JPH10202293A - Method and device for biologically nitrating nitrogen-containing waste water - Google Patents
Method and device for biologically nitrating nitrogen-containing waste waterInfo
- Publication number
- JPH10202293A JPH10202293A JP742297A JP742297A JPH10202293A JP H10202293 A JPH10202293 A JP H10202293A JP 742297 A JP742297 A JP 742297A JP 742297 A JP742297 A JP 742297A JP H10202293 A JPH10202293 A JP H10202293A
- Authority
- JP
- Japan
- Prior art keywords
- wastewater
- nitrification
- nitrogen
- tank
- treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002351 wastewater Substances 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 title claims abstract description 55
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 title claims description 11
- 230000000802 nitrating effect Effects 0.000 title 1
- 230000008569 process Effects 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 16
- 239000003112 inhibitor Substances 0.000 claims abstract description 14
- 238000011282 treatment Methods 0.000 claims description 57
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 48
- 229910052757 nitrogen Inorganic materials 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 24
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 22
- 238000005345 coagulation Methods 0.000 claims description 21
- 230000015271 coagulation Effects 0.000 claims description 21
- 238000000926 separation method Methods 0.000 claims description 17
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 16
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 11
- 239000000701 coagulant Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 22
- 238000006386 neutralization reaction Methods 0.000 abstract description 10
- 230000009467 reduction Effects 0.000 abstract description 8
- 229910002651 NO3 Inorganic materials 0.000 abstract description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 2
- 238000005189 flocculation Methods 0.000 abstract description 2
- 230000016615 flocculation Effects 0.000 abstract description 2
- 238000006396 nitration reaction Methods 0.000 abstract 2
- 230000003311 flocculating effect Effects 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 13
- 230000002776 aggregation Effects 0.000 description 13
- 238000004220 aggregation Methods 0.000 description 13
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 13
- 229910052731 fluorine Inorganic materials 0.000 description 13
- 239000011737 fluorine Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000004140 cleaning Methods 0.000 description 10
- 244000005700 microbiome Species 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 238000005530 etching Methods 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 5
- 239000000852 hydrogen donor Substances 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- 229920003986 novolac Polymers 0.000 description 5
- 238000000206 photolithography Methods 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical group C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 230000000813 microbial effect Effects 0.000 description 4
- 229910017604 nitric acid Inorganic materials 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 230000001590 oxidative effect Effects 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 3
- 150000003863 ammonium salts Chemical class 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 230000001546 nitrifying effect Effects 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 229910021642 ultra pure water Inorganic materials 0.000 description 3
- 239000012498 ultrapure water Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 241001148470 aerobic bacillus Species 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 2
- 229910001634 calcium fluoride Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 125000001477 organic nitrogen group Chemical group 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- 241000862974 Hyphomicrobium Species 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 241000192041 Micrococcus Species 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 1
- 241000605159 Nitrobacter Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 241000605118 Thiobacillus Species 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 230000001651 autotrophic effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、IC、LSI、超
LSIなどの集積回路の製造工程や、液晶表示装置の製
造工程などの電子部品の製造におけるウェット処理プロ
セス、すなわち、半導体ウェハー等の電子部品の表面を
硫酸、過酸化水素、塩酸、アンモニア水等の各種薬液や
超純水を用いて処理するプロセスから排出される排水、
より具体的には洗浄工程、エッチング工程、現像工程、
更には剥離工程等から排出される排水を含むものであっ
て、特にアンモニア性窒素を含む排水の硝化処理方法お
よびその装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet processing process for manufacturing integrated circuits such as ICs, LSIs and VLSIs, and a manufacturing process for electronic components such as a liquid crystal display device, that is, an electronic device such as a semiconductor wafer. Wastewater discharged from the process of treating the surface of parts with various chemical solutions such as sulfuric acid, hydrogen peroxide, hydrochloric acid, ammonia water and ultrapure water,
More specifically, a cleaning step, an etching step, a developing step,
Furthermore, the present invention relates to a method and an apparatus for nitrifying wastewater containing wastewater discharged from a stripping step and the like, and particularly containing wastewater containing ammoniacal nitrogen.
【0002】[0002]
【従来の技術】IC、LSI、超LSIなどの半導体集
積回路や液晶表示装置は、シリコンウェハー等の基板上
の所定の領域に不純物を導入したり、絶縁物を堆積した
り、配線を形成したりする工程を繰り返すことによって
製造される。そして、このような所定の領域についての
各種処理を行うためにフォトリソグラフィー技術が広く
採用されている。すなわち、フォトリソグラフィー技術
では、基板上にフォトレジストを塗布し、ステッパーな
どにより所望のパターンの露光を行い、その後、現像、
剥離、エッチング、洗浄などのいわゆるウェット処理を
行うことによって、所定の領域のみを露出させ、ここに
予め定められた処理を行う。2. Description of the Related Art Semiconductor integrated circuits such as ICs, LSIs, and VLSIs and liquid crystal display devices are manufactured by introducing impurities, depositing insulators, and forming wirings in predetermined regions on a substrate such as a silicon wafer. It is manufactured by repeating the steps described above. In order to perform various processes on such a predetermined area, a photolithography technique is widely adopted. That is, in the photolithography technology, a photoresist is applied on a substrate, and a desired pattern is exposed by a stepper or the like, and then, development,
By performing a so-called wet process such as peeling, etching, or cleaning, only a predetermined region is exposed, and a predetermined process is performed here.
【0003】ここで、フォトリソグラフィーに利用する
フォトレジストには、露光によって照射部分が不溶化す
るネガ型レジストと、照射部分が可溶化するポジ型レジ
ストがある。そして、ポジ型フォトレジストの代表的な
ものとして、o−ジアゾナフトキノン等の感光剤を含有
したノボラック樹脂が知られており、広く利用されてい
る。Here, there are two types of photoresists used for photolithography: a negative type resist in which an irradiated portion is insolubilized by exposure, and a positive type resist in which an irradiated portion is solubilized. As a typical positive type photoresist, a novolak resin containing a photosensitive agent such as o-diazonaphthoquinone is known and widely used.
