evaporator 16 (low pressure of the refrigeration cycle 9, evaporating pressure). A sensor signal is input from each sensor such as a rotation speed sensor 33 for detecting the rotation speed of the compressor 32 and the like. The outlet temperature sensor 31 and the outlet pressure sensor 32 are components corresponding to the degree of superheat detection of the present invention,
Is a component corresponding to the rotation speed detecting means of the present invention.

【0020】そして、空調制御装置10は、出口温度セ
ンサ31で検出したエバポレータ16の出口側の温度と
エバポレータ16の出口側の圧力とからエバポレータ1
6の出口側の過熱度を算出し、この過熱度が設定値(例
えば1℃〜2℃)となるように冷媒ポンプ15の回転速
度を制御してエバポレータ16に流入する冷媒流量を調
節するようにしている。また、空調制御装置10は、回
転速度センサ33で検出したコンプレッサ11の回転速
度を入力し、このコンプレッサ11の回転速度による冷
媒流量の変動分を吸収するために冷媒ポンプ15の回転
速度を制御してコンプレッサ11およびエバポレータ1
6に流入する冷媒流量を調節するようにしている。
The air-conditioning controller 10 determines the temperature of the evaporator 16 based on the temperature at the outlet of the evaporator 16 detected by the outlet temperature sensor 31 and the pressure at the outlet of the evaporator 16.
6, the superheat degree at the outlet side is calculated, and the flow rate of the refrigerant flowing into the evaporator 16 is adjusted by controlling the rotation speed of the refrigerant pump 15 so that the superheat degree becomes a set value (for example, 1 ° C. to 2 ° C.). I have to. Further, the air conditioning control device 10 inputs the rotation speed of the compressor 11 detected by the rotation speed sensor 33, and controls the rotation speed of the refrigerant pump 15 in order to absorb a variation in the refrigerant flow rate due to the rotation speed of the compressor 11. Compressor 11 and evaporator 1
The flow rate of the refrigerant flowing into 6 is adjusted.

【0021】〔実施例の作用〕次に、本実施例の空調ユ
ニット1の作用を図1ないし図4に基づいて簡単に説明
する。ここで、図3は図1(a)における冷凍サイクル
9の冷媒回路の冷媒の状態点をモリエル線図上に描いた
もので、図1(a)の冷凍サイクル9の冷媒回路上のa
〜fの冷媒の状態が図3のモリエル線図上のa〜fに対
応する。
Next, the operation of the air-conditioning unit 1 according to this embodiment will be briefly described with reference to FIGS. Here, FIG. 3 shows a state point of the refrigerant in the refrigerant circuit of the refrigeration cycle 9 in FIG. 1A on a Mollier diagram.
3 correspond to a to f on the Mollier diagram in FIG.

【0022】また、図3中のPHは冷凍サイクル9の高
圧圧力(凝縮圧力)で、PDはコンプレッサ11の吸入
圧力で、PLは冷凍サイクル9の低圧圧力(蒸発圧力)
で、PSはノズル21の出口圧力である。そして、図3
中のGeは冷媒ポンプ15の吸引力によるエバポレータ
16に流入する冷媒流量で、Gnはコンプレッサ11の
吸引力による冷媒流量である。ΔPはエジェクタ13の
昇圧圧力で、Δieはノズル21での断熱熱落差で、Δ
irはエジェクタ13によるコンプレッサ11の圧縮仕
事回収分である。
In FIG. 3, PH is the high pressure (condensing pressure) of the refrigeration cycle 9, PD is the suction pressure of the compressor 11, and PL is the low pressure (evaporating pressure) of the refrigeration cycle 9.
Where PS is the outlet pressure of the nozzle 21. And FIG.
Ge in the drawing is the flow rate of the refrigerant flowing into the evaporator 16 due to the suction force of the refrigerant pump 15, and Gn is the flow rate of the refrigerant due to the suction force of the compressor 11. ΔP is the boost pressure of the ejector 13, Δie is the adiabatic heat drop at the nozzle 21,
ir is a recovery amount of the compression work of the compressor 11 by the ejector 13.

