[go: up one dir, main page]

JPH1019727A - Method for estimating durability to irradiation by excimer laser - Google Patents

Method for estimating durability to irradiation by excimer laser

Info

Publication number
JPH1019727A
JPH1019727A JP8171386A JP17138696A JPH1019727A JP H1019727 A JPH1019727 A JP H1019727A JP 8171386 A JP8171386 A JP 8171386A JP 17138696 A JP17138696 A JP 17138696A JP H1019727 A JPH1019727 A JP H1019727A
Authority
JP
Japan
Prior art keywords
change
quartz glass
optical member
glass optical
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8171386A
Other languages
Japanese (ja)
Other versions
JP3663753B2 (en
Inventor
Hiroki Jinbo
宏樹 神保
Hiroyuki Hiraiwa
弘之 平岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17138696A priority Critical patent/JP3663753B2/en
Publication of JPH1019727A publication Critical patent/JPH1019727A/en
Application granted granted Critical
Publication of JP3663753B2 publication Critical patent/JP3663753B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To estimate deterioration of an optical material because of the irradiation of excimer laser by using an estimation formula for each of an absorbance, the amount of a change of a refractive index and a surface change. SOLUTION: An estimation formula for an absorbance is obtained from experiments using a KrF excimer laser as a light source and quartz glass as an optical material. The absorbance (/cm) is expressed by K1×E<a> ×p<b> ×H<c> wherein E is an energy density, (p) is an integral count of projected pulses, H is a concentration of dissolved H2 and K1, (a), (b), (c) are constants. An estimation formula for a change of a refractive index (Δn) is (Δn)=K2×E<d> ×p<e> wherein Δn is the amount of the change of a refractive index of 632.8nm, E is the energy density, (p) is the integral count of projected pulses and K2, (d), (e) are constants. Moreover, an estimation formula for the amount of a surface change (μm) holds (μm)=K3×Δn wherein Δn is the change amount of the refractive index of 632.8nm and K3 is a constant. With the use of the estimation formulae, deterioration of an optical part used in an excimer laser optical system can be estimated simply. Since the estimation formulae hold only in a linear region of the change, if the change is clearly not linear, curve fitting is performed to obtain a dependent formula.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学素材、特に、K
rF(248nm)、ArF(193nm)エキシマレ
−ザリソグラフィー投影レンズ・照明系レンズ、エキシ
マレ−ザ加工機等の光学系レンズの劣化予測及び耐用パ
ルス数の予測法に関する。エキシマレ−ザ光学系に使用
される合成石英ガラス、光学結晶材料等のエキシマレ−
ザ照射による劣化を原因とする、透過率変化、屈折率変
化、面変化を実験式を用い、簡易にしかも正確に、また
は安全係数つまり誤差成分を考慮して予測可能とする事
を特徴とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical material,
The present invention relates to a method for predicting deterioration of an optical system lens such as an rF (248 nm), ArF (193 nm) excimer laser lithography projection lens / illumination system lens, and an excimer laser processing machine, and a method for estimating the number of durable pulses. Excimer lasers used in excimer laser optical systems, such as synthetic quartz glass and optical crystal materials
The characteristic feature is that the transmittance change, the refractive index change, and the surface change due to the deterioration due to the irradiation can be easily and accurately predicted using an empirical formula or in consideration of a safety coefficient, that is, an error component. .

【0002】[0002]

【従来の技術】従来、シリコン等のウエハ上に集積回路
の微細パターンを露光・転写する光リソグラフィー技術
においては、ステッパーと呼ばれる露光装置が用いられ
る。このステッパーの光源は、近年のLSIの高集積化
に伴ってg線からi線へと短波長化が進み、そして、さ
らなるLSIの高集積化に伴い、ステッパーの光源はK
rFやArFエキシマレーザーへと移行している。この
ようなエキシマレーザーステッパーの照明系あるいは投
影レンズには、もはや一般光学ガラスは使用できず、石
英ガラスや蛍石などの光学素材に限定される。
2. Description of the Related Art Conventionally, in an optical lithography technique for exposing and transferring a fine pattern of an integrated circuit onto a wafer such as silicon, an exposure apparatus called a stepper is used. The wavelength of the light source of this stepper has been reduced from the g-line to the i-line with the recent high integration of the LSI, and the light source of the stepper has become K with the further high integration of the LSI.
The trend has shifted to rF and ArF excimer lasers. For the illumination system or the projection lens of such an excimer laser stepper, general optical glass can no longer be used, but is limited to optical materials such as quartz glass and fluorite.

【0003】このようなエキシマレーザーステッパーの
照明系あるいは投影レンズに用いられる石英ガラス、蛍
石においても、その内部透過率は0.998cm-1ある
いは0.999cm-1以上が要求される。したがって、
紫外光領域での上記光学素材の高透過率化を目指した開
発が進められている。さらに、エキシマレ−ザの短波長
性、閃光性に起因する、照射による光学材料の経年変化
いわゆるソ−ラリゼ−ション、コンパクションが大きな
問題となる。この様な光学的な劣化が進行すると、結像
性能に影響を及ぼす。
[0003] Such an excimer laser stepper quartz glass used for the illumination system or a projection lens of, even in fluorite, the internal transmittance is required 0.998Cm -1 or 0.999Cm -1 or more. Therefore,
Development is underway to increase the transmittance of the optical material in the ultraviolet light region. Furthermore, the so-called solarization and compaction of the aging of the optical material due to irradiation caused by the short-wavelength property and the flash property of the excimer laser become a serious problem. The progress of such optical deterioration affects the imaging performance.

【0004】[0004]

【発明が解決しようとする課題】まず、エキシマレ−ザ
光学材料である石英ガラス、及びその他の光学材料の劣
化が、何に起因するかを、精密に実験的に調べる必要が
ある。従来、これらは、断片的または定性的に調べられ
た文献などのデ−タは若干研究されているが、厳密な定
量性を有する予測式は示された事はない。
First, it is necessary to precisely and experimentally examine what causes deterioration of quartz glass as an excimer laser optical material and other optical materials. Heretofore, although some data of literatures or the like examined fragmentally or qualitatively have been studied, no prediction formula having strict quantitative properties has been shown.