【0004】また、上記の現像、剥離、エッチング、洗
浄などの各工程には、超純水や、硫酸、過酸化水素、塩
酸、アンモニア水、発煙硝酸等が用いられ、これらの組
み合わせによる薬液洗浄やエッチング、剥離等が行われ
ている。そして、このような薬液や超純水等の液体を用
いて電子部品の表面を処理するプロセスを、一般にウェ
ット処理プロセスと称している。ここで、これら薬液洗
浄やエッチング、剥離等の操作は、通常薬液を貯留する
タンクに電子部品をどぶづけすることによって行われ、
一定期間使用後に新しい薬液に更新される。そこで、こ
の薬液の更新時には、使用済みの薬液が排出されること
になる。この使用済みの薬液は、その含有物質に応じて
中和処理、希釈処理、その他の処理が行われて放出され
るが、放流水の規制などに応じて各種の処理が必要にな
る。[0004] Ultrapure water, sulfuric acid, hydrogen peroxide, hydrochloric acid, aqueous ammonia, fuming nitric acid, and the like are used in the above-described steps such as development, peeling, etching, and cleaning. And etching, peeling and the like are performed. A process for treating the surface of an electronic component using a liquid such as a chemical solution or ultrapure water is generally called a wet treatment process. Here, these operations such as chemical cleaning, etching, and peeling are usually performed by immersing electronic components in a tank for storing a chemical,
After a certain period of use, the solution is updated to a new one. Therefore, when the chemical solution is updated, the used chemical solution is discharged. The used chemical solution is released after being subjected to a neutralization treatment, a dilution treatment, and other treatments in accordance with the substance contained therein, but various treatments are required in accordance with the regulations of the discharged water.
【0005】例えば、湖沼や湾等の閉鎖性水域における
富栄養化防止の観点から、排水中の窒素・りんの排出規
制が一部地域で実施されている。そこで、上述のような
ウェット処理プロセスからの排水に含まれる窒素を除去
する必要がある。For example, from the viewpoint of preventing eutrophication in closed water bodies such as lakes and bays, the emission of nitrogen and phosphorus in wastewater is regulated in some areas. Therefore, it is necessary to remove nitrogen contained in wastewater from the above wet treatment process.
【0006】排水中の窒素の除去方法には、(i)微生
物の硝化脱窒作用を利用する微生物法、(ii)アンモ
ニアと塩素の反応を利用する不連続点塩素処理法、(i
ii)高pHでのアンモニアの水中からの放出を利用す
るアンモニアストリッピング法、(iv)イオン交換樹
脂を利用したイオン交換法、等が知られている。ここ
で、(ii)、(iii)はアンモニウム塩のみが対象
であり、また(iv)アンモニウム塩、硝酸塩、亜硝酸
塩が対象になる。一方、(i)の微生物法は、アンモニ
ウム塩の他、有機態窒素、硝酸塩、亜硝酸塩が除去可能
であり、かつ二次汚染の心配のない窒素ガスとして排水
中の窒素を除去でき、さらにランニングコストが比較的
安いというメリットもある。そこで、各種の窒素含有排
水からの窒素の除去方法として、広く採用されている。Methods for removing nitrogen from wastewater include (i) a microbial method utilizing the nitrification and denitrification of microorganisms, (ii) a discontinuous point chlorination method utilizing the reaction between ammonia and chlorine, and (i)
ii) Ammonia stripping method using release of ammonia at high pH from water, (iv) ion exchange method using ion exchange resin, and the like are known. Here, (ii) and (iii) cover only ammonium salts, and (iv) cover ammonium salts, nitrates and nitrites. On the other hand, in the microbial method (i), in addition to ammonium salts, organic nitrogen, nitrate, and nitrite can be removed, and nitrogen in wastewater can be removed as nitrogen gas without fear of secondary pollution. Another advantage is that the cost is relatively low. Therefore, it has been widely adopted as a method for removing nitrogen from various nitrogen-containing wastewaters.
【0007】ここで、この微生物法による窒素除去につ
いて、簡単に説明する。この微生物法は、排水中のアン
モニア態窒素および有機態窒素を一旦硝酸または亜硝酸
にまで酸化する硝化工程と、硝酸または亜硝酸を窒素ガ
スに還元する脱窒工程からなっている。そして、硝化工
程、脱窒工程では、次のような反応が進行する。Here, the nitrogen removal by the microbial method will be briefly described. This microbial method includes a nitrification step of once oxidizing ammonium nitrogen and organic nitrogen in wastewater to nitric acid or nitrous acid, and a denitrifying step of reducing nitric acid or nitrous acid to nitrogen gas. Then, in the nitrification step and the denitrification step, the following reaction proceeds.
【0008】 (硝化工程) NH4 ++1.5O2→No2 -+H20+2H+ (1) NO2 -+0.5O2→NO3 - (2) (脱窒工程) 2NO2 -+6H+(水素供与体)→N2+2H2O+2OH- (3) 2NO3 -+10H+(水素供与体)→N2+4H2O+2OH- (4) ここで、上述の硝化工程における(1)(2)の反応
は、好気的条件下において進行する反応であり、(1)
(2)の反応に関与する代表的な細菌として、Nitrosom
onas、Nitrobacterがそれぞれあげられる。(Nitrification step) NH 4 + +1.5 O 2 → No 2 − + H 20 + 2H + (1) NO 2 − +0.5 O 2 → NO 3 − (2) (Denitrification step) 2NO 2 − + 6H + ( (Hydrogen donor) → N 2 + 2H 2 O + 2OH − (3) 2NO 3 − + 10H + (hydrogen donor) → N 2 + 4H 2 O + 2OH − (4) Here, the reactions (1) and (2) in the nitrification step described above. Is a reaction that proceeds under aerobic conditions, and (1)
Nitrosom is a representative bacterium involved in the reaction (2).
onas and Nitrobacter, respectively.
【0009】一方、脱窒工程における(3)(4)の反
応は、嫌気的条件下において進行する反応であり、この
反応は通性嫌気性細菌であるPseudomonas、Micrococcu
s、Hyphomicrobium、Thiobacillus等によるといわれて
いる。On the other hand, the reactions (3) and (4) in the denitrification step proceed under anaerobic conditions, and the reactions are facultative anaerobic bacteria Pseudomonas and Micrococcu.
s, Hyphomicrobium, Thiobacillus and the like.