【0023】コンプレッサ11で圧縮されて高温高圧と
なったガス冷媒(状態点b)は、コンデンサ12で凝縮
液化されて高温高圧の液冷媒になって(状態点c)、エ
ジェクタ13内に流入する。エジェクタ13内に流入し
た液冷媒は、ノズル21を通過する際に減圧されて状態
点d2 に至り、さらにディフューザ23を通過する際に
昇圧されて状態点dとなる。
The gas refrigerant which has been compressed by the compressor 11 to have a high temperature and high pressure (state point b) is condensed and liquefied by the condenser 12 to become a high temperature and high pressure liquid refrigerant (state point c) and flows into the ejector 13. . The liquid refrigerant flowing into the ejector 13 is decompressed when passing through the nozzle 21 and reaches a state point d2, and is further pressurized when passing through the diffuser 23 to become a state point d.

【0024】このとき、ノズル21を液冷媒が通過する
際にノズル21から高速で噴出する冷媒回りの圧力低下
を利用して、エジェクタ13の吸引部22にバイパス配
管27から状態点d1 のガス冷媒が吸引される。このた
め、コンデンサ12から流入した液冷媒とバイパス配管
27から吸引されたガス冷媒とがディフューザ23内で
混合する。これにより、エジェクタ13より流出する気
液二相状態の冷媒は、状態点d1 、d2 およびコンデン
サ12からの冷媒流量とエバポレータ16からの冷媒流
量とにより決まる状態点dとなる。
At this time, the gas refrigerant at the state point d 1 is supplied from the bypass pipe 27 to the suction part 22 of the ejector 13 by utilizing the pressure drop around the refrigerant which is ejected at a high speed from the nozzle 21 when the liquid refrigerant passes through the nozzle 21. Is sucked. Therefore, the liquid refrigerant flowing from the condenser 12 and the gas refrigerant sucked from the bypass pipe 27 are mixed in the diffuser 23. Thereby, the refrigerant in the gas-liquid two-phase state flowing out of the ejector 13 becomes the state points d1, d2 and the state point d determined by the refrigerant flow rate from the condenser 12 and the refrigerant flow rate from the evaporator 16.

【0025】その後に、気液二相状態の冷媒は、冷媒配
管17を通って冷媒入口部24から気液分離器14内に
流入してガス冷媒と液冷媒とに分離する。このうちガス
冷媒(状態点a)は、コンプレッサ11の吸引力によっ
て気液分離器14のガス冷媒出口部25から流出して冷
媒配管17を通ってコンプレッサ11に吸入される。
Thereafter, the gas-liquid two-phase refrigerant flows through the refrigerant pipe 17 into the gas-liquid separator 14 from the refrigerant inlet 24 and is separated into a gas refrigerant and a liquid refrigerant. The gas refrigerant (state point a) flows out of the gas refrigerant outlet 25 of the gas-liquid separator 14 by the suction force of the compressor 11 and is sucked into the compressor 11 through the refrigerant pipe 17.

【0026】一方の気液分離器14内の液冷媒(状態点
e)は、冷媒ポンプ15に吸引されて気液分離器14の
液冷媒出口部26から流出してバイパス配管27内に流
入する。そして、バイパス配管27内に流入した液冷媒
は、冷媒ポンプ15の吸引効果により昇圧した(状態点
f)後に、エバポレータ16内に流入する。エバポレー
タ16内に流入した液冷媒は、エバポレータ16を通過
する蒸発気化した(状態点d1 )後に、エジェクタ13
の吸引部22に吸引される。
The liquid refrigerant (state point e) in the gas-liquid separator 14 is sucked by the refrigerant pump 15 and flows out of the liquid refrigerant outlet 26 of the gas-liquid separator 14 and flows into the bypass pipe 27. . Then, the liquid refrigerant flowing into the bypass pipe 27 flows into the evaporator 16 after being pressurized by the suction effect of the refrigerant pump 15 (state point f). The liquid refrigerant flowing into the evaporator 16 passes through the evaporator 16 and evaporates (state point d1).
Is sucked by the suction unit 22 of the.

