JPH10196627A - Screw without head crack and its manufacture - Google Patents
Screw without head crack and its manufactureInfo
- Publication number
- JPH10196627A JPH10196627A JP464697A JP464697A JPH10196627A JP H10196627 A JPH10196627 A JP H10196627A JP 464697 A JP464697 A JP 464697A JP 464697 A JP464697 A JP 464697A JP H10196627 A JPH10196627 A JP H10196627A
- Authority
- JP
- Japan
- Prior art keywords
- less
- screw
- content
- hardness
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012535 impurity Substances 0.000 claims abstract description 12
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 12
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 11
- 229910052742 iron Inorganic materials 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 9
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 8
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 7
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910000831 Steel Inorganic materials 0.000 claims description 40
- 239000010959 steel Substances 0.000 claims description 40
- 238000005255 carburizing Methods 0.000 claims description 7
- 238000010791 quenching Methods 0.000 claims description 6
- 230000000171 quenching effect Effects 0.000 claims description 6
- 238000005496 tempering Methods 0.000 claims description 6
- 238000005256 carbonitriding Methods 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 238000010079 rubber tapping Methods 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 16
- 238000005553 drilling Methods 0.000 description 15
- 230000000694 effects Effects 0.000 description 9
- 238000000137 annealing Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 230000003111 delayed effect Effects 0.000 description 6
- 230000035515 penetration Effects 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 238000005491 wire drawing Methods 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000005482 strain hardening Methods 0.000 description 2
- 229910000655 Killed steel Inorganic materials 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000010273 cold forging Methods 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、冷間圧造性に優
れ、且つ、締めつけ使用時に頭飛びが発生しないねじ及
びその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screw which is excellent in cold forgeability and which does not cause a head jump during tightening use, and a method of manufacturing the same.
【0002】[0002]
【従来の技術】従来、JIS B 1125 のドリリ
ングタッピンねじは、冷間圧造用炭素鋼線材(JIS
G 3507)のSWRCH18Aや22Aを用いて、
伸線、軟化焼鈍、及び仕上げ伸線の工程により、または
上記線材の軟化焼鈍及び仕上げ伸線工程により製造した
前なまし鋼線に、順次ねじ加工、浸炭(浸炭窒化)焼入
れ、焼戻し、メッキ及びベイキングの各処理を施す工程
により製造されてきた。従来、ドリリングタッピンねじ
にSWRCH18Aや22Aが用いられる理由は、それ
がアルミキルド鋼であるため、軟化焼鈍性に優れ、軟質
で高延性であるため冷間加工性に優れているからであ
る。即ち、変形抵抗が小さくこのため工具の寿命が長
く、また、変形能が大きくこのためねじ先端形状の精度
を確保し易いからである。また、C、Mn含有率が比較
的高いため、浸炭硬化性に優れていることも上記理由と
なっている。2. Description of the Related Art Conventionally, drilling tapping screws of JIS B 1125 are used for carbon steel wires for cold heading (JIS).
G 3507) using SWRCH18A or 22A,
Threading, carburizing (carbonitriding) quenching, tempering, plating, and the like are sequentially performed on the drawn steel wire manufactured by the wire drawing, soft annealing, and finish wire drawing processes, or the softened annealing wire and the finish wire drawing process of the above wire rod. It has been manufactured by a process of performing each process of baking. Conventionally, the reason why SWRCH18A or 22A is used for a drilling tapping screw is that since it is an aluminum-killed steel, it has excellent softening and annealing properties, and has excellent cold workability due to its softness and high ductility. That is, since the deformation resistance is small, the service life of the tool is long, and the deformability is large, so that it is easy to secure the accuracy of the shape of the screw tip. In addition, the reason for the above is that since the C and Mn contents are relatively high, the carburizing curability is excellent.
【0003】[0003]
【発明が解決しようとする課題】わが国においては近年
スチールハウスの製造が開始されている。しかしなが
ら、スチールハウスの施工に用いられるドリリングタッ
ピンねじに、従来のドリリングタッピンねじを用いて鋼
板を締めつけると、締めつけ後1日〜2日で、ねじの頭
部が破壊する頭飛び現象が頻発し、問題になっている。
これは一般によく知られている遅れ破壊が、ボルト締め
つけ後数年経過後に発生する現象と比較すると、非常に
短時間で発生しており、遅れ破壊とは区別して考えなけ
ればならない。即ち、ボルトの遅れ破壊は、ボルト締め
つけ後、腐食が進んで水素が進入し、鋼が水素脆化を起
こして破断に至るのに対し、ドリリングタッピンねじの
場合は、腐食は進まず、水素が進入するとは考えられな
い。また、メッキにより水素が進入することも考えられ
るが、これに関しては、300℃程度でベイキングをし
て水素抜きを行っているので、ねじの中に遅れ破壊の原
因となる拡散性水素が残存していることは考えられな
い。In recent years, steel houses have been manufactured in Japan. However, when a steel plate is tightened using a conventional drilling tapping screw to a drilling tapping screw used for construction of a steel house, a head jump phenomenon in which the head of the screw breaks frequently occurs in one to two days after tightening, Is in question.
This is because, in comparison with the generally known phenomenon in which delayed fracture occurs several years after bolting, it occurs in a very short time, and must be considered separately from delayed fracture. In other words, the delayed fracture of the bolt means that after the bolt is tightened, corrosion advances and hydrogen enters, and the steel causes hydrogen embrittlement and breaks, whereas in the case of drilling tapping screws, corrosion does not progress and hydrogen I can't imagine it. In addition, it is conceivable that hydrogen enters by plating, but in this case, since baking is performed at about 300 ° C. to remove hydrogen, diffusible hydrogen causing delayed fracture remains in the screw. I can't imagine that.
【0004】以上のようなドリリングタッピンねじの頭
飛び現象は、スチールハウスの構造そのものの安全性に
かかわる重要な問題であり、その頭飛びを防止しない限
り、スチールハウスの普及は困難である。[0004] The head jump phenomenon of the drilling tapping screw as described above is an important problem relating to the safety of the structure of the steel house itself, and it is difficult to spread the steel house unless the head jump is prevented.
【0005】この発明の目的は、上述したドリリングタ
ッピンねじ等、ねじの頭飛びの発生原因を解明し、頭飛
びの発生しないねじ及びその製造方法を提供することに
ある。An object of the present invention is to clarify the cause of a head jump of a screw such as the above-mentioned drilling tapping screw and to provide a screw which does not cause a head jump and a manufacturing method thereof.