【0005】ところで、エキシマレ−ザを光源とした、
エキシマレ−ザステッパ、加工機等の製品の光学系の寿
命予測を行うには、レンズ材料のエキシマレ−ザ照射に
よる厳密な予測式が必要である。しかし、信頼のおける
予測式がなかったため、レンズの耐用年数、耐用積算パ
ルス数、照射許容エネルギ−密度等が明確に示されてい
なかった。
By the way, an excimer laser is used as a light source.
In order to predict the life of an optical system of a product such as an excimer laser stepper and a processing machine, a strict prediction formula by excimer laser irradiation of a lens material is required. However, since there was no reliable prediction formula, the useful life of the lens, the cumulative number of useful pulses, the allowable energy density of irradiation, and the like were not clearly shown.

【0006】特に、10mJ/cm2・pulse以下
のエネルギ−で照射して用いられる石英ガラス部材の劣
化を調べるためには、実エネルギ−密度で照射して、透
過率、屈折率、面変化等の物性変化を確認する事が最も
望ましい。しかし、照射エネルギ−密度が低い領域で
は、照射パルス当たりの各物性変化が微小であるため、
変化率を確認するには、照射パルス数を増やさねばなら
ない。しかし、実際には人的、経済的、時間的にも制約
があり、一つのサンプルを、数年間も実験し続ける事は
困難である。また、高価石英ガラス製の光学レンズなど
は、十数年その性能を保証する事も必要とされている。
In particular, in order to examine the deterioration of a quartz glass member used by irradiating with an energy of 10 mJ / cm 2 · pulse or less, it is necessary to irradiate with a real energy density and to obtain a transmittance, a refractive index, a surface change and the like. It is most desirable to confirm the change in physical properties of the material. However, in the region where the irradiation energy-density is low, the change in each physical property per irradiation pulse is very small.
To confirm the rate of change, the number of irradiation pulses must be increased. However, there are practically limited human, economic, and time constraints, and it is difficult to test a single sample for several years. In addition, it is necessary to guarantee the performance of expensive quartz glass optical lenses and the like for more than ten years.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者らは、
長年に渡り石英ガラスをはじめとした紫外光学材料の透
過率、屈折率、面変化に関して鋭意研究している。課題
を達成するには、様々な条件にて、エキシマ照射を行
い、その際測定した透過率、屈折率、面変化等の実験デ
−タを得る。
Means for Solving the Problems Accordingly, the present inventors have:
For many years, we have been studying the transmittance, refractive index, and surface change of ultraviolet optical materials such as quartz glass. In order to achieve the object, excimer irradiation is performed under various conditions, and experimental data such as transmittance, refractive index, and surface change measured at that time are obtained.

【0008】次に、得られた実験デ−タを、統計的手
法、理論的手法を用いて、吸収係数、屈折率変化
量、面変化量の変化の関係式を算出する事が必要であ
る。本特許では、エキシマレ−ザ光学材料の劣化つまり
吸収係数、屈折率変化量、面変化量の変化の予測
式及び予測方法を提供する。
Next, it is necessary to calculate the relational expression of the change in the absorption coefficient, the change in the refractive index, and the change in the surface change from the obtained experimental data by using a statistical method and a theoretical method. . This patent provides a prediction formula and a prediction method for deterioration of an excimer laser optical material, that is, a change in an absorption coefficient, a change in a refractive index, and a change in a surface change.

【0009】[0009]

【作用】光学材料のエキシマレ−ザ照射による劣化、つ
まり吸収係数、屈折率変化量、面変化量の変化の
予測式の算出法の一例を以下に記す。以下の記述は、光
源はKrFエキシマレ−ザ、光学材料として石英ガラス
に関する、実験、予測式の算出法に関する。
The following is an example of a method of calculating a prediction formula for deterioration of an optical material due to excimer laser irradiation, that is, a change in an absorption coefficient, a change in a refractive index, and a change in a surface change. The following description relates to an experiment and a method of calculating a prediction formula, in which a light source is a KrF excimer laser and quartz glass is used as an optical material.

【0010】エキシマレ−ザ照射実験の光学系及び測定
系を図1に示す。 吸収係数の変化に付いて述べる。 まず、照射エネルギ−密度依存性を調査した。他の条件
を一定とし、かつ同一サンプルで実験を行った。図2に
照射エネルギ−密度依存性を示す。積算パルス数3E6
パルス時の、照射エネルギ−密度(mJ/cm2 per
pulse)50,100,200,400,800
で依存性を求めた。
FIG. 1 shows an optical system and a measuring system for an excimer laser irradiation experiment. The change in the absorption coefficient will be described. First, the irradiation energy-density dependence was investigated. The experiment was performed using the same sample while keeping other conditions constant. FIG. 2 shows the irradiation energy-density dependence. Number of accumulated pulses 3E6
Irradiation energy density during pulse (mJ / cm 2 per
pulse) 50, 100, 200, 400, 800
Asked for dependencies.

【0011】最小2乗法にて算出した依存式は 248.3nm吸収係数(/cm)=K×E1.75 であった。エネルギ−密度依存性は、1.75±0.2
(3σ)であった。一般的に、KrFエキシマレ−ザで
誘起される吸収帯生成の原因は、2光子吸収過程で生成
したE’センタ−(215nm帯)、酸素関連欠陥(2
60nm帯)、を主因とした複合ピ−クである。複合ピ
−クのため、248.3nmでは、エネルギ−2乗則か
らややずれると思われる。
The dependence calculated by the least squares method was 248.3 nm absorption coefficient (/ cm) = K × E 1.75 . Energy-density dependence is 1.75 ± 0.2
(3σ). Generally, the causes of the absorption band generation induced by the KrF excimer laser are the E ′ center (215 nm band) generated in the two-photon absorption process and oxygen-related defects (2
60 nm band). At 248.3 nm, it seems to be slightly deviated from the energy square law due to the composite peak.