【0027】ここで、エジェクタ13のノズル効率を最
適値で使用するためには、エバポレータ16に流入する
冷媒流量を一定値に保つ必要があるが、コンプレッサ1
1を動力エンジンで回転駆動しているため、コンプレッ
サ11の回転速度は、図4のグラフに示したように、ア
イドル回転速度(例えば800rpm)から通常の走行
速度に見合う回転速度(例えば200rpm)まで変動
する。
Here, in order to use the nozzle efficiency of the ejector 13 at the optimum value, it is necessary to keep the flow rate of the refrigerant flowing into the evaporator 16 at a constant value.
As shown in the graph of FIG. 4, the rotation speed of the compressor 11 ranges from an idle rotation speed (for example, 800 rpm) to a rotation speed (for example, 200 rpm) corresponding to a normal running speed, as shown in the graph of FIG. fluctuate.

【0028】そこで、本実施例では、コンプレッサ11
の回転速度の変動によって生じる、エバポレータ16に
流入する冷媒流量の変動分(図4(c)の従来例の項参
照)を吸収するために、コンプレッサ11の回転速度に
応じて冷媒ポンプ15の回転速度を制御することによ
り、コンプレッサ11の吸入圧力を下げるようにしてい
る(図4(b)の実施例の項参照)。それによって、コ
ンプレッサ11の吸入比容積を大きくなるので、コンプ
レッサ11に吸引される冷媒流量が一定値(図4(c)
の実施例の項参照)に保たれる。
Therefore, in this embodiment, the compressor 11
The rotation of the refrigerant pump 15 according to the rotation speed of the compressor 11 in order to absorb the fluctuation in the flow rate of the refrigerant flowing into the evaporator 16 (see the section of the conventional example in FIG. By controlling the speed, the suction pressure of the compressor 11 is reduced (see the embodiment of FIG. 4B). As a result, the suction specific volume of the compressor 11 is increased, so that the flow rate of the refrigerant sucked into the compressor 11 is constant (FIG. 4C).
(See the section of the embodiment).

【0029】〔実施例の効果〕車両走行用の動力エンジ
ンにより回転駆動されるコンプレッサ11を用いる空調
ユニット1は、全てアイドリング(アイドル回転速度)
の時の冷房能力が少ないという問題点がある。この対応
策として、エジェクタ13により、膨張弁でのエネルギ
ーロスを回収し、コンプレッサ11の仕事の軽減と冷媒
流量の増大による冷房能力の向上が図れる。
[Effects of the Embodiment] The air conditioning unit 1 using the compressor 11 which is rotated by a power engine for running the vehicle is all idling (idling speed).
There is a problem that the cooling capacity at the time of is low. As a countermeasure, energy loss at the expansion valve is recovered by the ejector 13, so that the work of the compressor 11 can be reduced and the cooling capacity can be improved by increasing the refrigerant flow rate.

【0030】但し、このエジェクタ13を備えた冷凍サ
イクル9は、エジェクタ13のノズル効率に大きく依存
しているため、上述のように、ノズル効率や蒸発圧力を
最適値で使用しないと、冷房能力が逆に低下する心配が
ある。本実施例では、この問題点を解決する目的でなさ
れたもので、動力エンジン(コンプレッサ11)の回転
速度に拘らず、冷媒ポンプ15により強制的に液冷媒を
エバポレータ16に循環させることでノズル効率や蒸発
圧力を最適値で使用している(図4(a)参照)。これ
により、図4(d)に示したように、冷房能力の低下を
抑えることができる。特に、本実施例は、従来例と比較
してコンプレッサ11の低速度領域での冷房能力の向上
を図れる。
However, since the refrigeration cycle 9 including the ejector 13 largely depends on the nozzle efficiency of the ejector 13, as described above, unless the nozzle efficiency and the evaporating pressure are used at the optimum values, the cooling capacity is reduced. Conversely, there is a concern that it will decrease. In this embodiment, the purpose is to solve this problem, and the nozzle efficiency is forcibly circulated to the evaporator 16 by the refrigerant pump 15 regardless of the rotational speed of the power engine (compressor 11). And the evaporating pressure are used at the optimum values (see FIG. 4A). Thereby, as shown in FIG. 4D, a decrease in the cooling capacity can be suppressed. In particular, the present embodiment can improve the cooling capacity of the compressor 11 in the low speed region as compared with the conventional example.