【0010】ここで、(1)(2)の硝化反応に関与す
る上述の細菌は自栄養性の細菌であり、有機炭素源がな
くても生育する。また、排水中に有機炭素源が存在する
場合には、通常好気性の細菌によって、有機炭素源は酸
化分解される。一方、(3)(4)脱窒反応において
は、硝酸、亜硝酸の還元を行うために水素供与体(有機
炭素源)が必要となる。この水素供与体の供給方法とし
ては、排水中の有機物を利用する方法、メタノールなど
の薬品を添加する方法、微生物の内生呼吸を利用する方
法などが知られている。Here, the above-mentioned bacteria involved in the nitrification reaction of (1) and (2) are autotrophic bacteria and grow without an organic carbon source. When an organic carbon source is present in wastewater, the organic carbon source is usually oxidatively decomposed by aerobic bacteria. On the other hand, in the (3) and (4) denitrification reactions, a hydrogen donor (organic carbon source) is required to reduce nitric acid and nitrous acid. As a method for supplying the hydrogen donor, a method utilizing organic matter in wastewater, a method of adding a chemical such as methanol, and a method utilizing endogenous respiration of microorganisms are known.
【0011】このような微生物を利用する窒素除去方法
は、上述のように他の除去方法に比べ各種の点で優れて
いるため、IC、LSI、超LSI等の半導体集積回路
や液晶表示装置の製造におけるウェット処理プロセスに
おいて排出される窒素を含有する排水に対しても、従来
より採用されている。なお、これら排水は、pHが非常
に低かったり、過酸化水素などの酸化性物質を含む場合
も多いため、中和、酸化性物質還元などの前処理をおこ
なった後、微生物を利用する処理に供されている。Since the nitrogen removal method using such microorganisms is superior in various points as compared with other removal methods as described above, it can be used for semiconductor integrated circuits such as ICs, LSIs, VLSIs, and liquid crystal display devices. It has also been conventionally used for wastewater containing nitrogen discharged in a wet treatment process in production. Since these wastewaters often have very low pH or contain oxidizing substances such as hydrogen peroxide, they are subjected to pretreatment such as neutralization and reduction of oxidizing substances before being treated with microorganisms. Has been provided.
【0012】[0012]
【発明が解決しようとする課題】上述のように、微生物
を利用する窒素除去方法は各種のメリットがあるが、本
発明の処理対象である電子部品製造におけるウェット処
理プロセスから排出される排水の処理においてはその効
率が十分高くないことが明らかになった。すなわち、本
発明者らの研究により、硝化工程における硝化速度が、
例えば下水中のアンモニア性窒素の硝化速度に比べ、著
しく低いことがわかった。近年、排出規制などの強化に
応じより高効率の窒素除去が求められるようになってき
ており、排水中の窒素をより効率的かつ安定して除去し
たいという課題がある。As described above, the nitrogen removal method using microorganisms has various merits, but the treatment of wastewater discharged from the wet treatment process in the production of electronic components, which is the object of the present invention. It was found that the efficiency was not high enough. That is, according to the study of the present inventors, the nitrification rate in the nitrification step is:
For example, it was found that the nitrification rate of ammonia nitrogen in sewage was significantly lower. In recent years, there has been a demand for more efficient nitrogen removal in accordance with stricter emission regulations and the like, and there is a problem that it is desired to more efficiently and stably remove nitrogen in wastewater.
【0013】本発明者らは、この点について、各種実験
を行い、その結果、前記のような電子部品のウェット処
理プロセスから排出される窒素含有排水、特にアンモニ
アを用いた洗浄工程の排水と、硫酸と過酸化水素を混合
した薬液を用いた洗浄工程の排水とを含む排水を処理し
た場合に、pHの中和、過酸化水素の還元処理を行って
もアンモニア性窒素の硝化が阻害されることが明らかに
なった。すなわち、このようなウェット処理プロセスか
ら排出される排水中には、硝化反応を阻害する物質が含
まれており、このために硝化の効率が低下していること
がわかった。The present inventors conducted various experiments on this point, and as a result, the nitrogen-containing wastewater discharged from the wet treatment process for electronic components as described above, particularly the wastewater from the cleaning step using ammonia, When treating wastewater including wastewater from a washing step using a chemical solution in which sulfuric acid and hydrogen peroxide are mixed, nitrification of ammonia nitrogen is inhibited even if pH neutralization and hydrogen peroxide reduction treatment are performed. It became clear. That is, it has been found that the wastewater discharged from such a wet treatment process contains a substance that inhibits the nitrification reaction, and thus the nitrification efficiency is reduced.
【0014】本発明は、上記認識に基づいてなされたも
のであり、電子部品製造におけるウェット処理プロセス
から排出される窒素含有排水について効果的な硝化処理
が行える窒素含有排水の生物学的硝化方法およびその装
置を提供することを目的とする。The present invention has been made based on the above recognition, and a method for biologically nitrifying nitrogen-containing wastewater capable of performing effective nitrification treatment on nitrogen-containing wastewater discharged from a wet treatment process in the production of electronic components. It is intended to provide the device.
【0015】[0015]
【課題を解決するための手段】本発明は、電子部品製造
におけるウェット処理プロセスから排出される窒素含有
排水の生物学的硝化方法であって、排水に凝集剤を添加
混合しその後固形物を分離する凝集分離処理を行い、排
水中に含まれる硝化阻害物質を除去した後、生物的な硝
化処理を行うことを特徴とする。このように、排水に対
し凝集分離処理を施すことにより、排水中に含まれる硝
化阻害物質が効果的に分離除去される。従って、その後
に行われる硝化処理における硝化速度を十分高いものに
でき、効果的な硝化処理を安定して行うことができる。SUMMARY OF THE INVENTION The present invention relates to a method for biologically nitrifying nitrogen-containing wastewater discharged from a wet treatment process in the production of electronic components. The method is characterized in that a biological nitrification treatment is carried out after a nitrification inhibitor contained in waste water is removed by performing a coagulation separation treatment. In this way, by subjecting the wastewater to the coagulation separation treatment, the nitrification inhibitor contained in the wastewater is effectively separated and removed. Therefore, the nitrification rate in the subsequent nitrification treatment can be made sufficiently high, and the effective nitrification treatment can be stably performed.