【0006】[0006]
【課題を解決するための手段】本発明者は、上記ドリリ
ングタッピンねじの頭飛び現象について鋭意研究を重ね
た。その結果、頭飛び発生の起点となる亀裂の発生を抑
止するよりも亀裂の進展を抑止することにより、ドリリ
ングタッピンねじの頭飛びを防止できることを突き止
め、本発明を完成するに至った。即ち、ねじの表層部に
は、0.1mm程度の厚さの浸炭硬化層が形成されてい
るが、締めつけ後のねじには上記浸炭硬化層内部に微小
な亀裂が発生し、この亀裂が粒界に沿って内部に進展し
破断に至ったものがねじの頭飛びである。上記亀裂の内
部への進展を抑止すれば、頭飛びを防止することができ
る。この亀裂進展を抑止するためには、ねじの非浸炭
部の内部硬度を下げ、且つ、十分な靱性を確保しなけれ
ばならない。このためにはねじのC含有率を低目とし、
ベイナイト等の不完全焼入れ組織の発生を抑え、微細で
完全なマルテンサイト組織を得るため、鋼の焼入れ性を
十分確保することが決定的に重要であり、次いで、結
晶粒界を強化することが有効であることを見出した。Means for Solving the Problems The present inventor has conducted intensive studies on the head jump phenomenon of the drilling tapping screw. As a result, it has been found that by suppressing the growth of the crack rather than the generation of the crack which is the starting point of the head jump, the head jump of the drilling tapping screw can be prevented, and the present invention has been completed. That is, a carburized hardened layer having a thickness of about 0.1 mm is formed on the surface layer of the screw, but the screw after tightening has a small crack inside the carburized hardened layer. A screw head jumps out and breaks along the boundary. Suppressing the inside of the crack can prevent head jump. In order to suppress this crack growth, the internal hardness of the non-carburized portion of the screw must be reduced and sufficient toughness must be ensured. For this purpose, lower the C content of the screw.
In order to suppress the generation of incomplete quenched structure such as bainite and obtain a fine and complete martensitic structure, it is crucial to ensure sufficient hardenability of steel, and then it is important to strengthen the grain boundaries. Found to be effective.
【0007】本発明は、上述した知見に基づきなされた
ものであって、請求項1記載のねじは、C:0.05〜
0.15wt.%、Si:0.20wt.%以下、Mn:0.4
〜1.8wt.%、P:0.015wt.%以下、S:0.01
5wt.%以下、sol.Al:0.020〜0.080wt.%、
及び、N:0.0060wt.%以下を含有し、残部鉄およ
び不可避不純物からなり、且つ、炭素当量:Ceq=C+
Si/7+Mn/5が0.40wt.%以下である化学成分
組成を有し、そして、表面のビッカース硬さHVが55
0以上、且つ心部のビッカース硬さHVが320〜40
0の範囲内であることに特徴を有するものである。[0007] The present invention has been made based on the above-mentioned findings, and the screw according to claim 1 has a C: 0.05 to
0.15 wt.%, Si: 0.20 wt.% Or less, Mn: 0.4
~ 1.8 wt.%, P: 0.015 wt.% Or less, S: 0.01
5 wt.% Or less, sol. Al: 0.020 to 0.080 wt.%,
And N: not more than 0.0060 wt.%, The balance being iron and unavoidable impurities, and carbon equivalent: C eq = C +
It has a chemical composition in which Si / 7 + Mn / 5 is 0.40 wt.% Or less, and has a Vickers hardness HV of 55
0 or more and Vickers hardness HV of the core is 320 to 40
It is characterized by being within the range of 0.
【0008】請求項2記載のねじは、C:0.05〜
0.15wt.%、Si:0.20wt.%以下、Mn:0.4
〜1.8wt.%、P:0.015wt.%以下、S:0.01
5wt.%以下、sol.Al:0.020〜0.080wt.%、
及び、N:0.0060wt.%以下を含有し、更に、C
r:0.80wt.%以下、Mo:0.30wt.%以下、及
び、B :0.0005〜0.0050wt.%からなる群
から選ばれた少なくとも1種、及び/又は、Ti:
0.005〜0.050wt.%、及び、Nb:0.005
〜0.050wt.%からなる群から選ばれた少なくとも1
種、を付加して含有し、残部鉄および不可避不純物から
なり、且つ、炭素当量:Ceq=C+Si/7+Mn/5
+Cr/9+Mo/6が0.40wt.%以下である化学成
分組成を有し、そして、表面のビッカース硬さHVが5
50以上、且つ心部のビッカース硬さHVが320〜4
00の範囲内であることに特徴を有するものである。[0008] The screw according to the second aspect, C: 0.05 ~
0.15 wt.%, Si: 0.20 wt.% Or less, Mn: 0.4
~ 1.8 wt.%, P: 0.015 wt.% Or less, S: 0.01
5 wt.% Or less, sol. Al: 0.020 to 0.080 wt.%,
And N: not more than 0.0060 wt.%,
r: 0.80 wt.% or less, Mo: 0.30 wt.% or less, and B: at least one selected from the group consisting of 0.0005 to 0.0050 wt.%, and / or Ti:
0.005 to 0.050 wt.% And Nb: 0.005
At least one selected from the group consisting of
, And the balance is composed of iron and unavoidable impurities, and carbon equivalent: C eq = C + Si / 7 + Mn / 5
+ Cr / 9 + Mo / 6 has a chemical composition of 0.40 wt.% Or less, and the surface has a Vickers hardness HV of 5
50 or more and Vickers hardness HV of the core is 320 to 4
It is characterized by being within the range of 00.
【0009】請求項3記載のねじの製造方法は、C:
0.05〜0.15wt.%、Si:0.20wt.%以下、M
n:0.4〜1.8wt.%、P:0.015wt.%以下、
S:0.015wt.%以下、sol.Al:0.020〜0.
080wt.%、及び、N:0.0060wt.%以下を含有
し、残部鉄および不可避不純物からなり、且つ、炭素当
量:Ceq=C+Si/7+Mn/5が0.40wt.%以下
である化学成分組成を有する鋼線材を、軟化焼鈍して前
なまし鋼線を調製し、こうして調製された前記前なまし
鋼線にねじ加工を施してねじを調製し、次いで、前記ね
じを表面のビッカース硬さHVが550以上、且つ心部
のビッカース硬さHVが320〜400の範囲内になる
ように、浸炭又は浸炭窒化焼入れをした後、焼戻しを行
うことに特徴を有するものである。[0009] The method for manufacturing a screw according to claim 3 is characterized in that:
0.05 to 0.15 wt.%, Si: 0.20 wt.% Or less, M
n: 0.4 to 1.8 wt.%, P: 0.015 wt.% or less,
S: 0.015 wt.% Or less, sol. Al: 0.020-0.
080 wt.% And N: 0.0060 wt.% Or less, a chemical component consisting of iron and unavoidable impurities and having a carbon equivalent: C eq = C + Si / 7 + Mn / 5 of 0.40 wt.% Or less. A steel wire rod having a composition is softened and annealed to prepare a pre-annealed steel wire, and the pre-annealed steel wire thus prepared is subjected to thread processing to prepare a screw. It is characterized in that tempering is performed after carburizing or carbonitriding and quenching so that the HV is 550 or more and the Vickers hardness HV of the core is in the range of 320 to 400.
【0010】請求項4記載のねじの製造方法は、C:
0.05〜0.15wt.%、Si:0.20wt.%以下、M
n:0.4〜1.8wt.%、P:0.015wt.%以下、
S:0.015wt.%以下、sol.Al:0.020〜0.