【0031】冷媒ポンプ15の作動は、出口温度センサ
31と出口圧力センサ32とから計算されるエバポレー
タ16の出口側の過熱度(スーパーヒート量)に対し、
通常のスーパーヒート量(設定値:例えば10℃)を中
心に±1℃で、ON/OFF制御を行えば良い。なお、
スーパーヒート量は、10℃に限るものではなく、小さ
ければ小さい程、空気への熱伝達率が向上する。
The operation of the refrigerant pump 15 is based on the degree of superheat (superheat) on the outlet side of the evaporator 16 calculated from the outlet temperature sensor 31 and the outlet pressure sensor 32.
The ON / OFF control may be performed at ± 1 ° C. around the normal amount of superheat (set value: for example, 10 ° C.). In addition,
The amount of superheat is not limited to 10 ° C. The smaller the superheat, the better the heat transfer coefficient to air.

【0032】〔変形例〕本実施例では、本発明を車両用
空気調和装置(エアコン)に適用したが、本発明を車両
用冷房装置、車両用冷蔵装置または車両用冷凍装置に適
用しても良い。また、本発明を定置式の冷凍装置に適用
しても良い。
[Modification] In this embodiment, the present invention is applied to a vehicle air conditioner (air conditioner). However, the present invention is also applicable to a vehicle cooling device, a vehicle refrigeration device, or a vehicle refrigeration device. good. Further, the present invention may be applied to a stationary refrigeration apparatus.

【0033】本実施例では、コンプレッサ11を車両走
行用の動力エンジンにより回転駆動したが、コンプレッ
サ11を車両走行用の動力エンジンとは別の補助エンジ
ン(サブエンジン)により回転駆動しても良い。また、
コンプレッサ11を電動モータ等の他の駆動手段により
回転駆動しても良い。
In this embodiment, the compressor 11 is rotationally driven by a power engine for driving the vehicle, but the compressor 11 may be rotationally driven by an auxiliary engine (sub-engine) different from the power engine for driving the vehicle. Also,
The compressor 11 may be rotationally driven by another driving means such as an electric motor.

【0034】本実施例では、エジェクタ13と気液分離
器14との間を冷媒配管17により連結したが、その冷
媒配管17の途中に第1冷媒蒸発器を設置しても良い。
この場合には、エバポレータ16は第2冷媒蒸発器とな
る。また、気液分離器14と冷媒ポンプ15との間に、
必要であれば減圧装置(固定絞り)を設置しても良い。
In the present embodiment, the ejector 13 and the gas-liquid separator 14 are connected by the refrigerant pipe 17, but a first refrigerant evaporator may be provided in the refrigerant pipe 17.
In this case, the evaporator 16 becomes a second refrigerant evaporator. Further, between the gas-liquid separator 14 and the refrigerant pump 15,
If necessary, a pressure reducing device (fixed throttle) may be installed.

【0035】本実施例では、冷媒ポンプ15をエバポレ
ータ16よりも上流側のバイパス配管27に設置した
が、電動式コンプレッサ等の冷媒圧送手段をエバポレー
タ16よりも下流側のバイパス配管27に設置しても良
い。
In this embodiment, the refrigerant pump 15 is installed on the bypass pipe 27 upstream of the evaporator 16. However, refrigerant pumping means such as an electric compressor is installed on the bypass pipe 27 downstream of the evaporator 16. Is also good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は冷凍サイクルの冷媒回路を示した回路
図で、(b)は車両用空気調和装置の通風系を示した概
略図である(実施例)。
FIG. 1A is a circuit diagram showing a refrigerant circuit of a refrigeration cycle, and FIG. 1B is a schematic diagram showing a ventilation system of a vehicle air conditioner (Example).

【図2】車両用空気調和装置の制御系を示した電気回路
図である(実施例)。
FIG. 2 is an electric circuit diagram showing a control system of the vehicle air conditioner (Example).

【図3】冷凍サイクルのモリエル線図である(実施
例)。
FIG. 3 is a Mollier diagram of a refrigeration cycle (Example).