【0016】また、上記排水は、アンモニア性窒素を含
むことを特徴とする。Further, the wastewater contains ammonia nitrogen.
【0017】また、上記排水には前記のような電子部品
を硫酸と過酸化水素を含む溶液で処理した排水が含まれ
ることを特徴とする。さらに、上記排水には、チオフェ
ン構造の物質が含まれることを特徴とする。Further, the wastewater includes a wastewater obtained by treating the above electronic component with a solution containing sulfuric acid and hydrogen peroxide. Further, the wastewater contains a substance having a thiophene structure.
【0018】すなわち、前記したフォトリソグラフィー
工程においてノボラック樹脂をフォトレジストとして利
用してウェハー上に回路パターンを作製し、その後この
ウェハーを硫酸と過酸化水素を含む洗浄液で洗浄するこ
とは広く利用されている洗浄方法である。この方法によ
る排水には、ウェハー上に極く少量残留しているノボラ
ック樹脂に由来すると思われるチオフェン構造の物質が
含まれる場合が多く、本発明者等の研究によればこのチ
オフェン構造の物質が硝化阻害物質となっていることが
推定された。そこで、このような排水について凝集分離
処理を予め行うことにより、その後に行われる硝化処理
を効率的で安定したものにできることがわかった。That is, it is widely used that a circuit pattern is formed on a wafer by using a novolak resin as a photoresist in the above-described photolithography process, and then the wafer is washed with a cleaning solution containing sulfuric acid and hydrogen peroxide. Cleaning method. The wastewater by this method often contains a thiophene-structured substance which is considered to be derived from a novolak resin remaining in a very small amount on the wafer. It was presumed to be a nitrification inhibitor. Thus, it has been found that by performing the coagulation separation treatment on such wastewater in advance, the subsequent nitrification treatment can be made efficient and stable.
【0019】また、本発明は、排水に添加混合する凝集
剤は、鉄またはアルミニウム系の凝集剤であることを特
徴とする。このような無機凝集剤を利用した凝集処理に
よって、硝化阻害物質が効果的に除去されることが実験
的に確認されている。Further, the present invention is characterized in that the coagulant added to and mixed with the waste water is an iron or aluminum coagulant. It has been experimentally confirmed that the nitrification inhibitor is effectively removed by the coagulation treatment using such an inorganic coagulant.
【0020】また、本発明は、電子部品製造におけるウ
ェット処理プロセスから排出される窒素含有排水の生物
学的硝化装置であって、排水に凝集剤を添加混合し、そ
の後固形物を分離することによって硝化阻害物質を除去
する凝集分離手段と、この凝集分離手段により固形物が
分離された液体分を好気性雰囲気で硝化処理する硝化処
理手段と、を含むことを特徴とする。The present invention is also a biological nitrification apparatus for nitrogen-containing wastewater discharged from a wet treatment process in the production of electronic components, wherein a coagulant is added to the wastewater, mixed, and then solid matter is separated. It is characterized by including a coagulation / separation means for removing a nitrification inhibitor, and a nitrification treatment means for performing a nitrification treatment in aerobic atmosphere on a liquid from which solids are separated by the coagulation / separation means.
【0021】[0021]
【発明の実施の形態】以下、本発明に好適な実施の形態
(以下実施形態という)について、図面に基づいて説明
する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.
【0022】図1は、実施形態の構成を示すブロック図
である。LSIや液晶表示装置の製造工場のウェット処
理プロセスから排出されるアンモニア含有の洗浄排水
と、硫酸および過酸化水素を含有する洗浄排水とを含む
原水は、原水槽1に導入貯留される。通常、この排水中
には、フォトリソグラフィー工程において使用されたノ
ボラック樹脂に由来すると思われるチオフェン構造を持
つ物質が含まれている。なお、排水は更に他の排水と混
合されたものでもよい。FIG. 1 is a block diagram showing the configuration of the embodiment. Raw water containing cleaning wastewater containing ammonia and cleaning wastewater containing sulfuric acid and hydrogen peroxide discharged from a wet processing process in an LSI or liquid crystal display device manufacturing factory is introduced and stored in the raw water tank 1. Usually, the wastewater contains a substance having a thiophene structure which is considered to be derived from the novolak resin used in the photolithography process. In addition, the wastewater may be further mixed with other wastewater.
【0023】原水槽1内の排水は、通常酸性を呈してい
るのでこの酸性の排水を原水ポンプ等により、pH中和
槽2に導入し、まず中和処理を行う。すなわち、このp
H中和槽2には、水酸化ナトリウム(NaOH)溶液が
供給されており、これによって排水のpHを中性付近に
調整する。pH中和槽2において中和された排水は、次
に還元槽3に導入される。この還元槽3には、還元剤
(例えば亜硫酸ナトリウムや、重亜硫酸ナトリウム)が
供給されており、これによって排水中の過酸化水素等の
酸化性物質が還元される。なお、還元槽3として、活性
炭槽を採用し、活性炭によって酸化性物質を除去しても
よい。Since the wastewater in the raw water tank 1 usually exhibits acidity, the acidic wastewater is introduced into the pH neutralization tank 2 by a raw water pump or the like, and first subjected to a neutralization treatment. That is, this p
A sodium hydroxide (NaOH) solution is supplied to the H neutralization tank 2 to adjust the pH of the waste water to near neutrality. The wastewater neutralized in the pH neutralization tank 2 is then introduced into the reduction tank 3. The reducing tank 3 is supplied with a reducing agent (for example, sodium sulfite or sodium bisulfite), whereby oxidizing substances such as hydrogen peroxide in waste water are reduced. In addition, you may employ | adopt an activated carbon tank as the reduction tank 3, and may remove an oxidizing substance with activated carbon.