080wt.%、及び、N:0.0060wt.%以下を含有
し、更に、Cr:0.80wt.%以下、Mo:0.30
wt.%以下、及び、B :0.0005〜0.0050w
t.%からなる群から選ばれた少なくとも1種、及び/又
は、Ti:0.005〜0.050wt.%、及び、N
b:0.005〜0.050wt.%からなる群から選ばれ
た少なくとも1種、を付加して含有し、残部鉄および不
可避不純物からなり、且つ、炭素当量:Ceq=C+Si
/7+Mn/5+Cr/9+Mo/6が0.40wt.%以
下である化学成分組成を有する鋼線材を、軟化焼鈍して
前なまし鋼線を調製し、こうして調製された前記前なま
し鋼線にねじ加工を施してねじを調製し、次いで、前記
ねじを表面のビッカース硬さHVが550以上、且つ心
部のビッカース硬さHVが320〜400の範囲内にな
るように、浸炭又は浸炭窒化焼入れをした後、焼戻しを
行うことに特徴を有するものである。[0010] The method for manufacturing a screw according to claim 4 is characterized in that:
0.05 to 0.15 wt.%, Si: 0.20 wt.% Or less, M
n: 0.4 to 1.8 wt.%, P: 0.015 wt.% or less,
S: 0.015 wt.% Or less, sol. Al: 0.020-0.
080 wt.% And N: 0.0060 wt.% Or less, Cr: 0.80 wt.% Or less, Mo: 0.30
wt.% or less, and B: 0.0005 to 0.0050 w
at least one selected from the group consisting of t.% and / or Ti: 0.005 to 0.050 wt.%, and N
b: At least one selected from the group consisting of 0.005 to 0.050 wt.% is additionally added, and the balance consists of iron and unavoidable impurities, and carbon equivalent: C eq = C + Si
/ 7 + Mn / 5 + Cr / 9 + Mo / 6 The steel wire having a chemical composition of 0.40 wt.% Or less is soft annealed to prepare a pre-annealed steel wire, and the pre-annealed steel wire thus prepared is The screw is processed to prepare a screw, and then the screw is carburized or carbonitrided and quenched so that the surface has a Vickers hardness HV of 550 or more and the core has a Vickers hardness HV in the range of 320 to 400. After that, tempering is performed.
【0011】[0011]
【発明の実施の形態】本発明のねじの化学成分組成を上
述したように限定した理由について、以下に述べる。 (1)C:0.05〜0.15wt.% Cは鋼の強度を確保するのに重要な元素であり、0.0
5wt.%未満では所望の強度を得ることができないのみな
らず、浸炭硬化性が低下する。一方、0.15wt.%を超
えるとねじの内部硬度が高くなりすぎて、鋼の靱性が低
下し、頭飛びを防止することができない。また、鋼線の
強度が高くなり、冷間加工工具の寿命が低下する。従っ
て、C含有率を0.05〜0.15wt.%の範囲内に限定
する。 (2)Si:0.20wt.%以下 Siは脱酸材として重要な作用をするので、製鋼段階に
おいては必ず添加する。しかし、鋼材段階まで残存しな
くてもよい。ところが、Siは変形抵抗を増大させ、冷
間加工性を低下させる。しかし、本発明においてはC含
有率を低目に抑えているので、0.20wt.%までは添加
しても冷間加工性の低下は小さい。一方、Siは焼入れ
性を高めることもできる。従って、Si含有率を0.2
0wt.%以下にする。 (3)Mn:0.4〜1.8wt.% Mnは鋼の焼入れ性を高め、焼入れ後の組織を微細にす
ると共に、組織内のマルテンサイトの割合を高め、靱性
を確保するのに重要な元素である。この目的のためには
Mnは0.4wt.%以上の添加を必要とする。一方、ねじ
は比較的寸法が小さいので上限が1.8wt.%までの添加
で十分焼入れ性は確保できる。従って、Mn含有率を
0.4〜1.8wt.%の範囲内に限定する。 (4)P:0.015wt.%以下 Pはオーステナイト粒界に偏析して、粒界強度を弱め
る。また、フェライト内に固溶して鋼の変形能を低下さ
せる。このように、Pは本発明において不純物元素であ
るので、その含有率を0.015wt.%以下とする。 (5)S:0.015wt.%以下 SはMnSを形成して鋼の変形能を低下させる。また、
MnSは亀裂発生の起点となる。このように、Sは本発
明において不純物元素であるので、その含有率を0.0
15wt.%以下とする。 (6)sol.Al:0.020〜0.080wt.% Alは脱酸材として必要な元素であるばかりでなく、粒
界に偏析するNをAlNとして固定して粒界強度を高め
る作用を有する。Alによるこのような効果を発揮させ
るためには、sol.Al(酸可溶Al)として0.020
wt.%以上の量が必要である。しかしながら、sol.Alが
0.080wt.%を超えると、鋳片の連続鋳造時にAl2
O 3の凝集体を形成してノズル詰まりの原因となり、鋳
造作業を困難にする。従って、sol.Al含有率を0.0
20〜0.080wt.%の範囲内に限定する。 (7)N:0.0060wt.%以下 Nもオーステナイト粒界に偏析して粒界強度を弱める。
また、ねじ加工時に歪み時効硬化を起こして鋼の冷間加
工性を低下させ、工具の寿命も低下させる。このよう
に、Nは本発明において不純物元素であるので、その含
有率を0.0060wt.%以下とする。 (8)Cr:0.80wt.%以下 Crは、低炭素鋼においては0.80wt.%以下の含有率
では、鋼を強化する程度は小さいが、焼入れ性を高める
ことができるので、本発明において有用な元素として作
用する。しかしながら、0.80wt.%を超えると焼鈍軟
化性を阻害して、鋼を硬くする。従って、Cr含有率を
0.80wt.%以下とする。 (9)Mo:0.30wt.%以下 MoはPの粒界への偏析を防止し、粒界強度を高めるの
に有効な元素である。しかし、多量に添加するとMoも
Crと同様、焼鈍軟化抵抗を増大させる。一方、Moは
高価な元素である。従って、Mo含有率を0.30wt.%
以下とする。 (10)B:0.0005〜0.0050wt.% Bは微量の添加で焼入れ性を向上させる作用を有する。
また、BNを形成してNの粒界偏析を防止する。Bの添
加によってMnやCr、Mo含有率を低減することがで
き、鋼の冷間加工性を更に向上させることができる。B
によるこのような効果を発揮させるためには0.000
5wt.%以上添加する必要がある。しかしながら、0.0
050wt.%を超えて添加するとボロンセメンタイトを析
出して粒界強度を弱める。従って、B含有率を0.00
05〜0.0050wt.%の範囲内に限定する。 (11)Ti:0.005〜0.050wt.% Tiは結晶粒の微細化効果を有する。しかしながら、
0.005wt.%未満ではその効果が小さく、またNをT
iNとして固定する効果も小さい。ところが、0.05
0wt.%を超えて添加しても、これらの効果は飽和するの
みならず、Tiが高すぎると、硬質のTiN、TiCが
多数形成し、加工性が低下する他、合金コストもかか
る。従って、Ti含有率を0.005〜0.050wt.%
の範囲内に限定する。 (12)Nb:0.005〜0.050wt.% NbもTiと同様、結晶粒の微細化効果を有する。そし
て、Tiと同様の理由によりNb含有率も0.005〜
0.050wt.%の範囲内に限定する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical composition of the screw of the present invention as described above will be described below. (1) C: 0.05 to 0.15 wt.% C is an important element for securing the strength of steel.
If it is less than 5 wt.%, Not only the desired strength cannot be obtained, but also the carburizing curability is reduced. On the other hand, if it exceeds 0.15 wt.%, The internal hardness of the screw becomes too high, the toughness of the steel is reduced, and head jump cannot be prevented. Further, the strength of the steel wire is increased, and the life of the cold working tool is reduced. Therefore, the C content is limited to the range of 0.05 to 0.15 wt.%. (2) Si: 0.20 wt.% Or less Since Si plays an important role as a deoxidizer, it must be added at the steel making stage. However, it does not have to remain until the steel material stage. However, Si increases deformation resistance and lowers cold workability. However, in the present invention, since the C content is suppressed to a low level, even if added up to 0.20 wt.%, The decrease in cold workability is small. On the other hand, Si can also enhance hardenability. Therefore, when the Si content is 0.2
0 wt.% Or less. (3) Mn: 0.4 to 1.8 wt.% Mn is important for enhancing the hardenability of steel, making the structure after quenching fine, increasing the ratio of martensite in the structure, and securing toughness. Element. For this purpose, Mn needs to be added in an amount of 0.4 wt.% Or more. On the other hand, since the screw has relatively small dimensions, sufficient hardenability can be secured by adding an upper limit of 1.8 wt.%. Therefore, the Mn content is limited to the range of 0.4 to 1.8 wt.%. (4) P: 0.015 wt.% Or less P segregates at austenite grain boundaries and weakens the grain boundary strength. In addition, it forms a solid solution in ferrite and reduces the deformability of steel. As described above, since P is an impurity element in the present invention, its content is set to 0.015 wt.% Or less. (5) S: 0.015 wt.% Or less S forms MnS and lowers the deformability of steel. Also,
MnS is a starting point of crack generation. As described above, since S is an impurity element in the present invention, its content is set to 0.0
It shall be 15 wt.% Or less. (6) sol. Al: 0.020 to 0.080 wt.% Al is not only an element necessary as a deoxidizing material, but also has the effect of fixing N segregating at grain boundaries as AlN to increase grain boundary strength. Have. In order to exert such an effect by Al, 0.020 as sol. Al (acid-soluble Al) is required.
More than wt.% is required. However, if the sol.Al exceeds 0.080 wt.%, Al 2
Aggregates of O 3 are formed to cause nozzle clogging, which makes the casting operation difficult. Therefore, the sol.
It is limited to the range of 20 to 0.080 wt.%. (7) N: 0.0060 wt.% Or less N also segregates at austenite grain boundaries and weakens grain boundary strength.
In addition, strain age hardening occurs at the time of threading, thereby reducing the cold workability of steel and shortening the tool life. As described above, since N is an impurity element in the present invention, its content is set to 0.0060 wt.% Or less. (8) Cr: 0.80 wt.% Or less In a low carbon steel, if the content is 0.80 wt.% Or less, the degree of strengthening of the steel is small, but the hardenability can be enhanced. Acts as a useful element in However, if it exceeds 0.80 wt.%, The softening property of the annealing is impaired, and the steel is hardened. Therefore, the Cr content is set to 0.80 wt.% Or less. (9) Mo: 0.30 wt.% Or less Mo is an element effective for preventing segregation of P to the grain boundary and increasing the grain boundary strength. However, when added in a large amount, Mo also increases the annealing softening resistance similarly to Cr. On the other hand, Mo is an expensive element. Therefore, the Mo content is 0.30 wt.%
The following is assumed. (10) B: 0.0005 to 0.0050 wt.% B has an effect of improving the hardenability by adding a small amount.
In addition, BN is formed to prevent N grain boundary segregation. By adding B, the content of Mn, Cr, and Mo can be reduced, and the cold workability of steel can be further improved. B
0.000
It is necessary to add 5 wt.% Or more. However, 0.0
If it is added in excess of 050 wt.%, Boron cementite precipitates and reduces the grain boundary strength. Therefore, the B content is 0.00
It is limited to the range of 0.05 to 0.0050 wt.%. (11) Ti: 0.005 to 0.050 wt.% Ti has an effect of refining crystal grains. However,
If the content is less than 0.005 wt.%, The effect is small, and
The effect of fixing as iN is also small. However, 0.05
Even if it is added in excess of 0 wt.%, Not only these effects are saturated, but if the Ti content is too high, a large number of hard TiN and TiC are formed, the workability is reduced, and the alloy cost is increased. Therefore, the Ti content is 0.005 to 0.050 wt.%
Within the range. (12) Nb: 0.005 to 0.050 wt.% Nb also has a crystal grain refining effect similarly to Ti. And, for the same reason as Ti, the Nb content is also 0.005 to
It is limited to the range of 0.050 wt.%.
【0012】以上の元素の他には、Cu、Sn等のよう
に通常、不可避的に混入する元素を含んでもよい。 (13)Ceq:0.40wt.%以下 鋼の炭素当量(Ceq)が0.40wt.%を超えると、焼鈍
後の強度が高く、冷間加工工具の寿命が短かくなる。ま
た、鋼の変形能が低下して、ねじ先端のとがり形状が悪
くなるので、Ceqは0.40wt.%以下とする。ここで、
Ceq=C+Si/7+Mn/5+Cr/9+Mo/6と
し、C、Si、Mn、Cr及びMoは各元素の鋼中含有
率(wt.%)を表わす。但し、合金元素としてCr及び/
又はMoを含有しない場合には、Cr及び/又はMo含
有率(wt.%)を0(零)としてC eqを算出する。 (14)ねじ表面のビッカース硬さHV:550以上 ねじ表面の硬さ、特にねじ先端の硬さはビッカース硬さ
HVで550未満では鉄板にねじ込む時に先端が欠けた
り、折れたりしてねじ込みが不可能になる。また、ねじ
込みの貫通に時間がかかる。従って、ねじ表面の硬さを
HV:550以上とする必要がある。 (15)ねじ心部のビッカース硬さHV:320〜40
0 ねじの頭飛びは、ねじ心部硬さに密接に関係しており、
HV:400を超えると頭飛びが発生し易いのでHV:
400以下にする必要がある。しかしHV:320未満
ではねじの強度が十分でなく、施工時に捻じれ切れを起
こし易くなる。従って、ねじ心部の強度をHV:320
〜400の範囲内にする必要がある。In addition to the above elements, such as Cu, Sn, etc.
In general, it may contain elements that are unavoidably mixed. (13) Ceq: 0.40 wt.% Or less Carbon equivalent of steel (Ceq) Exceeds 0.40 wt.%, Annealing
Later strength is high and the life of the cold working tool is shortened. Ma
In addition, the deformability of steel decreases, and the sharpness of the screw tip is poor.
CeqIs 0.40 wt.% Or less. here,
Ceq= C + Si / 7 + Mn / 5 + Cr / 9 + Mo / 6
And C, Si, Mn, Cr and Mo are contained in steel of each element.
Rate (wt.%). However, Cr and / or
Or when not containing Mo, it contains Cr and / or Mo.
Assuming that the percentage (wt.%) Is 0 (zero), C eqIs calculated. (14) Vickers hardness HV of the screw surface: 550 or more Vickers hardness of the screw surface, especially the hardness of the screw tip
If the HV is less than 550, the tip is missing when screwing into the iron plate
It breaks and becomes impossible to screw in. Also screw
It takes a long time to penetrate. Therefore, the hardness of the screw surface
HV: 550 or more. (15) Vickers hardness HV of the screw core: 320 to 40
0 Screw head jump is closely related to screw core hardness,
If the HV exceeds 400, the head jumps easily occur.
It must be 400 or less. But HV: less than 320
The strength of the screw is not enough,
Easy to rub. Therefore, the strength of the screw core is set to HV: 320.
It must be within the range of ~ 400.
【0013】[0013]
【実施例】次に、この発明を、実施例によって更に詳細
に説明する。種々の化学成分組成を有する鋼を用いて、
表面硬さ及び心部硬さが種々の値を有するドリリングタ
ッピンねじを製造した。図1に、こうして製造されたド
リリングタッピンねじの表面硬さ及び心部硬さと、締付
け後におけるねじの頭飛び発生の有無との関係を示す。
なお、上記ねじ形状は、皿頭、呼び径5mm、長さ35
mmである。同図からわかるように、ねじの頭飛び発生
の有無は、ねじ表面の硬さには関係せず、ねじ心部の硬
さによって左右されることがわかる。即ち、従来のねじ
は心部硬度がHV:400〜450の範囲内で造られて
きたため、半数以上の割合で頭飛びが発生している。こ
れに対して、心部硬さが本発明のようにHV:320〜
400としたものには、頭飛びの発生は完全に無くなっ
ている。Next, the present invention will be described in more detail with reference to examples. Using steels with various chemical composition,
Drilling tapping screws having various values of surface hardness and core hardness were manufactured. FIG. 1 shows the relationship between the surface hardness and the core hardness of the drilling tapping screw manufactured in this way, and whether or not the head jumps after the tightening.
In addition, the above-mentioned screw shape is countersunk, nominal diameter 5 mm, length 35
mm. As can be seen from the figure, the occurrence of head jump of the screw does not depend on the hardness of the screw surface but depends on the hardness of the screw core. That is, since the conventional screw has been manufactured with a core hardness in the range of HV: 400 to 450, a head jump occurs at a rate of half or more. On the other hand, the core hardness is HV: 320 to
In the case of 400, the occurrence of head jump was completely eliminated.
【0014】図2に、C含有率が0.05〜0.24w
t.%であって十分な焼入れ性を有する鋼から製造したド
リリングタッピンねじ(ねじ形状:つば付き六角、呼び
径5mm、長さ35mm)のC含有率と熱処理後の心部
硬さの関係を示す。心部硬さはC含有率により決定さ
れ、HV:320〜400の心部硬さを得るには、C含
有率を0.05〜0.15wt.%の範囲内にする必要があ
ることがわかる。FIG. 2 shows that the C content is 0.05 to 0.24 watts.
The relationship between the C content of drilling tapping screws (screw shape: hexagon with a rim, nominal diameter 5 mm, length 35 mm) manufactured from steel with sufficient hardenability and t. Show. The core hardness is determined by the C content, and in order to obtain a core hardness of HV: 320 to 400, the C content needs to be in the range of 0.05 to 0.15 wt.%. Recognize.
【0015】次に、本発明の範囲内のタッピンねじ(実
施例1〜8)、及び本発明の範囲外のタッピンねじ(比
較例1〜10)を次の通り製造した。なお、比較例9及
び10は、それぞれ冷間圧造用炭素鋼線材(JIS G
3507)のSWRCH18A及び22Aを用いた従
来のタッピンねじである。表1に、各実施例及び比較例
の化学成分組成及びC当量を示す。Next, tapping screws falling within the scope of the present invention (Examples 1 to 8) and tapping screws falling outside the scope of the present invention (Comparative Examples 1 to 10) were produced as follows. Note that Comparative Examples 9 and 10 are each a carbon steel wire for cold heading (JIS G).
3507) is a conventional tapping screw using SWRCHs 18A and 22A. Table 1 shows the chemical component compositions and C equivalents of the respective examples and comparative examples.
【0016】[0016]
【表1】 [Table 1]
【0017】表1に示した化学成分組成を有する直径
5.5mmの線材を直径4.8mmに伸線後、球状化焼
鈍を行い、更に直径4.6mmに仕上げ伸線し、前なま
し鋼線を製造した。こうして製造された鋼線より十字穴
付き皿頭で、切り刃先を有する呼び径4.8mm、長さ
35mmのドリリングタッピンねじを冷間鍛造により製
造し、ねじ加工性を評価した。次いで、浸炭又は浸炭窒
化焼入れを行ない、250℃で焼戻し処理を施し、更
に、0.20mmの厚みの亜鉛メッキをし、そしてベー
キングして水素抜きを行った。A 5.5 mm diameter wire having the chemical composition shown in Table 1 was drawn to a diameter of 4.8 mm, and then subjected to spheroidizing annealing. Wire was manufactured. From the steel wire thus manufactured, a drilling tapping screw having a cutting edge and a nominal diameter of 4.8 mm and a length of 35 mm was manufactured by cold forging from a cross-headed countersunk head, and the screw workability was evaluated. Next, carburizing or carbonitriding and quenching were performed, tempering was performed at 250 ° C., and zinc plating was performed with a thickness of 0.20 mm, and baking was performed to remove hydrogen.
【0018】こうして製造された各実施例及び比較例の
各々について、ねじ10本ずつのビッカース表面硬さ及
び心部硬さを測定した。一方、ねじの貫通試験を次の通
り行なった。The Vickers surface hardness and the core hardness of ten screws were measured for each of the examples and comparative examples thus manufactured. On the other hand, a penetration test of the screw was performed as follows.
【0019】図3に、ねじ貫通試験で使用したねじ込み
性試験装置の概略斜視図を示す。支柱1で垂直に支持さ
れた電動ドライバー2下部のチャック3にねじ試験片4
を鉛直に固定する。一方、ねじ込み試験用鋼板5として
板厚1.6mmの冷延鋼板(JIS G 3141 S
PCC)を固定用ジグ6に取付け、水平に固定する。ね
じ試験片4は、錘7の重量によりねじ込み試験用鋼板5
の表面に対して直角に、180N/mm2 の荷重をかけ
つつ、電動ドライバー2の作動により回転速度3000
rpmでねじ込まれる。ねじ試験片4が、ねじ先から最
初の完全山までねじ込み試験用鋼板5表面にねじ込まれ
るときの始点及び終点を、検出装置8で検出し、上記始
点及び終点到達時をタイマ9に電送し、ねじ込みに要し
た時間(ねじ貫通時間)をタイマ9で測定する。上述し
た方法で、各実施例及び比較例についてねじ試験片4を
10本ずつ試験し、ねじ貫通時間の平均値を求めた。一
方、ねじ締めつけ後の頭飛び試験については、各実施例
及び比較例についてねじ試験片4を20本ずつ、完全に
ねじ込み試験用鋼板5にねじ込み、1週間後に頭飛び発
生の有無を観察した。上記の各試験結果を表1に併記し
た。FIG. 3 is a schematic perspective view of a screwing test device used in the screw penetration test. Screw test piece 4 is attached to chuck 3 below electric screwdriver 2 vertically supported by support column 1.
Is fixed vertically. On the other hand, a cold-rolled steel sheet having a thickness of 1.6 mm (JIS G 3141 S
(PCC) is attached to the fixing jig 6 and fixed horizontally. The screw test piece 4 is made of a screw test steel plate 5 according to the weight of the weight 7.
The rotation speed is 3000 by the operation of the electric screwdriver 2 while applying a load of 180 N / mm 2 at right angles to the surface of
Screwed in at rpm. The starting point and the end point when the screw test piece 4 is screwed from the screw tip to the first complete thread on the surface of the screw-in test steel plate 5 are detected by the detecting device 8, and the time when the start point and the end point are reached is transmitted to the timer 9, The time required for screwing (screw penetration time) is measured by the timer 9. By the method described above, ten screw test pieces 4 were tested for each of the examples and comparative examples, and the average value of the screw penetration time was determined. On the other hand, in the head jump test after tightening the screws, 20 screw test pieces 4 of each of Examples and Comparative Examples were completely screwed into the screw test steel plate 5, and one week later, the presence or absence of head jump was observed. Table 1 shows the results of the above tests.
【0020】表1より、下記結果がわかる。本発明のタ
ッピンねじである実施例1〜8では、ねじの加工性が良
好であり、即ち、鍛造工具の寿命とねじ頭部皿形状が良
好であり、ねじ表面の硬度はHV:550以上、且つね
じ心部硬度はHV:320〜400の間にあり、ねじの
貫通時間も全て3.5秒以下と良好である。また、ねじ
締めつけ後の頭飛びも全く発生せず、本発明品の目標と
する頭飛びのない優れたタッピンねじとして満足すべき
ものであった。Table 1 shows the following results. In Examples 1 to 8, which are tapping screws of the present invention, the workability of the screw is good, that is, the life of the forging tool and the shape of the screw head dish are good, and the hardness of the screw surface is HV: 550 or more. The screw core hardness is between HV: 320 to 400, and the thread penetration time is 3.5 seconds or less. In addition, no head jump occurred after the screw was tightened, which was satisfactory as an excellent tapping screw with no head jump which is the target of the present invention.
【0021】これに対して比較例1は、C含有率が本発
明の範囲を外れて低く、このため心部硬度がHV:32
0を下回り、ねじの強度が不足して、ねじ貫通時間が
8.9秒と大変長い。またMn含有率が本発明の範囲を
外れて高く、炭素当量が0.43と高く、工具の寿命が
短かかった。On the other hand, in Comparative Example 1, the C content was low outside the range of the present invention, and the core hardness was HV: 32.
Below 0, the strength of the screw is insufficient, and the screw penetration time is very long at 8.9 seconds. Further, the Mn content was high outside the range of the present invention, the carbon equivalent was as high as 0.43, and the tool life was short.
【0022】比較例2は、C含有率が本発明の範囲を外
れて高く、心部硬度がHV:400を上回ったため頭飛
びが発生した。比較例3は、Si含有率が本発明の範囲
を外れて高いため、ねじ加工性が不良であり、かつP含
有率が本発明の範囲を外れて高いため、靱性不足でねじ
込み中に欠けが生じて、ねじ込み時間が長い。また頭飛
びが発生した。In Comparative Example 2, since the C content was high outside the range of the present invention, and the core hardness exceeded HV: 400, head jump occurred. In Comparative Example 3, since the Si content was high outside the range of the present invention, the screw workability was poor, and the P content was high outside the range of the present invention. As a result, the screwing time is long. In addition, a head jump occurred.
【0023】比較例4は、S含有率が本発明の範囲を外
れて高く、またsol.Al含有率が低すぎ、N含有率が高
すぎるため、心部の靱性が乏しく、ねじ込み時間が長
く、頭飛びも発生した。In Comparative Example 4, since the S content was high outside the range of the present invention, and the sol.Al content was too low and the N content was too high, the core toughness was poor and the screwing time was long. , And a head jump also occurred.
【0024】比較例5は、Cr含有率が本発明の範囲を
外れて高いため、球状化焼鈍において軟化が遅れ、ねじ
の加工性がやや不良であった。またsol.Al含有率が高
すぎるため、非金属介在物が多く、ねじ込み時間が長
く、頭飛びも発生した。In Comparative Example 5, since the Cr content was high outside the range of the present invention, the softening was delayed in the spheroidizing annealing, and the workability of the screw was slightly poor. Also, since the sol.Al content was too high, there were many nonmetallic inclusions, the screwing time was long, and head jump occurred.
【0025】比較例6は、Mo含有率が本発明の範囲を
外れて高く、Crと同様に軟化が遅れ、またTi含有率
が高すぎるので硬質のTiN、TiCが多数存在してい
るため、頭部に鍛造割れを発生し、ねじ加工性が不良で
あった。また硬質介在物を起点としてねじ先端の欠けが
生じて、ねじ込み時間が長く、頭飛びが発生した。In Comparative Example 6, the Mo content was high outside the range of the present invention, the softening was delayed similarly to Cr, and since the Ti content was too high, many hard TiN and TiC were present. Forging cracks occurred on the head and screw workability was poor. In addition, the tip of the screw was chipped starting from the hard inclusion, so that the screwing time was long and the head jumped.
【0026】比較例7は、B含有率が本発明の範囲を外
れて高く、ボロンを含むセメンタイトが多数存在してい
るため、ねじ込み時間が長く、頭飛びが発生した。比較
例8は、P含有率が本発明の範囲を外れて高く、またN
b含有率も高すぎるため、ねじ加工性がやや不良で、ね
じ込み時間が長く、頭部に頭飛びが発生した。In Comparative Example 7, since the B content was high outside the range of the present invention and a large number of boron-containing cementites were present, the screwing time was long and head jump occurred. Comparative Example 8 has a high P content outside the range of the present invention and a high N content.
Since the b content was too high, the screw workability was somewhat poor, the screwing time was long, and the head jumped.
【0027】比較例9は、従来のSWRCH18Aであ
るが、C含有率が本発明の範囲を外れて高いため、心部
の硬度が高すぎる。また、S及びN含有率が高すぎるた
め粒界強度が弱く、頭飛びが発生した。Comparative Example 9 is a conventional SWRCH18A, but the hardness of the core is too high because the C content is high outside the range of the present invention. In addition, since the S and N contents were too high, the grain boundary strength was weak, and a head jump occurred.
【0028】同様に比較例10は、従来のSWRCH2
2Aであるが、C含有率が本発明の範囲を外れて高いた
め、心部の硬度が高く、またP含有率も本発明の範囲を
外れて高いため頭飛びが発生した。Similarly, in Comparative Example 10, the conventional SWRCH2
Although the content was 2A, the hardness of the core was high because the C content was high outside the range of the present invention, and the head jump occurred because the P content was high outside the range of the present invention.
【0029】以上、タッピンねじの実施例に従って説明
したが、本発明は、タッピンねじ及びその製造方法に限
定されるものでなく、浸炭又は浸炭窒化焼入れ、焼戻し
を施して使用するドライウォール等、頭飛びが問題とな
るねじ類に適用することができるものである。Although the present invention has been described with reference to the embodiment of the tapping screw, the present invention is not limited to the tapping screw and the method of manufacturing the tapping screw. For example, a drywall used after carburizing or carbonitriding and quenching and tempering is used. The present invention can be applied to screws in which flying becomes a problem.
【0030】[0030]
【発明の効果】以上述べたように、この発明によれば、
ねじ加工性及びねじの貫通性に優れ、且つ締付け後の頭
飛び発生を完全に防止することができるねじ及びその製
造方法を提供することができ、工業上有用な効果がもた
らされる。As described above, according to the present invention,
It is possible to provide a screw which is excellent in screw workability and thread penetrability and can completely prevent the occurrence of head jump after tightening, and a method for manufacturing the screw, and has an industrially useful effect.
【図1】ドリリングタッピンねじの表面硬さ及び心部硬
さと、締付け後におけるねじの頭飛び発生の有無との関
係を示すグラフである。FIG. 1 is a graph showing the relationship between the surface hardness and core hardness of a drilling tapping screw and the occurrence of head jump after tightening.
【図2】ドリリングタッピンねじのC含有率と熱処理後
のねじ心部硬さの関係を示すグラフである。FIG. 2 is a graph showing the relationship between the C content of a drilling tapping screw and the hardness of a screw core after heat treatment.
【図3】ねじ込み性試験装置の概略斜視図である。FIG. 3 is a schematic perspective view of a screwability test apparatus.
1 支柱 2 電動ドライバー 3 チャック 4 ねじ試験片 5 ねじ込み試験用鋼板 6 固定用ジグ 7 錘 8 検出装置 9 タイマ 10 操作制御盤 11 電源コード Reference Signs List 1 support 2 electric screwdriver 3 chuck 4 screw test piece 5 screw-in test steel plate 6 fixing jig 7 weight 8 detecting device 9 timer 10 operation control panel 11 power cord
Claims (4)
不可避不純物からなり、且つ、炭素当量:Ceq=C+S
i/7+Mn/5が0.40wt.%以下である化学成分組
成を有し、そして、表面のビッカース硬さが550以
上、且つ心部のビッカース硬さが320〜400の範囲
内であることを特徴とする、頭飛びの発生しないねじ。1. C: 0.05 to 0.15 wt.%, Si: 0.20 wt.% Or less, Mn: 0.4 to 1.8 wt.%, P: 0.015 wt.% Or less, S: 0 0.015 wt.% Or less, sol. Al: 0.020 to 0.080 wt.% And N: 0.0060 wt.% Or less, the balance being iron and unavoidable impurities, and carbon equivalent: C eq = C + S
i / 7 + Mn / 5 is 0.40 wt.% or less, and the Vickers hardness of the surface is 550 or more, and the Vickers hardness of the core is in the range of 320 to 400. Characteristic, headless screw.
ら選ばれた少なくとも1種、及び/又は、 Ti:0.005〜0.050wt.%、及び、 Nb:0.005〜0.050wt.%からなる群から選ば
れた少なくとも1種、を含有し、残部鉄および不可避不
純物からなり、且つ、炭素当量:Ceq=C+Si/7+
Mn/5+Cr/9+Mo/6が0.40wt.%以下であ
る化学成分組成を有し、そして、表面のビッカース硬さ
が550以上、且つ心部のビッカース硬さが320〜4
00の範囲内であることを特徴とする、頭飛びの発生し
ないねじ。2. C: 0.05 to 0.15 wt.%, Si: 0.20 wt.% Or less, Mn: 0.4 to 1.8 wt.%, P: 0.015 wt.% Or less, S: 0 0.015 wt.% Or less, sol.Al: 0.020 to 0.080 wt.%, And N: 0.0060 wt.% Or less, Cr: 0.80 wt.% Or less, Mo: 0. 30 wt.% Or less, and B: at least one selected from the group consisting of 0.0005 to 0.0050 wt.%, And / or Ti: 0.005 to 0.050 wt.%, And Nb: At least one selected from the group consisting of 0.005 to 0.050 wt.%, The balance being iron and unavoidable impurities, and carbon equivalent: C eq = C + Si / 7 +
Mn / 5 + Cr / 9 + Mo / 6 has a chemical composition of 0.40 wt.% Or less, and the surface has a Vickers hardness of 550 or more, and the core has a Vickers hardness of 320-4.
A screw having no head jump, which is within the range of 00.
可避不純物からなり、且つ、炭素当量:Ceq=C+Si
/7+Mn/5が0.40wt.%以下である化学成分組成
を有する鋼線材を、軟化焼鈍して前なまし鋼線を調製
し、こうして調製された前記前なまし鋼線にねじ加工を
施してねじを調製し、次いで、前記ねじを表面のビッカ
ース硬さが550以上、且つ心部のビッカース硬さが3
20〜400の範囲内になるように、浸炭又は浸炭窒化
焼入れをした後、焼戻しを行うことを特徴とする、頭飛
びの発生しないねじの製造方法。3. C: 0.05 to 0.15 wt.%, Si: 0.20 wt.% Or less, Mn: 0.4 to 1.8 wt.%, P: 0.015 wt.% Or less, S: 0 .015 wt.% Or less, sol. Al: 0.020 to 0.080 wt.%, And N: 0.0060 wt.% Or less, the balance being iron and unavoidable impurities, and carbon equivalent: C eq = C + Si
/ 7 + Mn / 5 is 0.40 wt.% Or less. A steel wire having a chemical composition of 0.40 wt.% Or less is softened and annealed to prepare a pre-annealed steel wire, and the pre-annealed steel wire thus prepared is subjected to thread processing. A screw having a Vickers hardness of 550 or more on the surface and a Vickers hardness of 3
A method for producing a screw without head jumps, comprising performing carburizing or carbonitriding and quenching so as to fall within the range of 20 to 400 and then tempering.
ら選ばれた少なくとも1種、及び/又は、 Ti:0.005〜0.050wt.%、及び、 Nb:0.005〜0.050wt.%、からなる群から選
ばれた少なくとも1種、を含有し、残部鉄および不可避
不純物からなり、且つ、炭素当量:Ceq=C+Si/7
+Mn/5+Cr/9+Mo/6が0.40wt.%以下で
ある化学成分組成を有する鋼線材を、軟化焼鈍して前な
まし鋼線を調製し、こうして調製された前記前なまし鋼
線にねじ加工を施してねじを調製し、次いで、前記ねじ
を表面のビッカース硬さが550以上、且つ心部のビッ
カース硬さが320〜400の範囲内になるように、浸
炭又は浸炭窒化焼入れをした後、焼戻しを行うことを特
徴とする、頭飛びの発生しないねじの製造方法。4. C: 0.05 to 0.15 wt.%, Si: 0.20 wt.% Or less, Mn: 0.4 to 1.8 wt.%, P: 0.015 wt.% Or less, S: 0 0.015 wt.% Or less, sol. Al: 0.020 to 0.080 wt.%, And N: 0.0060 wt.% Or less, Cr: 0.80 wt.% Or less, Mo: 0.30 wt. % Or less, and B: at least one selected from the group consisting of 0.0005 to 0.0050 wt.%, And / or Ti: 0.005 to 0.050 wt.%, And Nb: 0. 0.0005 to 0.050 wt.%, The balance being iron and unavoidable impurities, and carbon equivalent: C eq = C + Si / 7
+ Mn / 5 + Cr / 9 + Mo / 6 having a chemical composition of 0.40 wt.% Or less is softened and annealed to prepare a pre-annealed steel wire, and a screw is attached to the pre-annealed steel wire thus prepared. A screw is prepared by working, and then the screw is carburized or carbonitrided and quenched so that the Vickers hardness of the surface is 550 or more and the Vickers hardness of the core is in the range of 320 to 400. And a method of manufacturing a screw which does not cause head jumps.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP464697A JPH10196627A (en) | 1997-01-14 | 1997-01-14 | Screw without head crack and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP464697A JPH10196627A (en) | 1997-01-14 | 1997-01-14 | Screw without head crack and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10196627A true JPH10196627A (en) | 1998-07-31 |
Family
ID=11589738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP464697A Pending JPH10196627A (en) | 1997-01-14 | 1997-01-14 | Screw without head crack and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10196627A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2265526A (en) * | 1991-09-18 | 1993-09-29 | Motorola Inc | Phase combining method and apparatus for use in a diversity receiver |
US6558484B1 (en) | 2001-04-23 | 2003-05-06 | Hiroshi Onoe | High strength screw |
EP1342800A1 (en) * | 2002-03-04 | 2003-09-10 | Hiroshi Onoe | Steel for high-strength screws and high-strength screw |
JP2007023703A (en) * | 2005-07-21 | 2007-02-01 | Nippon Steel Corp | Steel member joining structure and joining method, and steel structure building |
JP2007321798A (en) * | 2006-05-30 | 2007-12-13 | Japan Power Fastening Co Ltd | Drill screw for wood |
JP2008144266A (en) * | 2006-11-16 | 2008-06-26 | Koji Onoe | Tapping screw for high-tension steel sheet, and manufacturing method for the same |
JP2018509523A (en) * | 2015-12-30 | 2018-04-05 | ソ ドン カンパニー リミテッドSeo Dong Co.,Ltd. | Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel |
-
1997
- 1997-01-14 JP JP464697A patent/JPH10196627A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2265526A (en) * | 1991-09-18 | 1993-09-29 | Motorola Inc | Phase combining method and apparatus for use in a diversity receiver |
GB2265526B (en) * | 1991-09-18 | 1995-09-13 | Motorola Inc | Phase combining method and apparatus for use in a diversity receiver |
US6558484B1 (en) | 2001-04-23 | 2003-05-06 | Hiroshi Onoe | High strength screw |
EP1342800A1 (en) * | 2002-03-04 | 2003-09-10 | Hiroshi Onoe | Steel for high-strength screws and high-strength screw |
JP2007023703A (en) * | 2005-07-21 | 2007-02-01 | Nippon Steel Corp | Steel member joining structure and joining method, and steel structure building |
JP2007321798A (en) * | 2006-05-30 | 2007-12-13 | Japan Power Fastening Co Ltd | Drill screw for wood |
JP2008144266A (en) * | 2006-11-16 | 2008-06-26 | Koji Onoe | Tapping screw for high-tension steel sheet, and manufacturing method for the same |
JP2018509523A (en) * | 2015-12-30 | 2018-04-05 | ソ ドン カンパニー リミテッドSeo Dong Co.,Ltd. | Manufacturing method and support material assembly of super high strength steel pipe support material using boron steel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3817105B2 (en) | High strength steel with excellent fatigue characteristics and method for producing the same | |
JP2000239803A (en) | High strength and high toughness stainless steel with excellent delayed fracture resistance | |
JP2001247937A (en) | High strength screw and steel for high strength screw | |
WO1994020645A1 (en) | Steel material for induction-hardened shaft part and shaft part made therefrom | |
JP5213393B2 (en) | Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength | |
JP6314648B2 (en) | Surface hardened component and method for manufacturing surface hardened component | |
JP4321974B2 (en) | Steel for high strength screws and high strength screws | |
WO2000028100A1 (en) | Bearing steel excellent in rolling fatigue life | |
JP5178104B2 (en) | Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength | |
JP3606024B2 (en) | Induction-hardened parts and manufacturing method thereof | |
JPH10196627A (en) | Screw without head crack and its manufacture | |
JP4009218B2 (en) | Bolt with excellent hydrogen embrittlement resistance and method for producing the same | |
JP2008144266A (en) | Tapping screw for high-tension steel sheet, and manufacturing method for the same | |
JP4828321B2 (en) | Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties | |
JP2005325398A (en) | High-strength gear and manufacturing method therefor | |
JP4422924B2 (en) | Steel for high-strength tapping bolt, high-strength tapping bolt and method for producing high-strength tapping bolt | |
JP5141313B2 (en) | Steel material with excellent black skin peripheral turning and torsional strength | |
JP2000008141A (en) | Non-heat treated nitrocarburized steel forged parts and method of manufacturing the same | |
JP2005060721A (en) | Steel material excellent in delayed fracture resistance and fatigue characteristics and method for producing the same | |
JP4430559B2 (en) | High strength bolt steel and high strength bolt with excellent delayed fracture resistance | |
JPH10183296A (en) | Steel material for induction hardening and method of manufacturing the same | |
JPH11131135A (en) | Induction hardened part and method of manufacturing the same | |
JP2002327235A (en) | Mechanical structural steel excellent in hydrogen fatigue fracture resistance and method for producing the same | |
JPH0570890A (en) | Steel for high strength bolt excellent in delayed fracture resistance | |
JPH09227992A (en) | Soft-nitriding steel for structural purpose |