【図4】コンプレッサの回転速度に対する蒸発圧力、コ
ンプレッサの吸入圧力、冷媒吸引流量、冷房能力の関係
を示したグラフである(実施例)。
FIG. 4 is a graph showing the relationship between the evaporating pressure, the compressor suction pressure, the refrigerant suction flow rate, and the cooling capacity with respect to the rotation speed of the compressor (Example).

【図5】従来のエジェクタを示した断面図である(従来
例)。
FIG. 5 is a cross-sectional view showing a conventional ejector (conventional example).

【図6】ノズル入口乾き度とノズル効率との関係を示し
たグラフである(従来例)。
FIG. 6 is a graph showing the relationship between nozzle inlet dryness and nozzle efficiency (conventional example).

【図7】従来のエジェクタを示した断面図である(従来
例)。
FIG. 7 is a cross-sectional view showing a conventional ejector (conventional example).

【図8】ノズル出口径とノズル効率との関係を示したグ
ラフである(従来例)。
FIG. 8 is a graph showing the relationship between nozzle outlet diameter and nozzle efficiency (conventional example).

【図9】エバポレータの冷媒流量とエジェクタでの昇圧
性能との関係を示したグラフである(従来例)。
FIG. 9 is a graph showing a relationship between a refrigerant flow rate of an evaporator and a boosting performance of an ejector (conventional example).

【符号の説明】[Explanation of symbols]

1 空調ユニット 9 冷凍サイクル 10 空調制御装置(空調制御手段) 11 コンプレッサ(冷媒圧縮機) 12 コンデンサ(冷媒凝縮器) 13 エジェクタ 14 気液分離器 15 冷媒ポンプ(冷媒圧送手段) 16 エバポレータ(冷媒蒸発器) 17 冷媒配管(冷媒流路) 21 ノズル 22 吸引部 26 液冷媒出口部(液相冷媒側) 27 バイパス配管(バイパス流路) 31 出口温度センサ(過熱度検出手段) 32 出口圧力センサ(過熱度検出手段) 33 回転速度センサ(回転速度検出手段) REFERENCE SIGNS LIST 1 air conditioning unit 9 refrigeration cycle 10 air conditioning controller (air conditioning controller) 11 compressor (refrigerant compressor) 12 condenser (refrigerant condenser) 13 ejector 14 gas-liquid separator 15 refrigerant pump (refrigerant pumping means) 16 evaporator (refrigerant evaporator) 17) Refrigerant pipe (refrigerant flow path) 21 Nozzle 22 Suction part 26 Liquid refrigerant outlet part (Liquid-phase refrigerant side) 27 Bypass pipe (Bypass flow path) 31 Outlet temperature sensor (Superheat degree detection means) 32 Outlet pressure sensor (Superheat degree) Detection means) 33 Rotation speed sensor (Rotation speed detection means)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷媒圧縮機、冷媒凝縮器、エジェクタおよ
び気液分離器を冷媒流路で環状に連結すると共に、前記
気液分離器の液相冷媒側と前記エジェクタの吸引部とを
バイパス配管で連結し、そのバイパス流路の途中に冷媒
蒸発器を設置した冷凍サイクルを備えた冷凍装置におい
て、 前記冷凍サイクルは、前記冷媒蒸発器に前記気液分離器
内の液相冷媒を圧送する冷媒圧送手段を前記バイパス流
路の途中に設けたことを特徴とする冷凍装置。
1. A refrigerant compressor, a refrigerant condenser, an ejector and a gas-liquid separator are annularly connected by a refrigerant flow path, and a bypass pipe is provided between a liquid-phase refrigerant side of the gas-liquid separator and a suction part of the ejector. And a refrigeration apparatus having a refrigeration cycle in which a refrigerant evaporator is installed in the middle of the bypass flow path, wherein the refrigeration cycle pumps a liquid-phase refrigerant in the gas-liquid separator to the refrigerant evaporator. A refrigeration apparatus, wherein a pressure feeding means is provided in the middle of the bypass flow path.
【請求項2】請求項1に記載の冷凍装置において、 前記冷媒圧送手段は、前記気液分離器の液相冷媒側と前
記冷媒蒸発器の入口側との間に連結する冷媒ポンプであ
り、 前記冷凍装置は、前記冷媒蒸発器の出口側の過熱度を検
出する過熱度検出手段を有し、この過熱度検出手段で検
出した検出値が設定値となるように前記冷媒ポンプの回
転速度を増減する空調制御手段を備えたことを特徴とす
る冷凍装置。
2. The refrigeration apparatus according to claim 1, wherein the refrigerant pumping means is a refrigerant pump connected between a liquid-phase refrigerant side of the gas-liquid separator and an inlet side of the refrigerant evaporator, The refrigeration apparatus has superheat degree detection means for detecting the degree of superheat on the outlet side of the refrigerant evaporator, and adjusts the rotation speed of the refrigerant pump so that the detection value detected by the superheat degree detection means becomes a set value. A refrigeration apparatus comprising an air conditioning control means for increasing and decreasing.
【請求項3】請求項2に記載の冷凍装置において、 前記空調制御手段は、前記冷媒圧縮機の回転速度を検出
する回転速度検出手段を有し、この回転速度検出手段で
検出した検出値が増加すればする程、前記冷媒ポンプの
回転速度を遅くすることを特徴とする冷凍装置。
3. The refrigeration apparatus according to claim 2, wherein said air conditioning control means has a rotation speed detection means for detecting a rotation speed of said refrigerant compressor, and the detected value detected by said rotation speed detection means is A refrigeration apparatus characterized in that the rotation speed of the refrigerant pump is decreased as the number of rotations increases.
JP00971097A 1997-01-22 1997-01-22 Refrigeration equipment Expired - Fee Related JP3690030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00971097A JP3690030B2 (en) 1997-01-22 1997-01-22 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00971097A JP3690030B2 (en) 1997-01-22 1997-01-22 Refrigeration equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005069911A Division JP3992046B2 (en) 2005-03-11 2005-03-11 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH10205898A true JPH10205898A (en) 1998-08-04
JP3690030B2 JP3690030B2 (en) 2005-08-31