【0024】そして、このような中和、還元処理が行わ
れた排水は、凝集分離槽4に導入され、ここで凝集分離
処理が行われる。本実施形態では、PAC(ポリ塩化ア
ルミニウム)が凝集剤として添加されて凝集フロックが
形成され、その後、形成されたフロックが例えば沈殿分
離される。なお、凝集沈殿に限らず、凝集浮上分離や、
凝集ろ過等も採用できる。また、凝集剤としては、塩化
第2鉄等の鉄塩や硫酸アルミニウム等のアルミニウム塩
が好適に採用される。さらに、高分子凝集剤を添加し、
凝集反応を強化することも好適である。The wastewater subjected to such neutralization and reduction treatment is introduced into the coagulation / separation tank 4, where the coagulation / separation treatment is performed. In the present embodiment, PAC (polyaluminum chloride) is added as a flocculant to form flocculated flocs, and then the flocs formed are, for example, precipitated and separated. Not only coagulation sedimentation, coagulation flotation separation,
Coagulation filtration and the like can also be employed. As the coagulant, an iron salt such as ferric chloride or an aluminum salt such as aluminum sulfate is preferably used. In addition, a polymer flocculant is added,
It is also suitable to enhance the agglutination reaction.
【0025】凝集分離槽4において、フロックが凝集分
離された処理水は、硝化槽5に導入される。この硝化槽
5は曝気槽、沈殿分離槽、沈殿汚泥の返送ラインから構
成され、上述した好気性細菌等によるアンモニア性窒素
の酸化処理(硝化処理)が行われる。なお、浸漬ろ床や
回転円板等の固定床により硝化反応槽を形成し、返送ラ
インを省略することも好適である。In the flocculation / separation tank 4, the treated water from which flocs have been flocculated and separated is introduced into a nitrification tank 5. The nitrification tank 5 includes an aeration tank, a sedimentation separation tank, and a return line for settling sludge, and performs the oxidation treatment (nitrification treatment) of ammonia nitrogen by the aerobic bacteria described above. It is also preferable that the nitrification reaction tank is formed by a fixed bed such as an immersion filter bed or a rotating disk, and the return line is omitted.
【0026】硝化槽5の処理水は、脱窒槽6に導入され
る。この脱窒槽6は、メタノールが水素供与体として添
加混合される攪拌槽、沈殿槽、沈殿汚泥の返送ラインか
ら構成されており、メタノールを酸化して、硝酸を窒素
ガスに還元する。なお、脱窒槽6を覆蓋し、大気との接
触を少なくすることも好適である。さらに、脱窒槽6に
充填材を充填し、ここに微生物を生育させる固定床とす
ることも好適である。これによって、返送ラインが不要
となる。さらに、メタノールの添加に代え、細菌の内生
呼吸や排水中の有機物を利用してもよい。The treated water in the nitrification tank 5 is introduced into a denitrification tank 6. The denitrification tank 6 includes a stirring tank in which methanol is added and mixed as a hydrogen donor, a settling tank, and a return line for settling sludge, and oxidizes methanol to reduce nitric acid to nitrogen gas. It is also preferable to cover the denitrification tank 6 to reduce the contact with the atmosphere. Further, it is also preferable that the denitrification tank 6 is filled with a filler, and a fixed bed for growing microorganisms is filled therein. This eliminates the need for a return line. Furthermore, instead of the addition of methanol, endogenous respiration of bacteria or organic matter in wastewater may be used.
【0027】このように、本実施形態では、硝化槽5の
前段に凝集分離槽4を配置した。そこで、この凝集分離
槽4において、排水中に含まれる硝化阻害物質が除去さ
れる。従って、硝化槽5に流入される排水中に硝化阻害
物質が存在せず、効率的な硝化処理が行える。なお、硝
化阻害物質の凝集の機構については明らかではないが、
通常の有機物や重金属の除去機構と同様であると考えら
れる。また、硝化阻害物質は、ノボラック樹脂が硫酸/
過酸化水素を利用した洗浄工程において化学変化を起こ
し生成されたものであり、チオフェン構造を有する物質
であると推定される。As described above, in the present embodiment, the coagulation / separation tank 4 is disposed before the nitrification tank 5. Then, in this coagulation separation tank 4, the nitrification inhibitor contained in the wastewater is removed. Therefore, there is no nitrification inhibitor in the wastewater flowing into the nitrification tank 5, and efficient nitrification can be performed. Although the mechanism of aggregation of the nitrification inhibitor is not clear,
It is considered to be the same as the usual organic or heavy metal removal mechanism. In addition, the nitrification inhibitor, sulfuric acid / novolak resin
It is generated by causing a chemical change in a cleaning step using hydrogen peroxide, and is presumed to be a substance having a thiophene structure.
【0028】「その他の構成」半導体集積回路や液晶表
示装置などの製造工程では、上述のような窒素含有排水
(窒素系排水)の他にフッ素系の排水が生じる。これは
エッチング処理などにフッ化水素がよく使用されるから
である。そして、フッ素の除去には、通常カルシウムイ
オンを利用した凝集処理が採用される。[Other Configurations] In the process of manufacturing semiconductor integrated circuits and liquid crystal display devices, fluorine-based wastewater is generated in addition to the above-mentioned wastewater containing nitrogen (nitrogen-based wastewater). This is because hydrogen fluoride is often used for etching and the like. For the removal of fluorine, a coagulation treatment using calcium ions is usually employed.
【0029】フッ素系排水とアンモニアを含む窒素系排
水は、別の工程から生じるが、これを混合した混合排水
として処理することも考えられる。しかし、カルシウム
イオンによるフッ素の処理は、フッ素をフッ化カルシウ
ムを晶析して除去するものである。このため、排水中の
フッ素濃度が高濃度であった方が処理効率がよい。Although the fluorine-based wastewater and the nitrogen-based wastewater containing ammonia are generated from separate steps, they may be treated as a mixed wastewater obtained by mixing these wastewaters. However, the treatment of fluorine with calcium ions removes fluorine by crystallizing calcium fluoride. Therefore, the higher the fluorine concentration in the wastewater, the better the treatment efficiency.
【0030】そこで、電子部品の製造におけるウェット
処理プロセスから生じる排水は、フッ素系排水と、窒素
系排水を混合して排水中のフッ素濃度を希釈により低下
させてからフッ素除去を行うよりも、両排水をそれぞれ
別々に回収し、フッ素系排水についてのみカルシウムイ
オンによる晶析処理を行うことが好ましい。Therefore, the wastewater generated from the wet treatment process in the production of electronic components is more likely to be removed than by mixing fluorine-based wastewater and nitrogen-based wastewater to reduce the fluorine concentration in the wastewater by dilution and then removing fluorine. It is preferable to collect the wastewater separately and perform crystallization treatment with calcium ions only on the fluorine-based wastewater.
【0031】すなわち、図2に示すように、フッ素系排
水のみを原水槽11を介し、晶析槽12に導入し、ここ
でフッ素をフッ化カルシウムとして除去する。そして、
この処理水を例えば窒素系排水の凝集分離槽4に導入
し、その後一緒に処理する。このような処理によって、
フッ素系排水および窒素系排水の両方を効果的に処理す
ることができる。That is, as shown in FIG. 2, only the fluorine-based wastewater is introduced into the crystallization tank 12 through the raw water tank 11, where fluorine is removed as calcium fluoride. And
This treated water is introduced into, for example, a coagulation / separation tank 4 for nitrogen-based wastewater, and then treated together. By such processing,
Both fluorine-based wastewater and nitrogen-based wastewater can be effectively treated.
【0032】また、排水中に比較的多量の有機物が含ま
れている場合は、凝集処理後の排水に対して有機物除去
のための好気性生物処理を行い、しかる後に硝化処理を
行うようにするとよい。When a relatively large amount of organic matter is contained in the wastewater, an aerobic biological treatment for removing the organic matter is performed on the wastewater after the coagulation treatment, followed by a nitrification treatment. Good.
【0033】[0033]
「実施例1」以下の通りの水質のLSI製造工場の洗浄
工程から排出される排水を用い、回分試験による硝化実
験を行った。Example 1 A nitrification experiment by a batch test was performed using wastewater discharged from a washing process of an LSI manufacturing plant having the following water quality.
【0034】 pH:1.5 NH4−N:50mg/L NO3−N:50mg/L TOC:1mg/L H2O2:3000mg/L H2SO4:6000mg/L この排水をpH7に調整し、重亜硫酸ナトリウムによっ
て還元処理を行った後、pH緩衝剤としてNaHC
O3:2000mg/Lを添加し、硝化処理実験の試料
とした。PH: 1.5 NH 4 —N: 50 mg / L NO 3 —N: 50 mg / L TOC: 1 mg / L H 2 O 2 : 3000 mg / L H 2 SO 4 : 6000 mg / L After adjusting and performing reduction treatment with sodium bisulfite, NaHC was used as a pH buffer.
O 3 : 2000 mg / L was added to prepare a sample for the nitrification treatment experiment.
【0035】(凝集なし)の硝化処理には、この試料を
直接用い、(凝集あり)の硝化処理には、以下の条件で
凝集処理した後の上澄み液を用いた。This sample was directly used for the nitrification treatment (without aggregation), and the supernatant liquid after aggregation treatment under the following conditions was used for the nitrification treatment (with aggregation).
【0036】 10%PAC溶液添加量:200mg/L 凝集pH:7 急速攪拌時間:5分 高分子凝集剤(オルフロックAP−1(オルガノ株式会
社商品名))添加量:4mg/L 緩速攪拌時間:15分 静置時間:30分 このようにして得た(凝集なし)(凝集あり)の試料5
00mLをビーカーにとり、これに下水を処理している
硝化槽からの汚泥を投入して200mgSS/Lとなる
ように植種した。そして、これを曝気し、時間毎にアン
モニア性窒素濃度を測定し、アンモニア性窒素の減少速
度から単位SS(浮遊固形物=微生物)当たりの時間当
たりの硝化速度を求め、その最大値を表1に示す。Addition amount of 10% PAC solution: 200 mg / L Aggregation pH: 7 Rapid stirring time: 5 minutes Addition amount of polymer flocculant (Orfloc AP-1 (trade name of Organo Corporation)): 4 mg / L Slow stirring Time: 15 minutes Standing time: 30 minutes Sample 5 thus obtained (without aggregation) (with aggregation)
00 mL was placed in a beaker, and sludge from a nitrification tank treating sewage was added to the beaker and seeded so as to be 200 mg SS / L. Then, this was aerated, the ammonia nitrogen concentration was measured every hour, and the nitrification rate per unit SS (suspended solid matter = microorganism) per hour was determined from the decrease rate of ammonia nitrogen. Shown in
【0037】[0037]
【表1】 最大硝化速度(mg−N/g−ss/h) 凝集なし 0.97 凝集あり 9.3 これより、凝集処理を行うことによって、硝化処理にお
ける硝化速度をほぼ10倍にできることがわかる。[Table 1] Maximum nitrification rate (mg-N / g-ss / h) No aggregation 0.97 With aggregation 9.3 From this, it can be seen that the nitrification rate in the nitrification treatment can be increased almost 10 times by performing the aggregation treatment. Recognize.
【0038】なお、排水をPACによって凝集処理した
際に分離したフロックについて赤外吸光分析を行ったと
ころ、このフロック中にはチオフェン構造の物質が含有
されていることが確認された。The floc separated when the waste water was coagulated by PAC was subjected to infrared absorption analysis, and it was confirmed that the floc contained a thiophene-structured substance.
【0039】「実施例2」有効容積0.3m3の固定床
型硝化リアクターを用いて、LSI製造工場の洗浄工程
から排出される排水の生物学的硝化実験を行った。な
お、充填材には、特開平8−164400号公報に記載
されている平板状の不織布上に波板状の不織布を貼り付
けた形のものを開口が垂直方向になるように充填したも
のを用いた。また、原水および曝気空気は、リアクター
の下部から供給し、曝気空気量は、50NL(ノルマル
リットル)/minとした。Example 2 Using a fixed-bed nitrification reactor having an effective volume of 0.3 m 3 , a biological nitrification experiment of wastewater discharged from a washing process in an LSI manufacturing plant was performed. The filler is a flat non-woven fabric described in JP-A-8-164400, in which a corrugated non-woven fabric is adhered onto the flat non-woven fabric so that the opening is in the vertical direction. Using. Raw water and aerated air were supplied from the lower part of the reactor, and the amount of aerated air was 50 NL (normal liter) / min.
【0040】排水の水質は、以下の通りであった。The water quality of the waste water was as follows.
【0041】 pH:0.5〜1.5 NH4−N:平均約50mg/L NO3−N:平均約50mg/L TOC:0.5〜2.0mg/L H2O2:30〜5000mg/L H2SO4:1500〜6000mg/L この排水を予めpH中和を行い、活性炭層にSV(空間
速度)5h-1で通水し、H2O2が除去されたことを確認
した。また、pHはリアクター出口の処理水が7付近に
なるように調整した。Run1には、活性炭層通水後の
排水を直接用い、Run2には、活性炭層通水後の排水
を以下の条件で凝集した後、その上澄み液を用いた。PH: 0.5 to 1.5 NH 4 —N: about 50 mg / L on average NO 3 —N: about 50 mg / L on average TOC: 0.5 to 2.0 mg / L H 2 O 2 : 30 to 5000 mg / L H 2 SO 4 : 1500 to 6000 mg / L This wastewater was previously neutralized with pH and passed through the activated carbon layer at an SV (space velocity) of 5 h −1 to confirm that H 2 O 2 was removed. did. The pH was adjusted so that the treated water at the outlet of the reactor was around 7. For Run 1, the waste water after passing through the activated carbon layer was directly used, and for Run 2, the supernatant liquid was used after the waste water after passing through the activated carbon layer was aggregated under the following conditions.
【0042】 10%PAC溶液添加量:200mg/L 凝集pH:7 急速攪拌時間:5分 高分子凝集剤(オルフロックAP−1(オルガノ株式会
社商品名))添加量:4mg/L 緩速攪拌時間:15分 静置時間:30分 通水量を次第に増加させていき、処理水のアンモニア性
窒素濃度の変化を測定した。この結果に基づくアンモニ
ア性窒素の容積負荷と硝化速度との関係を図2に示す。Addition amount of 10% PAC solution: 200 mg / L Aggregation pH: 7 Rapid stirring time: 5 minutes Addition amount of polymer flocculant (Orfloc AP-1 (trade name of Organo Corporation)): 4 mg / L Slow stirring Time: 15 minutes Standing time: 30 minutes The flow rate of the treated water was gradually increased, and the change in the ammonia nitrogen concentration of the treated water was measured. FIG. 2 shows the relationship between the volumetric load of ammonia nitrogen and the nitrification rate based on the results.
【0043】なお、容積負荷および硝化速度は以下のよ
うにして求めた。The volume load and the nitrification rate were determined as follows.
【0044】(容積負荷)=(原水アンモニア性窒素濃
度)× (原水供給量)÷(リアクター有効容積) (硝化速度)={(原水アンモニア性窒素濃度)−(処
理水アンモニア性窒素濃度)}× (原水供給量)÷
(リアクター有効容積) 図3において、●はRun1、○はRun2の結果であ
る。Run1ではアンモニア性窒素の硝化率が安定しな
かったことから、プロットがばらついているが、最大の
硝化速度は、0.2kg−N(窒素)/m3/d程度あ
ると判断される。一方、Run2では、0.6kg−N
/m3/d以上の高負荷でプロットがばらついている
が、それ以下では安定している。最大硝化速度は、0.
7kg−N/m3/dであると判断される。これより、
凝集処理を行うことにより、硝化速度が3.5倍程度上
昇することが確認された。(Volume load) = (raw water ammonia nitrogen concentration) × (raw water supply amount) ÷ (reactor effective volume) (nitrification rate) = {(raw water ammonia nitrogen concentration) − (treatment water ammonia nitrogen concentration)} × (Raw water supply) ÷
(Reactor effective volume) In FIG. 3, ● represents the result of Run 1 and 1 represents the result of Run 2. In Run 1, since the nitrification rate of ammoniacal nitrogen was not stable, the plots varied, but it was determined that the maximum nitrification rate was about 0.2 kg-N (nitrogen) / m 3 / d. On the other hand, in Run2, 0.6 kg-N
The plot varies with a high load of / m 3 / d or more, but is stable below that. The maximum nitrification rate is 0.
It is determined to be 7 kg-N / m 3 / d. Than this,
It was confirmed that the nitrification rate was increased by about 3.5 times by performing the aggregation treatment.
【0045】なお、Run2における凝集処理の際に分
離したフロックについて赤外吸光分析を行ったところ、
このフロックの中にはチオフェン構造の物質が含有され
ていることが確認された。The floc separated during the aggregation treatment in Run 2 was subjected to infrared absorption analysis.
It was confirmed that this floc contained a substance having a thiophene structure.
【0046】[0046]
【発明の効果】以上説明したように、本発明によれば、
電子部品製造におけるウェット処理プロセスからの排水
に対し、凝集処理を行い硝化阻害物質を除去すること
で、その後に行う硝化処理を効率的なものにできる。As described above, according to the present invention,
By subjecting waste water from a wet treatment process in the production of electronic components to a coagulation treatment to remove a nitrification inhibitor, the subsequent nitrification treatment can be made efficient.
【図1】 実施形態の全体構成を示すブロック図であ
る。FIG. 1 is a block diagram illustrating an overall configuration of an embodiment.
【図2】 その他の構成を示すブロック図である。FIG. 2 is a block diagram showing another configuration.
【図3】 アンモニア性窒素の容積負荷と硝化速度の関
係を示す図である。FIG. 3 is a diagram showing the relationship between the volumetric load of ammonia nitrogen and the nitrification rate.
1 原水槽、2 pH中和槽、3 還元槽、4 凝集分
離槽、5 硝化槽、6脱窒槽。1 Raw water tank, 2 pH neutralization tank, 3 Reduction tank, 4 Coagulation separation tank, 5 Nitrification tank, 6 Denitrification tank.
Claims (6)
セスから排出される窒素含有排水の生物学的硝化方法で
あって、 排水に凝集剤を添加混合しその後固形物を分離する凝集
分離処理を行い、排水中に含まれる硝化阻害物質を除去
した後、生物的な硝化処理を行うことを特徴とする窒素
含有排水の生物学的硝化方法。1. A biological nitrification method for nitrogen-containing wastewater discharged from a wet treatment process in the production of electronic components, wherein a coagulant is added to and mixed with the wastewater, and thereafter, a coagulation separation process for separating a solid substance is performed. A biological nitrification method for nitrogen-containing wastewater, wherein a biological nitrification treatment is performed after removing a nitrification inhibitor contained therein.
処理した排水が含まれることを特徴とする窒素含有排水
の生物学的硝化方法。2. The method according to claim 1, wherein said wastewater includes wastewater obtained by treating electronic components with a solution containing sulfuric acid and hydrogen peroxide. .
て、 上記排水は、窒素分としてアンモニア性窒素を含むこと
を特徴とする窒素含有排水の生物学的硝化方法。3. The method according to claim 1, wherein the wastewater contains ammonia nitrogen as a nitrogen component.
法において、 上記排水には、チオフェン構造の物質が含まれることを
特徴とする窒素含有排水の生物学的硝化方法。4. The method according to claim 1, wherein said wastewater contains a thiophene-structured substance.
法において、 排水に添加混合する凝集剤は、鉄またはアルミニウム系
の凝集剤であることを特徴とする窒素含有排水の生物学
的硝化方法。5. The method according to claim 1, wherein the coagulant added to and mixed with the wastewater is an iron- or aluminum-based coagulant. Nitrification method.
セスから排出される窒素含有排水の生物学的硝化装置で
あって、 排水に凝集剤を添加混合し、その後固形物を分離するこ
とによって硝化阻害物質を除去する凝集分離手段と、 この凝集分離手段により固形物が分離された液体分を好
気性雰囲気で硝化処理する硝化処理手段と、 を含むことを特徴とする窒素含有排水の生物学的硝化装
置。6. A biological nitrification apparatus for nitrogen-containing wastewater discharged from a wet treatment process in the production of electronic components, comprising adding and mixing a flocculant to the wastewater, and thereafter separating a solid substance to remove a nitrification inhibitor. A biological nitrification apparatus for nitrogen-containing wastewater, comprising: a coagulation / separation means for removing; and a nitrification treatment means for performing nitrification treatment in an aerobic atmosphere on a liquid from which solids have been separated by the coagulation / separation means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP742297A JPH10202293A (en) | 1997-01-20 | 1997-01-20 | Method and device for biologically nitrating nitrogen-containing waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP742297A JPH10202293A (en) | 1997-01-20 | 1997-01-20 | Method and device for biologically nitrating nitrogen-containing waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10202293A true JPH10202293A (en) | 1998-08-04 |
Family
ID=11665442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP742297A Pending JPH10202293A (en) | 1997-01-20 | 1997-01-20 | Method and device for biologically nitrating nitrogen-containing waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10202293A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001259688A (en) * | 2000-03-16 | 2001-09-25 | Kurita Water Ind Ltd | Waste liquid treatment method |
JP2006297374A (en) * | 2005-03-25 | 2006-11-02 | Sharp Corp | Method and apparatus for wastewater treatment |
JP2007160236A (en) * | 2005-12-14 | 2007-06-28 | Central Res Inst Of Electric Power Ind | Bioreactor |
JP2012086124A (en) * | 2010-10-18 | 2012-05-10 | Kurita Water Ind Ltd | Ultrapure water making method |
-
1997
- 1997-01-20 JP JP742297A patent/JPH10202293A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001259688A (en) * | 2000-03-16 | 2001-09-25 | Kurita Water Ind Ltd | Waste liquid treatment method |
JP2006297374A (en) * | 2005-03-25 | 2006-11-02 | Sharp Corp | Method and apparatus for wastewater treatment |
JP2007160236A (en) * | 2005-12-14 | 2007-06-28 | Central Res Inst Of Electric Power Ind | Bioreactor |
JP2012086124A (en) * | 2010-10-18 | 2012-05-10 | Kurita Water Ind Ltd | Ultrapure water making method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3531481B2 (en) | Wastewater treatment method and apparatus | |
JP4649911B2 (en) | Treatment of organic matter and nitrogen-containing wastewater | |
JP4106203B2 (en) | How to remove nitrogen from water | |
JP2001276851A (en) | Drain treatment equipment | |
JP2716348B2 (en) | Sewage return water treatment method | |
JP4703370B2 (en) | Nitrogen-containing wastewater treatment method | |
JP2003053384A (en) | Method and apparatus for removing nitrogen and phosphorus from wastewater | |
JPH10202293A (en) | Method and device for biologically nitrating nitrogen-containing waste water | |
JP3202510B2 (en) | Equipment for treating wastewater containing nitrogen and fluorine | |
JP4608069B2 (en) | Wastewater treatment equipment | |
KR100322947B1 (en) | Method for removing nitrogen in waste water | |
JPH11267693A (en) | Treatment of waste water of silicon wafer polishing | |
JP3377346B2 (en) | Organic wastewater treatment method and apparatus | |
JP2001334275A (en) | Method for treating wastewater from wafer processing process | |
JP4865211B2 (en) | Waste water treatment apparatus and biological treatment method of waste water | |
JP4085436B2 (en) | Drainage treatment apparatus and method | |
JPS6334800B2 (en) | ||
JP5558866B2 (en) | Water treatment apparatus and water treatment method | |
JP2002292399A (en) | Organic wastewater disposal equipment | |
JP3139337B2 (en) | Method and apparatus for treating liquid waste containing high COD and high nitrogen compounds | |
JP2003311279A (en) | Wastewater treatment apparatus and treatment method | |
JP2001276890A (en) | Drain treating device | |
JPH09141294A (en) | Biological nitrogen removal method | |
JP2002273476A (en) | Treatment of waste water containing high-concentration nitrogen | |
JPH08141596A (en) | Nitrogen treatment method for waste water containing ammonia nitrogen and oxide nitrogen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20041207 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050121 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050628 |