【0012】次に、積算パルス数依存性を調べた。結果
を図3に示す。照射エネルギ−密度(mJ/cm2 pe
r pulse)50,100,200,400,80
0で、それぞれ最小2乗法により依存性を求めた。図中
の、5E6等の表示は、5×106を意味する。以降、
図中ではこの様な略号を用いて表示する。 248.3nm吸収係数(/cm)=K×P0.998 積算パルス数依存性は、0.998±0.1(3σ)で
あった。
Next, the dependence on the number of accumulated pulses was examined. The results are shown in FIG. Irradiation energy density (mJ / cm 2 pe
r pulse) 50, 100, 200, 400, 80
At 0, the dependence was determined by the least squares method. In the drawing, 5E6 or the like means 5 × 10 6 . Or later,
In the figure, such an abbreviation is used for display. 248.3 nm absorption coefficient (/ cm) = K × P 0.998 The accumulated pulse number dependence was 0.998 ± 0.1 (3σ).

【0013】この依存性は、吸収係数(/cm)約〜
0.2迄成立する。さらに、溶存H2濃度(mole.
/cm3)依存性をもとめた。照射エネルギ−密度40
0(mJ/cm2 per pulse)、積算パルス数
3E6パルス照射後の溶存H2濃度と248.3nm吸
収係数(/cm)の関係を調べた。結果を図4に示す。
これより最小2乗法にて、依存式を求めた。 248.3nm吸収係数(/cm)=K×H-1.03627 相関係数r=0.92 ここでH:溶存H2濃度(mole./cm3) 相関係数r=0.92が示すように、石英ガラスのKr
Fエキシマレ−ザ耐性−吸収生成−を決定する主因は、
溶存するH2分子濃度であると考える。
[0013] This dependence is approximately equal to the absorption coefficient (/ cm).
It holds up to 0.2. Further, the dissolved H 2 concentration (mole.
/ Cm 3 ). Irradiation energy-density 40
The relationship between the concentration of dissolved H 2 after irradiation with 0 (mJ / cm 2 per pulse) and the cumulative pulse number of 3E6 pulses and the 248.3 nm absorption coefficient (/ cm) was examined. FIG. 4 shows the results.
From this, the dependency equation was obtained by the least squares method. 248.3 nm absorption coefficient (/ cm) = K × H −1.03627 Correlation coefficient r = 0.92 where H: dissolved H 2 concentration (mole./cm 3 ) As shown by correlation coefficient r = 0.92 , Kr of quartz glass
The main factors that determine F excimer laser resistance-absorption generation-are:
It is considered to be the concentration of dissolved H 2 molecules.

【0014】以上より、エネルギ−密度依存性、積算パ
ルス数依存性、溶存H2濃度依存性の3式より吸収係数
の予測式を算出した。
From the above, an equation for predicting the absorption coefficient was calculated from three equations of energy-density dependence, accumulated pulse number dependence, and dissolved H 2 concentration dependence.

【0015】[0015]

【数1】 (Equation 1)

【0016】定数は、k1:38396.2、a:1.
75±0.2(3σ) b:0.998±0.1(3σ)、c:−1.0362
7±0.1(3σ) である。 屈折率変化に付いて述べる。ここで、屈折率変化とは
632.8nm(He−Neレ−ザ波長)での屈折率変
化を指す。また、測定はオイルオンプレ−ト法を用いた
縞走査型干渉計で測定される値の事である。記号は△n
でしめす。石英ガラスのエキシマレ−ザ照射誘起によ
り、屈折率は上昇する。
The constants are k1: 38396.2, a: 1.
75 ± 0.2 (3σ) b: 0.998 ± 0.1 (3σ), c: -1.0362
7 ± 0.1 (3σ). The change in the refractive index will be described. Here, the change in the refractive index indicates a change in the refractive index at 632.8 nm (He-Ne laser wavelength). The measurement is a value measured by a fringe scanning interferometer using an oil-on-plate method. The symbol is △ n
I will show you. The refractive index is increased by excimer laser irradiation of quartz glass.

【0017】まず、照射エネルギ−密度依存性を調査し
た。他の条件を一定としかつ同一サンプルで実験を行っ
た。図5に照射エネルギ−密度依存性を示す。積算パル
ス数3E6パルス時の、照射エネルギ−密度(mJ/c
2 per pulse)50,100,200,40
0,800で依存性を求めた。最小2乗法にて算出した
依存式は △n(632.8nm)=K×E0.965 であった。
First, the irradiation energy-density dependence was investigated. The experiment was performed using the same sample while keeping other conditions constant. FIG. 5 shows the irradiation energy-density dependence. Irradiation energy density (mJ / c) when the number of accumulated pulses is 3E6
m 2 per pulse) 50, 100, 200, 40
Dependencies were determined at 0,800. The dependency calculated by the least square method was Δn (632.8 nm) = K × E 0.965 .

【0018】エネルギ−密度依存性は、0.965±
0.1(3σ)であった。この事は、KrFエキシマレ
−ザ照射誘起の屈折率変化−コンパクション−が2光子
過程ではない事を示す。次に、積算パルス数依存性を調
べた。結果を図6に示す。照射エネルギ−密度(mJ/
cm2 per pulse)50,100,200,4
00,800で、それぞれ最小2乗法により依存性を求
めた。 △n(632.8nm)=K×P0.49 積算パルス数依存性は、0.49±0.1(3σ)であ
った。
The energy-density dependence is 0.965 ±
0.1 (3σ). This indicates that KrF excimer laser irradiation-induced change in refractive index—compaction—is not a two-photon process. Next, the dependence on the number of accumulated pulses was examined. FIG. 6 shows the results. Irradiation energy density (mJ /
cm 2 per pulse) 50, 100, 200, 4
At 00 and 800, the dependence was determined by the least squares method. Δn (632.8 nm) = K × P 0.49 The accumulated pulse number dependence was 0.49 ± 0.1 (3σ).

【0019】この依存性は、△n(632.8nm)変
化が約〜1×104迄成立する。以上より、エネルギ−
密度依存性、積算パルス数依存性の2式より屈折率変化
の予測式を算出した。
This dependency is satisfied when the Δn (632.8 nm) change is about 〜1 × 10 4 . From the above, the energy
A prediction formula for a change in the refractive index was calculated from two equations, ie, density dependence and accumulated pulse number dependence.

【0020】[0020]

【数2】 (Equation 2)

【0021】各定数は、k2=6.1×10-12、d=
0.965±0.1(3σ) e=0.49±0.1(3σ)である。248.3nm
の△nを求めるには、波長分散性を考慮した計算で算出
できる。他の波長についても同様である。石英ガラスの
エキシマレ−ザ照射誘起の屈折率上昇は、コンパクショ
ン(緻密化)と呼ばれる現象であると考える。上記の式
は、屈折率上昇が、励起光源がKrFエキシマでは、ド
−ズ量のほぼ0.5乗の依存性を持つ事を示す。これ
は、SiO2の本質的な欠陥生成に起因する事を意味す
ると考える。
Each constant is k2 = 6.1 × 10 -12 and d =
0.965 ± 0.1 (3σ) e = 0.49 ± 0.1 (3σ). 248.3 nm
In order to obtain Δn, it can be calculated by a calculation in consideration of chromatic dispersion. The same applies to other wavelengths. Excimer laser irradiation-induced increase in the refractive index of quartz glass is considered to be a phenomenon called compaction. The above equation shows that the increase in the refractive index has a dependency on the dose amount of about 0.5 power when the excitation light source is KrF excimer. This is considered to mean that the defect is essentially generated by SiO 2 .

【0022】また、KrFエキシマレ−ザでは、石英ガ
ラス中の溶存水素分子濃度との依存性が少ないが、Ar
Fエキシマレ−ザでは、これを考慮し、予測式の含ませ
る必要がある。 面変化に付いて述べる。ここで、面変化とは、光学部
品のエキシマレ−ザ照射部分の面の形状変化の事を意味
する。
In the case of the KrF excimer laser, the dependence on the concentration of dissolved hydrogen molecules in quartz glass is small.
In the F excimer laser, it is necessary to consider this and include a prediction formula. A description is given of the surface change. Here, the term “surface change” means a change in the shape of the surface of the optical component at the portion irradiated with the excimer laser.

【0023】屈折率変化同様、コンパクション−緻密化
−によるSiO2構造の収縮−高密度化による体積収縮
現象−であると考える。つまり面は凹む方向に変化す
る。エキシマレ−ザ照射誘起屈折率上昇量とレ−ザ入射
面の相関関係を調べた。その結果を図7に示す。また、
相関係数r=0.913、さらに、最小2乗法により得
られた式を以下に示す。
Similar to the change in the refractive index, it is considered to be shrinkage of the SiO 2 structure due to compaction—densification—a volume shrinkage phenomenon due to densification. That is, the surface changes in the concave direction. The correlation between the excimer laser irradiation-induced increase in the refractive index and the laser incident surface was examined. FIG. 7 shows the result. Also,
The equation obtained by the correlation coefficient r = 0.913 and the least square method is shown below.

【0024】[0024]

【数3】 (Equation 3)

【0025】定数は、k3=4703である。ここまで
述べてきたように、式(1)、(2)、(3)を求め、
エキシマレ−ザを光源に用いる製品の使用条件−照射エ
ネルギ−密度、パルス数−及び要求される仕様、つまり
吸収、屈折率変化、面変化とを比較する事で、製品の寿
命予測が可能となる。
The constant is k3 = 4703. As described above, equations (1), (2), and (3) are obtained, and
The life expectancy of a product can be predicted by comparing the operating conditions-irradiation energy-density, number of pulses-and required specifications of a product using an excimer laser as a light source, that is, absorption, refractive index change, and surface change. .

【0026】補足すると、ここで述べた予測式は、変化
の直線領域でのみ成立する。精密光学製品の場合仕様が
厳しいつまり物性変化量が微小の為ほとんどの場合式
(1)、(2)、(3)の様な手法で予測可能である。
また、変化の挙動が明らかに直線でない場合は、最適な
カ−ブフィッティングを行えば、依存式を求める事は可
能である。
Supplementally, the prediction equation described here holds only in the linear region of change. In the case of precision optical products, the specifications are strict, that is, the amount of change in physical properties is very small, and therefore, in most cases, it can be predicted by a method such as Expressions (1), (2) and (3).
If the behavior of the change is clearly not a straight line, it is possible to obtain a dependency equation by performing an optimum curve fitting.

【0027】さらに、吸収などはその飽和量の照射エネ
ルギ−、パルス数依存性などを算出する事で、予測可能
である。ところで、安全係数を考慮するためには、測定
誤差、カ−ブフィッティング誤差等を求め、これらの
(2乗和)1/2を算出し、予測式に代入する事が必要と
なる。
Further, the absorption and the like can be predicted by calculating the irradiation energy and the pulse number dependence of the saturation amount. By the way, in order to consider the safety coefficient, it is necessary to obtain a measurement error, a curve fitting error, and the like, calculate (sum of squares) 1/2 of these, and substitute the calculated sum into a prediction equation.

【0028】[0028]

【実施の形態】光学素材である高純度石英ガラスインゴ
ットは、原料として高純度の四塩化ケイ素を用い、石英
ガラス製バーナーにて酸素ガス及び水素ガスを混合・燃
焼させ、中心部から原料ガスをキャリアガス(通常酸素
ガスまたは水素ガス)で希釈して噴出させ、ターゲット
上に堆積、溶融して合成した。これにより、直径180
mm、長さ550mmの石英ガラスインゴットを得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-purity quartz glass ingot, which is an optical material, uses high-purity silicon tetrachloride as a raw material, mixes and burns oxygen gas and hydrogen gas with a burner made of quartz glass, and discharges the raw material gas from the center. It was diluted with a carrier gas (usually oxygen gas or hydrogen gas) and jetted, deposited on a target, melted and synthesized. Thereby, the diameter of 180
mm and a length of 550 mm were obtained.

【0029】[0029]

【実施例1】前記、石英ガラスインゴットから切り出し
てKrFエキシマレ−ザステッパ用光学レンズ部品を作
製し、一部物性測定用サンプルも作製した。そのサンプ
ルを、本発明により得られるエキシマレ−ザ耐性評価の
ための照射実験を行い(数1)、(数2)、(数3)を
得た。
Example 1 An optical lens component for a KrF excimer laser stepper was cut out from the quartz glass ingot, and a sample for partially measuring physical properties was also prepared. The sample was subjected to an irradiation experiment for evaluating excimer laser resistance obtained by the present invention, and (Equation 1), (Equation 2), and (Equation 3) were obtained.

【0030】この光学石英ガラス部材のH2濃度は、5
×1017 mole./cmであった。KrFエキシマ
レ−ザステッパ光学系の一部である、このレンズ部品に
要求される仕様は、吸収係数:1%/cm以下、屈折率
変化量△n(632.8nm):1×10-5以下、面変
化(片面):0.04μm以下である。
The H 2 concentration of this optical quartz glass member is 5
× 10 17 mole. / Cm. The specifications required for this lens part, which is a part of the KrF excimer laser stepper optical system, are as follows: absorption coefficient: 1% / cm or less, refractive index change Δn (632.8 nm): 1 × 10 −5 or less, Surface change (one side): not more than 0.04 μm.

【0031】精密な光学用レンズでは、少なくとも上記
以内の物性変化でなくては、光学性能に影響を及ぼすと
考える。また、このレンズの使用条件は、5mJ/cm
2 per pulse、繰り返し周波数500Hz、一
日当たりの照射パルス数は1×107パルスである。そ
して、上記式にて算出した石英ガラス光学部品の5年後
の予測値と実際の物性変化量とを比較した。
It is considered that a precise optical lens has an effect on optical performance unless the change in physical properties is at least within the above range. The condition for using this lens is 5 mJ / cm
2 per pulse, repetition frequency 500 Hz, the number of irradiation pulses per day is 1 × 10 7 pulses. Then, the predicted value of the quartz glass optical component 5 years later calculated by the above equation was compared with the actual amount of change in physical properties.

【0032】その結果を、表1に示す。吸収、△n、凹
ともに予測誤差は、10%以内であった。
The results are shown in Table 1. The prediction error was within 10% for both absorption, Δn and concave.

【0033】[0033]

【表1】 [Table 1]

【0034】さらに、耐用年数を求めるためには、(数
1)、(数2)、(数3)に各仕様及び使用条件を代入
しパルス数を算出すれば良い。 まず、吸収に付いて計算すると、P=EXP((LN
(0.01/(38396×E1.75×
-1.036271)))/0.998) 次に、屈折率に付いて示す。 P=EXP((LN(△n/(6.1×10-12×E
0.965))/0.49)) 次に、面変化に付いて示す。 P=EXP(LN((凹/4703)/(6.1×10
-12×E0.965))/0.49) それぞれの仕様値、使用エネルギ−代入し、耐用パルス
数を計算すると、吸収に関して3.59×1010、△n
に関して2.03×1011パルス、凹(μm)について
は1.46×1011パルスであった。
Further, in order to obtain the service life, the number of pulses may be calculated by substituting the specifications and use conditions into (Equation 1), (Equation 2) and (Equation 3). First, when the absorption is calculated, P = EXP ((LN
(0.01 / (38396 × E 1.75 ×
H -1.036271 ))) / 0.998) Next, the refractive index is shown. P = EXP ((LN (△ n / (6.1 × 10 −12 × E
0.965 )) / 0.49)) Next, the surface change will be described. P = EXP (LN ((concave / 4703) / (6.1 × 10
−12 × E 0.965 )) / 0.49) By substituting the respective specification values and the energy used and calculating the number of serviceable pulses, the absorption was found to be 3.59 × 10 10 , Δn
Was 2.03 × 10 11 pulses, and 1.46 × 10 11 pulses for concave (μm).

【0035】これを、耐用年数に換算すると吸収に付い
ては、9.8年、△nでは55.4年、凹では39.9
年となる。レンズの耐用年数は、各仕様の最も短い項目
に依存するから、9.8年と予測できる。
When this is converted into a service life, absorption is 9.8 years, Δn is 55.4 years, and concave is 39.9 years.
Year. Since the service life of the lens depends on the shortest item of each specification, it can be predicted to be 9.8 years.

【0036】[0036]

【実施例2】前記、石英ガラスインゴットから切り出し
てKrFエキシマレ−ザステッパ用光学レンズ部品を作
製し、一部サンプルも作製した。そのサンプルを、本発
明により得られるエキシマレ−ザ耐性評価のための照射
実験を行い(数1)、(数2)、(数3)を得た。
Embodiment 2 An optical lens part for a KrF excimer laser stepper was cut out from the quartz glass ingot, and a part of the sample was also prepared. The sample was subjected to an irradiation experiment for evaluating excimer laser resistance obtained by the present invention, and (Equation 1), (Equation 2), and (Equation 3) were obtained.

【0037】KrFエキシマレ−ザステッパ光学系の一
部である、このレンズ部品に要求される仕様は、吸収係
数:0.2%/cm以下、屈折率変化量△n(632.
8nm):2×10-6以下、面変化(片面):0.01
μm以下である。また、このレンズの使用条件は、1m
J/cm2 per pulse、繰り返し周波数500
Hz、一日当たりの照射パルス数は1×107パルスで
ある。
The specifications required for this lens part, which is a part of the KrF excimer laser stepper optical system, are as follows: an absorption coefficient: 0.2% / cm or less, and a refractive index change Δn (632.
8 nm): 2 × 10 −6 or less, surface change (one side): 0.01
μm or less. The condition for using this lens is 1 m
J / cm 2 per pulse, repetition frequency 500
Hz, the number of irradiation pulses per day is 1 × 10 7 pulses.

【0038】さらに、安全係数及び測定誤差を考慮した
耐用年数を求めるためには、(数1)、(数2)、(数
3)に各仕様及び使用条件及び各測定誤差を代入しパル
ス数を算出すれば良い。ここで測定誤差は全て1σであ
り、誤差要因が複数存在するときは(2乗和) 0.5を測
定誤差とすれば良い。
Further, a safety factor and a measurement error were considered.
To find the useful life, (Equation 1), (Equation 2), (Equation 2)
Substitute each specification, usage condition and each measurement error into 3)
The number of resources may be calculated. Here, the measurement errors are all 1σ.
When there are multiple error factors (square sum) 0.5Measure
What is necessary is just to make it a fixed error.

【0039】考慮する誤差要因について述べる。まず吸
収に関しては、透過率測定精度0.01%、吸収緩
和の影響0.002%、照射実験時の照射エネルギ−
密度誤差±10%、照射ビ−ムプロファイルの影響±
10%を吸収に換算するとそれぞれ0.02%である。
これらの(2乗和)0.5を算出すると、1σでAE=±
0.03%となる。また、溶存H2濃度の測定精度は1
σでHE=±2.5×1017mole./cmである。
The error factors to be considered will be described. First, regarding absorption, the transmittance measurement accuracy was 0.01%, the effect of absorption relaxation was 0.002%, and the irradiation energy during the irradiation experiment was low.
Density error ± 10%, influence of irradiation beam profile ±
When 10% is converted into absorption, it is 0.02% each.
When these (sum of squares) 0.5 are calculated, AE = ± at 1σ
0.03%. The measurement accuracy of the dissolved H 2 concentration is 1
HE = ± 2.5 × 10 17 mole. / Cm.

【0040】石英ガラスのエキシマレ−ザ照射誘起吸収
の緩和モデルは、−B×(t^0.5) Bは約0.4
t:緩和時間で定義する事が出来ると考える。次に、
△nの測定精度は、1σで△nE=±5×10-7であ
る。また、表面形状凹の測定精度は1σで凹E=±0.
002μmである。求めた誤差を用いて(数1)、(数
2)、(数3)を変形し耐用パルス数を求める式を得
た。
The relaxation model of excimer laser irradiation-induced absorption of quartz glass is given by -B × (t ^ 0.5) B is about 0.4
t: It is considered that it can be defined by the relaxation time. next,
The measurement accuracy of Δn is ΔnE = ± 5 × 10 −7 at 1σ. In addition, the measurement accuracy of the surface shape concave is 1σ and the concave E = ± 0.
002 μm. (Equation 1), (Equation 2), and (Equation 3) were modified using the obtained error to obtain an equation for obtaining the number of usable pulses.

【0041】まず、吸収に付いて計算すると、 P=EXP((LN((0.002−(AE/10
0))/(38396×E1.7 5×(H−H
E)-1.036271)))/0.998) 次に、屈折率に付いて示す。 P=EXP((LN((△n−△nE)/(6.1×1
-12×E0.965))/0.49)) 次に、面変化に付いて示す。 P=EXP(LN(((凹−凹E)/4703)/
(6.1×10-12×E0.965))/0.49) それぞれの仕様値、使用エネルギ−代入し、耐用パルス
数を計算すると、吸収に関して8.1×1010パルス、
△nに関して1.0×1011パルス、凹(μm)につい
ては1.3×1011パルスであった。
First, when the absorption is calculated, P = EXP ((LN ((0.002- (AE / 10
0)) / (38396 × E 1.7 5 × (H-H
E) -1.036271 ))) / 0.998) Next, the refractive index is shown. P = EXP ((LN ((△ n- △ nE) / (6.1 × 1
0 −12 × E 0.965 )) / 0.49)) Next, the surface change will be described. P = EXP (LN (((concave-concave E) / 4703) /
(6.1 × 10 −12 × E 0.965 )) / 0.49) By substituting the respective specification values and energy used and calculating the number of durable pulses, 8.1 × 10 10 pulses for absorption were obtained.
The Δn was 1.0 × 10 11 pulses, and the concave (μm) was 1.3 × 10 11 pulses.

【0042】これを、耐用年数に換算すると吸収に付い
ては、22.2年、△nでは27.5年、凹では35.
5年となる。レンズの耐用年数は、各仕様の最も短い項
目に依存するから、22.2年と予測できる。
When this is converted into the service life, the absorption is 22.2 years, Δn is 27.5 years, and concave is 35.
5 years. The service life of the lens depends on the shortest item of each specification, and can be predicted to be 22.2 years.

【0043】[0043]

【発明の効果】本発明のエキシマレ−ザ耐久性の予測方
法及び予測式を用いる事で、石英ガラスをはじめとする
エキシマレ−ザ光学系に使用される光学部品の吸収、屈
折率変化、面変化量を簡便に予測可能となった。本発明
の手法を用いれば、歪量(複屈折量)等の物性変化の予
測にも適用可能である。
By using the method and formula for predicting the durability of the excimer laser of the present invention, the absorption, refractive index change, and surface change of the optical components used in the excimer laser optical system such as quartz glass. The amount can be easily predicted. The method of the present invention can be applied to prediction of a change in physical properties such as a distortion amount (birefringence amount).

【0044】また、エキシマレ−ザ光学系の寿命予測、
耐用年数の算出も可能となる。さらに、光学薄膜に関し
ても同様の寿命予測を行う事が可能である。
In addition, the life expectancy of the excimer laser optical system,
The service life can also be calculated. Further, the same life expectancy can be predicted for an optical thin film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 エキシマ照射実験装置の概略図である。FIG. 1 is a schematic view of an excimer irradiation experiment apparatus.

【図2】 石英ガラスのKrFエキシマレ−ザ照射によ
り誘起される248.3nm吸収のエネルギ−密度依存
性を示した図である。
FIG. 2 is a diagram showing the energy density dependence of the absorption at 248.3 nm induced by KrF excimer laser irradiation of quartz glass.

【図3】 石英ガラスのKrFエキシマレ−ザ照射によ
り誘起される248.3nm吸収の積算パルス数依存性
を示した図である。
FIG. 3 is a graph showing the cumulative pulse number dependence of the absorption at 248.3 nm induced by KrF excimer laser irradiation of quartz glass.

【図4】 石英ガラスの同条件のKrFエキシマレ−ザ
照射により誘起される248.3nm吸収の石英ガラス
中に溶存する水素分子濃度との依存性を示した図であ
る。
FIG. 4 is a graph showing the dependence of the absorption at 248.3 nm induced by KrF excimer laser irradiation of quartz glass under the same conditions on the concentration of hydrogen molecules dissolved in quartz glass.

【図5】 石英ガラスのKrFエキシマレ−ザ照射によ
り誘起される屈折率変化ののエネルギ−依存性を示した
図である。
FIG. 5 is a diagram showing the energy dependence of a refractive index change induced by KrF excimer laser irradiation of quartz glass.

【図6】 石英ガラスのKrFエキシマレ−ザ照射によ
り誘起される屈折率変化の積算パルス数依存性を示した
図である。
FIG. 6 is a graph showing the dependence of a change in refractive index induced by irradiation of KrF excimer laser on quartz glass with the number of accumulated pulses.

【図7】 石英ガラスのKrFエキシマレ−ザ照射によ
り誘起される屈折率変化量と面変化量を示した図であ
る。
FIG. 7 is a diagram showing a refractive index change amount and a surface change amount of quartz glass induced by KrF excimer laser irradiation.

【符号の説明】[Explanation of symbols]

1 エキシマレ−ザ 2 ビ−ム整形及びホモジナイザ−光学系 3 照射サンプル 4 レ−ザビ−ム 5 エネルギ−モニタ DESCRIPTION OF SYMBOLS 1 Excimer laser 2 Beam shaping and homogenizer optical system 3 Irradiation sample 4 Laser beam 5 Energy monitor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 33/38 G01N 33/38 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication G01N 33/38 G01N 33/38

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】0.01〜100mJ/cm2・puls
eの特定波長の光を照射して用いられる石英ガラス光学
部材の光照射による劣化を予測する試験方法において、
以下の工程からなることを特徴とする石英ガラス光学部
材の試験方法。 工程1:石英ガラス光学部材中の水素濃度と透過率変化
との相関、及び照射する光のエネルギー密度と透過率変
化との相関を求め、これらの相関から透過率変化量と石
英ガラス光学部材中の水素濃度と照射する光のエネルギ
ー密度との関係式を求める工程 工程2:石英ガラス光学部材に10〜10000mJ/
cm2・pulseの光を照射したときの透過率変化を
測定する工程 工程3:工程2で得られる透過率変化量、水素濃度、エ
ネルギー密度をそれぞれ工程1で得られる関係式に代入
し、0.01〜100mJ/cm2・pulseの特定
波長における透過率変化を求める工程
(1) 0.01 to 100 mJ / cm 2 · pulse
e in a test method for predicting the deterioration due to light irradiation of the quartz glass optical member used by irradiating light of a specific wavelength,
A method for testing a quartz glass optical member, comprising the following steps. Step 1: The correlation between the hydrogen concentration in the quartz glass optical member and the change in transmittance, and the correlation between the energy density of the irradiated light and the change in transmittance are obtained. For obtaining a relational expression between the hydrogen concentration of the silicon and the energy density of the irradiated light. Step 2: 10 to 10,000 mJ /
Step 3: Measuring the transmittance change upon irradiation with light of cm 2 · pulse Step 3: Substitute the transmittance change amount, hydrogen concentration, and energy density obtained in Step 2 into the relational expression obtained in Step 1 to obtain 0 Step of finding a change in transmittance at a specific wavelength of 0.1 to 100 mJ / cm 2 · pulse
【請求項2】請求項1に記載の石英ガラス光学部材の試
験方法により求められた0.01〜100mJ/cm2
・pulseの特定波長における透過率変化が1%以下
であることを特徴とする石英ガラス光学部材。
2. The quartz glass optical member according to claim 1, wherein said quartz glass optical member has a test method of 0.01 to 100 mJ / cm 2.
A quartz glass optical member, wherein a change in transmittance at a specific wavelength of pulse is 1% or less.
【請求項3】0.01〜100mJ/cm2・puls
eの特定波長の光を照射して用いられる石英ガラス光学
部材の光照射による劣化を予測する試験方法において、
以下の工程からなることを特徴とする石英ガラス光学部
材の試験方法。 工程1:石英ガラス光学部材中の水素濃度と透過率変化
との相関、及び照射する光のエネルギー密度と屈折率変
化との相関を求め、これらの相関から屈折率変化量と石
英ガラス光学部材中の水素濃度と照射する光のエネルギ
ー密度との関係式を求める工程 工程2:石英ガラス光学部材に10〜10000mJ/
cm2・pulseの光を照射したときの屈折率変化を
測定する工程 工程3:工程2で得られる屈折率変化量、水素濃度、エ
ネルギー密度をそれぞれ工程1で得られる関係式に代入
し、0.01〜100mJ/cm2・pulseの特定
波長における屈折率変化を求める工程
(3) 0.01 to 100 mJ / cm 2 · pulse
e in a test method for predicting the deterioration due to light irradiation of the quartz glass optical member used by irradiating light of a specific wavelength,
A method for testing a quartz glass optical member, comprising the following steps. Step 1: The correlation between the hydrogen concentration in the quartz glass optical member and the change in transmittance, and the correlation between the energy density of the irradiated light and the change in the refractive index are obtained. For obtaining a relational expression between the hydrogen concentration of the silicon and the energy density of the irradiated light. Step 2: 10 to 10,000 mJ /
Step 3: Measuring the change in refractive index when irradiating light of cm 2 · pulse. Step 3: Substituting the amount of change in refractive index, hydrogen concentration and energy density obtained in step 2 into the relational expression obtained in step 1 to obtain 0 Step of finding refractive index change at a specific wavelength of 0.1 to 100 mJ / cm 2 · pulse
【請求項4】請求項1に記載の石英ガラス光学部材の試
験方法により求められた0.01〜100mJ/cm2
・pulseの特定波長における屈折率変化が1×10
-5以下であることを特徴とする石英ガラス光学部材。
4. A quartz glass optical member according to claim 1, which is obtained by the test method of 0.01 to 100 mJ / cm 2.
A change in the refractive index at a specific wavelength of pulse is 1 × 10
A quartz glass optical member, characterized by having a diameter of -5 or less.
【請求項5】0.01〜100mJ/cm2・puls
eの特定波長の光を照射して用いられる石英ガラス光学
部材の光照射による劣化を予測する試験方法において、
以下の工程からなることを特徴とする石英ガラス光学部
材の試験方法。 工程1:石英ガラス光学部材中の水素濃度と透過率変化
との相関、及び照射する光のエネルギー密度と面変化と
の相関を求め、これらの相関から面変化量と石英ガラス
光学部材中の水素濃度と照射する光のエネルギー密度と
の関係式を求める工程 工程2:石英ガラス光学部材に10〜10000mJ/
cm2・pulseの光を照射したときの面変化を測定
する工程 工程3:工程2で得られる面変化量、水素濃度、エネル
ギー密度をそれぞれ工程1で得られる関係式に代入し、
0.01〜100mJ/cm2・pulseの特定波長
における面変化を求める工程
(5) 0.01 to 100 mJ / cm 2 · pulses
e in a test method for predicting the deterioration due to light irradiation of the quartz glass optical member used by irradiating light of a specific wavelength,
A method for testing a quartz glass optical member, comprising the following steps. Step 1: The correlation between the hydrogen concentration in the quartz glass optical member and the change in transmittance, and the correlation between the energy density of irradiation light and the surface change are determined. From these correlations, the surface change amount and the hydrogen in the quartz glass optical member are determined. Step of obtaining a relational expression between the concentration and the energy density of the irradiated light Step 2: Apply 10 to 10,000 mJ / to the quartz glass optical member.
Step 3: Measuring the surface change upon irradiation with light of cm 2 · pulse Step 3: Substituting the surface change amount, hydrogen concentration, and energy density obtained in Step 2 into the relational expressions obtained in Step 1,
Step of finding a surface change at a specific wavelength of 0.01 to 100 mJ / cm 2 · pulse
【請求項6】請求項1に記載の石英ガラス光学部材の試
験方法により求められた0.01〜100mJ/cm2
・pulseの特定波長における面変化が0.04μm
以下であることを特徴とする石英ガラス光学部材。
6. A method for testing a quartz glass optical member according to claim 1, wherein the measured value is 0.01 to 100 mJ / cm 2.
The surface change at a specific wavelength of pulse is 0.04 μm
A quartz glass optical member characterized by the following.
JP17138696A 1996-07-01 1996-07-01 Excimer laser irradiation durability prediction method and quartz glass member Expired - Lifetime JP3663753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17138696A JP3663753B2 (en) 1996-07-01 1996-07-01 Excimer laser irradiation durability prediction method and quartz glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17138696A JP3663753B2 (en) 1996-07-01 1996-07-01 Excimer laser irradiation durability prediction method and quartz glass member

Publications (2)

Publication Number Publication Date
JPH1019727A true JPH1019727A (en) 1998-01-23
JP3663753B2 JP3663753B2 (en) 2005-06-22

Family

ID=15922210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17138696A Expired - Lifetime JP3663753B2 (en) 1996-07-01 1996-07-01 Excimer laser irradiation durability prediction method and quartz glass member

Country Status (1)

Country Link
JP (1) JP3663753B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075607A (en) * 1997-10-07 2000-06-13 Nikon Corporation Method for estimating durability of optical member against excimer laser irradiation and method for selecting silica glass optical member
DE10225842A1 (en) * 2002-06-04 2003-12-24 Zeiss Carl Smt Ag Method and device for determining the radiation resistance of an optical material
JP2005031076A (en) * 2003-07-09 2005-02-03 Carl-Zeiss-Stiftung Method for quantitatively determining durability of synthetic fused quartz to pulsed laser

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075607A (en) * 1997-10-07 2000-06-13 Nikon Corporation Method for estimating durability of optical member against excimer laser irradiation and method for selecting silica glass optical member
DE10225842A1 (en) * 2002-06-04 2003-12-24 Zeiss Carl Smt Ag Method and device for determining the radiation resistance of an optical material
US6734970B2 (en) 2002-06-04 2004-05-11 Carl Zeiss Semiconductor Manufacturing Technologuies Ag Method and a device for determining the radiation-damage resistance of an optical material
JP2005031076A (en) * 2003-07-09 2005-02-03 Carl-Zeiss-Stiftung Method for quantitatively determining durability of synthetic fused quartz to pulsed laser
JP4653430B2 (en) * 2003-07-09 2011-03-16 ショット アクチエンゲゼルシャフト Method for quantitative determination of pulsed laser resistance of synthetic quartz glass

Also Published As

Publication number Publication date
JP3663753B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
US20190107776A1 (en) Method and appliance for predicting the imaging result obtained with a mask when a lithography process is carried out
US20050041226A1 (en) Method and device for exposure control, method and device for exposure, and method of manufacture of device
JP4104338B2 (en) Synthetic quartz glass material for ArF exposure equipment
JP3716574B2 (en) Method of predicting durability of optical member against excimer laser irradiation and method of selecting quartz glass optical member
US20040095662A1 (en) Adjustment method and apparatus of optical system, and exposure apparatus
EP0901650B1 (en) Optical system for integrated circuit fabrication
Hoffnagle et al. Method of measuring the spatial resolution of a photoresist
US6295841B1 (en) Method pre-compaction of fused silica
JPH1019727A (en) Method for estimating durability to irradiation by excimer laser
WO2003091175A1 (en) Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
US20030167798A1 (en) Optical members and methods for predicting the performance of optical members and optical systems
Schermerhorn Excimer laser damage testing of optical materials
US5991016A (en) Apparatus for producing variable levels of uniform light flux
Triebel et al. Evaluation of fused silica for DUV laser application by short-time diagnostics
Schönfeld et al. Measurement of initial absorption of fused silica at 193nm using laser induced deflection technique (LID)
US20050140954A1 (en) Projection optical system
JP3408574B2 (en) Measurement method of absorption coefficient of synthetic quartz glass
JP3158854B2 (en) Quartz glass member and its evaluation method
Engel et al. Present and future industrial metrology needs for qualification of high-quality optical microlithography materials
EP1491513A1 (en) Synthetic quartz glass member and process for producing the same
EP0866331A2 (en) Apparatus and methods for assessing optical material resistance to deterioration
JP2001023884A (en) Vacuum ultraviolet-ray lithography device, its manufacture, and method for inspecting crystalline fluoride material
Kasprowicz et al. Evaluation of new mask materials for improved lithography performance
Uebbing et al. Modified fused silica for 157-nm mask substrates
JP5058875B2 (en) Mask blank, mask blank manufacturing method, evaluation method, and sensitivity evaluation apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050321

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110408

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170408

Year of fee payment: 12

EXPY Cancellation because of completion of term