Family

ID=11727817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00971097A Expired - Fee Related JP3690030B2 (en) 1997-01-22 1997-01-22 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3690030B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477857B2 (en) 2000-03-15 2002-11-12 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP2003291635A (en) * 2002-04-02 2003-10-15 Denso Corp Air-conditioner
US6862897B2 (en) * 2003-02-14 2005-03-08 Denso Corporation Vapor-compression refrigerant cycle with ejector
US6910343B2 (en) * 2003-04-23 2005-06-28 Nippon Soken, Inc. Vapor-compression refrigerant cycle with ejector
US6918266B2 (en) 2003-04-21 2005-07-19 Denso Corporation Ejector for vapor-compression refrigerant cycle
US7059147B2 (en) 2002-10-15 2006-06-13 Denso Corporation Cooling system for a vehicle
US7143602B2 (en) * 2002-05-15 2006-12-05 Denso Corporation Ejector-type depressurizer for vapor compression refrigeration system
US7334427B2 (en) 2003-03-05 2008-02-26 Nippon Soken, Inc. Ejector with tapered nozzle and tapered needle
CN100436962C (en) * 2005-08-04 2008-11-26 株式会社电装 Refrigeration cycle device with injector
EP2080967A1 (en) * 2008-01-18 2009-07-22 Valeo Klimasysteme GmbH Ejector for a refrigerant circuit
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
JP2009276046A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2010112690A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector type refrigeration cycle
JP2010112691A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector-type refrigeration cycle
US20110005268A1 (en) * 2008-04-18 2011-01-13 Denso Corporation Ejector-type refrigeration cycle device
WO2014076904A1 (en) * 2012-11-16 2014-05-22 株式会社デンソー Refrigeration cycle apparatus
JP2014190587A (en) * 2013-03-26 2014-10-06 Hibiya Eng Ltd Ejector type refrigeration cycle device and control method therefor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287890B2 (en) 2014-09-04 2018-03-07 株式会社デンソー Liquid jet ejector and ejector refrigeration cycle

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574987B2 (en) 2000-03-15 2003-06-10 Denso Corporation Ejector cycle system with critical refrigerant pressure
US6477857B2 (en) 2000-03-15 2002-11-12 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP2003291635A (en) * 2002-04-02 2003-10-15 Denso Corp Air-conditioner
US7143602B2 (en) * 2002-05-15 2006-12-05 Denso Corporation Ejector-type depressurizer for vapor compression refrigeration system
US7059147B2 (en) 2002-10-15 2006-06-13 Denso Corporation Cooling system for a vehicle
US6862897B2 (en) * 2003-02-14 2005-03-08 Denso Corporation Vapor-compression refrigerant cycle with ejector
DE102004009966B4 (en) * 2003-03-05 2017-11-02 Denso Corporation Ejector pump with tapered nozzle and tapered needle
US7334427B2 (en) 2003-03-05 2008-02-26 Nippon Soken, Inc. Ejector with tapered nozzle and tapered needle
US6918266B2 (en) 2003-04-21 2005-07-19 Denso Corporation Ejector for vapor-compression refrigerant cycle
US6910343B2 (en) * 2003-04-23 2005-06-28 Nippon Soken, Inc. Vapor-compression refrigerant cycle with ejector
CN100436962C (en) * 2005-08-04 2008-11-26 株式会社电装 Refrigeration cycle device with injector
EP2080967A1 (en) * 2008-01-18 2009-07-22 Valeo Klimasysteme GmbH Ejector for a refrigerant circuit
JP2009276046A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2009276045A (en) * 2008-04-18 2009-11-26 Denso Corp Ejector type refrigeration cycle
JP2010112690A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector type refrigeration cycle
JP2010112691A (en) * 2008-04-18 2010-05-20 Denso Corp Ejector-type refrigeration cycle
US20110005268A1 (en) * 2008-04-18 2011-01-13 Denso Corporation Ejector-type refrigeration cycle device
WO2009128271A1 (en) * 2008-04-18 2009-10-22 株式会社デンソー Ejector-type refrigeration cycle device
US10527329B2 (en) 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
WO2014076904A1 (en) * 2012-11-16 2014-05-22 株式会社デンソー Refrigeration cycle apparatus
JP2014206361A (en) * 2012-11-16 2014-10-30 株式会社デンソー Refrigeration cycle device
US9523521B2 (en) 2012-11-16 2016-12-20 Denso Corporation Refrigeration cycle apparatus
JP2014190587A (en) * 2013-03-26 2014-10-06 Hibiya Eng Ltd Ejector type refrigeration cycle device and control method therefor

Also Published As

Publication number Publication date
JP3690030B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
JP3690030B2 (en) Refrigeration equipment
US6782713B2 (en) Refrigerant cycle with ejector having throttle changeable nozzle
US7062929B2 (en) Vehicle air conditioner with vapor-compression refrigerant cycle and method of operating the same
US8424338B2 (en) Vapor compression refrigerating cycle apparatus with an ejector and distributor
JP4096824B2 (en) Vapor compression refrigerator
WO2015052881A1 (en) Refrigeration cycle device
US20040079102A1 (en) Vehicle air conditioner having compressi on gas heater
JPH05312421A (en) Freezer device
JP2000142094A (en) Refrigeration cycle device
US6935125B2 (en) Air conditioning system
JP2000283577A (en) Refrigeration cycle for refrigerating plant
US6807819B2 (en) Vapor compression refrigerant cycle
JP3992046B2 (en) Refrigeration equipment
JP3820664B2 (en) Air conditioner for vehicles
JP6116810B2 (en) Refrigeration cycle equipment
JP2020029983A (en) Refrigeration cycle device
JP2992818B1 (en) Compressor protection device for vehicle air conditioner
JPH11101514A (en) Refrigeration cycle
JP4014760B2 (en) Air conditioner for vehicles
JP4835296B2 (en) Ejector refrigeration cycle
JP2006313050A (en) Supercritical refrigeration cycle and vehicular air conditioner
JPH11201560A (en) Supercritical refrigerating cycle
KR101544880B1 (en) Freezing cycle of air conditioner for vehicle
JP2010043754A (en) Vapor compression type refrigeration cycle
WO2016063444A1 (en) Ejector-type refrigeration cycle

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050311

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees