[go: up one dir, main page]

JPH10196471A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPH10196471A
JPH10196471A JP421197A JP421197A JPH10196471A JP H10196471 A JPH10196471 A JP H10196471A JP 421197 A JP421197 A JP 421197A JP 421197 A JP421197 A JP 421197A JP H10196471 A JPH10196471 A JP H10196471A
Authority
JP
Japan
Prior art keywords
fuel
internal combustion
combustion engine
ignition
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP421197A
Other languages
Japanese (ja)
Inventor
Takeshi Serizawa
毅 芹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP421197A priority Critical patent/JPH10196471A/en
Publication of JPH10196471A publication Critical patent/JPH10196471A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an internal combustion engine capable of modifying fuel at the compression ratio in which knocking and unexpected self-ignition are not generated, and low emission can be realized. SOLUTION: In an internal combustion engine for compressing air-fuel mixture by the upward movement of a piston 3 after introducing air-duel mixture into a cylinder 2 whose upper and lower parts are blocked with a cylinder head 4 and the piston 3 capable of being vertically moved, and for igniting and burning compressed high-temperature and high-pressure air-fuel mixture, a laser source 13 for irradiating laser light having the wavelength for decomposing hydrocarbon duel during the compression stroke is provided, the hydrocarbon fuel is decomposed by irradiation of the laser light before ignition and combustion, the great quantities of hydrocarbon with the small molecular weight having the NOx reducing action, and the action for cutting the generation mechanism of soot are formed, fuel modulation is performed, and low emission is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は内燃機関に関し、特
にレーザー光による燃料改質手段を備えた内燃機関に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine provided with a fuel reforming means using laser light.

【0002】[0002]

【従来の技術】従来の通常のガソリン内燃機関において
は、シリンダヘッドとピストンにより区画された気筒内
に吸気と燃料を必要に応じて予混合して導入し、ピスト
ンの上動により圧縮することにより、着火時期より十分
に早い時期に燃料噴射を完了して着火時期には燃料と空
気が比較的均質に混合された高温高圧の混合気を形成
し、圧縮端近傍で点火プラグにより火花点火で着火し、
その着火を起点として燃焼室内を火炎が伝播してゆくこ
とで混合気の燃焼を完了するようにしており、点火時期
により圧力発生を制御している。
2. Description of the Related Art In a conventional ordinary gasoline internal combustion engine, intake air and fuel are premixed and introduced as necessary into a cylinder defined by a cylinder head and a piston, and compressed by upward movement of the piston. The fuel injection is completed sufficiently earlier than the ignition timing to form a high-temperature, high-pressure mixture in which the fuel and air are relatively homogeneously mixed at the ignition timing, and is ignited by spark ignition with a spark plug near the compression end. And
The combustion of the air-fuel mixture is completed by the propagation of the flame in the combustion chamber starting from the ignition, and the generation of pressure is controlled by the ignition timing.

【0003】また、例えば特開平7−332141号公
報等に開示されているように、燃料を予混合して均質な
混合気を形成しかつ圧縮端で自着火燃焼するようにした
高圧縮比の予混合自着火内燃機関も提案されており、実
現できると空燃比が希薄であっても多点着火により一斉
に燃焼が完了し、燃費性能が高くかつNOx排出濃度が
非常に低い(10ppm程度)、高効率・低エミッショ
ン機関が得られる。
Further, as disclosed in, for example, Japanese Patent Application Laid-Open No. 7-332141, a high compression ratio of a high compression ratio in which fuel is premixed to form a homogeneous mixture and self-ignition combustion is performed at a compression end. A premixed self-ignition internal combustion engine has also been proposed. If it can be realized, even if the air-fuel ratio is lean, combustion is completed simultaneously by multipoint ignition, high fuel efficiency and very low NOx emission concentration (about 10 ppm). , High efficiency and low emission engine can be obtained.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記通常の
ガソリン内燃機関において、排出ガス中のNOxや煤な
どのエミッションを低減するには、燃料中のベンゼンな
どの炭化水素分子を分解してNOx還元作用や煤の発生
メカニズムを絶つ作用を持つ分子量の小さい炭化水素を
多量に生成させる燃料改質が有効な方策の一つである
が、燃料組成による改質には種々の問題が発生し、また
圧縮比を高くして混合気をより高温高圧にし、高温高圧
の混合気におけるクラッキング作用で改質することも考
えられるが、圧縮比を高くするとノッキングを発生する
という問題がある。
By the way, in the ordinary gasoline internal combustion engine, in order to reduce emissions such as NOx and soot in exhaust gas, NOx reduction is carried out by decomposing hydrocarbon molecules such as benzene in fuel. Fuel reforming, which produces a large amount of low-molecular-weight hydrocarbons that have the effect of eliminating the action and soot generation mechanism, is one of the effective measures, but reforming by the fuel composition causes various problems, Although it is conceivable that the air-fuel mixture is made higher in temperature and pressure by increasing the compression ratio and reformed by a cracking action in the air-fuel mixture at high temperature and high pressure, knocking occurs when the compression ratio is increased.

【0005】一方、上記予混合自着火内燃機関では高圧
縮比にして圧縮自着火させるもので大きな燃料改質作用
が得られ、その結果として低エミッションを実現できる
ものであるが、混合気濃度によっては不測に自着火する
恐れがあり、自着火燃焼による安定した運転領域が限ら
れるため、実用化が困難であるという問題がある。
On the other hand, in the premixed self-ignition internal combustion engine, a large fuel reforming action can be obtained by compression self-ignition at a high compression ratio, and as a result, low emission can be realized. However, there is a risk that self-ignition may occur unexpectedly, and a stable operating region due to self-ignition combustion is limited.

【0006】本発明は、上記従来の問題点に鑑み、ノッ
キングや不測の自着火を発生しない圧縮比のままで燃料
を改質できて低エミッションを実現できる内燃機関を提
供することを目的とする。
The present invention has been made in consideration of the above-described conventional problems, and has as its object to provide an internal combustion engine that can reform fuel while maintaining a compression ratio that does not cause knocking or accidental self-ignition, thereby achieving low emission. .

【0007】[0007]

【課題を解決するための手段】本発明の内燃機関は、シ
リンダヘッドと上下動可能なピストンにて上下が閉鎖さ
れた気筒内に混合気を導入してピストンの上動により混
合気を圧縮し、圧縮した高温高圧の混合気を着火燃焼さ
せる内燃機関において、圧縮行程中に炭化水素燃料を分
解する波長のレーザー光を照射するレーザー源を設け、
着火燃焼前にレーザー光の照射によって炭化水素燃料を
分解してNOx還元作用や煤の発生メカニズムを絶つ作
用を持つ分子量の小さい炭化水素を多量に生成させ、燃
料改質を行って低エミッションを実現するようにしたも
のである。
In the internal combustion engine of the present invention, an air-fuel mixture is introduced into a vertically closed cylinder by a cylinder head and a vertically movable piston, and the air-fuel mixture is compressed by upward movement of the piston. In an internal combustion engine that ignites and burns a compressed high-temperature and high-pressure air-fuel mixture, a laser source that emits laser light having a wavelength that decomposes hydrocarbon fuel during the compression stroke is provided.
Prior to ignition and combustion, laser light is irradiated to decompose hydrocarbon fuel to generate a large amount of low molecular weight hydrocarbons that have the effect of reducing NOx reduction and soot generation mechanisms, and achieve low emissions through fuel reforming. It is something to do.

【0008】[0008]

【発明の実施の形態】以下、本発明の一実施形態を図
1、図2を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0009】図1(a)において、1はガソリンを燃料
とする内燃機関であり、2はその気筒、3はピストン、
4は気筒1の上面を覆い、ピストン3上面との間に燃焼
室5を形成するシリンダヘッドである。6はシリンダヘ
ッド4に形成された吸気ポートであり、この吸気ポート
6の燃焼室5に対する開口6aを開閉する吸気バルブ7
が設けられている。8はシリンダヘッド4に形成された
排気ポートであり、この排気ポート8の燃焼室5に対す
る開口8aを開閉する排気バルブ9が設けられている。
10は吸気ポート6を通して吸気バルブ7のステム基部
に向けて燃料を噴射供給するインジェクタである。11
は着火用レーザー源であり、シリンダヘッド4の燃焼室
5に臨む一側部に配置され、かつ燃焼室5を形成する上
壁面には着火用レーザー源11からのレーザー光を燃焼
室5内に広く照射するための凹部12が形成されてい
る。この着火用レーザー源11は、ほぼ310nmの波
長の近紫外線のレーザー光を出力するものであり、この
波長のレーザー光は例えばHe−Neレーザーからの波
長632.8nmのレーザー光の周波数を2倍にして出
力するようにしたレーザー源を用いることによって実現
することができる。また、シリンダヘッド4の燃焼室5
中央位置上部に、燃料改質を行うための改質用レーザー
源13が気筒2内に向けて配設されている。この改質用
レーザー源13は、1〜3μmの波長の赤外線のレーザ
ー光を出力するものであり、例えば1.06μmの波長
のレーザー光を出力するNd;YAGレーザー(ネオジ
ウムを含むイットリウム−アルミニウム−ガーネットの
結晶を用いたレーザー)や、1.15μmのレーザー光
を出力するHe−Neレーザーなどを用いることによっ
て実現することができる。
In FIG. 1A, 1 is an internal combustion engine using gasoline as fuel, 2 is its cylinder, 3 is a piston,
Reference numeral 4 denotes a cylinder head that covers the upper surface of the cylinder 1 and forms a combustion chamber 5 with the upper surface of the piston 3. Reference numeral 6 denotes an intake port formed in the cylinder head 4, and an intake valve 7 for opening and closing an opening 6a of the intake port 6 with respect to the combustion chamber 5.
Is provided. Reference numeral 8 denotes an exhaust port formed in the cylinder head 4. An exhaust valve 9 for opening and closing an opening 8a of the exhaust port 8 with respect to the combustion chamber 5 is provided.
Reference numeral 10 denotes an injector that supplies fuel through the intake port 6 toward the stem base of the intake valve 7. 11
Is a laser source for ignition, which is disposed on one side of the cylinder head 4 facing the combustion chamber 5, and on the upper wall surface forming the combustion chamber 5, a laser beam from the laser source 11 for ignition is introduced into the combustion chamber 5. A concave portion 12 for wide irradiation is formed. The ignition laser source 11 outputs near-ultraviolet laser light having a wavelength of about 310 nm, and the laser light of this wavelength doubles the frequency of the laser light having a wavelength of 632.8 nm from a He-Ne laser, for example. This can be realized by using a laser source that outputs the laser beam. The combustion chamber 5 of the cylinder head 4
Above the central position, a reforming laser source 13 for performing fuel reforming is disposed toward the cylinder 2. The reforming laser source 13 outputs an infrared laser beam having a wavelength of 1 to 3 μm. For example, an Nd; YAG laser (yttrium-aluminum-containing neodymium) which outputs a laser beam having a wavelength of 1.06 μm. (A laser using a garnet crystal) or a He-Ne laser that outputs a laser beam of 1.15 μm.

【0010】図1(b)にこれら吸気ポート6の開口6
aと排気ポート8の開口8aと着火用レーザー源11及
びそのレーザー光の照射領域(斜線で表示)と改質用レ
ーザー源13の配置構成を示す。
FIG. 1B shows the openings 6 of these intake ports 6.
a, the opening 8a of the exhaust port 8, the ignition laser source 11, the irradiation area of the laser light (indicated by oblique lines), and the arrangement of the reforming laser source 13.

【0011】以上の構成による動作を説明すると、吸気
バルブ7が開く前にインジェクタ10から所定量の燃料
が噴射されて吸気ポート6内で予混合が行われ、次に吸
気行程で吸気バルブ7が開いて混合気が気筒2内に導入
されるとともに気筒2内で均等に混合され、次いで吸気
弁7が閉じ、ピストン3が上昇して混合気が圧縮される
ことにより混合気が高温・高圧状態となり、クラッキン
グにより燃料がOH基やCH基を含む分子量の小さな分
子に分解する。この圧縮行程において、図2に示すよう
に、圧縮上死点(TDC)より数msec程度前に改質
用レーザー源13から気筒2内の混合気に向けて1〜3
μmの波長のレーザー光が照射され、このレーザー光に
よって炭化水素燃料が励起されて分解し、圧縮上死点に
到達するまでにNOx還元作用や煤の発生メカニズムを
絶つ作用を持つ分子量の小さい炭化水素が多量に生成さ
れ、燃料改質がなされる。なお、圧縮上死点における圧
縮比は、図2に示すように圧縮上死点(TDC)におけ
る混合気温度が自着火温度よりもΔTだけ低く、自着火
しない温度となるように設定されている。このように圧
縮比を自着火しないように設定しても、改質用のレーザ
ー光を照射することにより確実に燃料改質が行われる。
そして、圧縮上死点(TDC)の直後にレーザー源11
からほぼ310nmの波長のレーザー光が燃焼室5内に
照射され、その照射領域内の混合気中のOH基が励起さ
れ、OHラジカルが生成される。すなわち、310nm
の波長の光はOH基の励起バンドの光であり、OH基は
この波長の光エネルギーを付与されることによって10
-9sec程度の反応速度でOHラジカルとなる。なお、
この反応のために照射するレーザー光の光エネルギーは
10〜20mJで十分である。こうして、多量のOHラ
ジカルが生成されると直ちに燃焼の連鎖反応が始まって
図2に示すように混合気が一挙に自着火温度以上の温度
となり、一斉に多点で燃焼の連鎖反応が開始される。こ
のため、等容度が向上して効率が高く、また多点着火の
ために火炎伝播距離が短くなって希薄空燃比での燃焼が
可能となり、また最高火炎温度が低下し、さらに上記の
ように燃料改質が圧縮行程中に確実に行われるために低
NOx燃焼が実現される。
The operation of the above configuration will be described. Before the intake valve 7 opens, a predetermined amount of fuel is injected from the injector 10 to perform premixing in the intake port 6, and then the intake valve 7 is opened in the intake stroke. When the mixture is opened, the mixture is introduced into the cylinder 2 and uniformly mixed in the cylinder 2. Then, the intake valve 7 is closed, the piston 3 rises, and the mixture is compressed, so that the mixture is in a high temperature and high pressure state. The fuel is decomposed into small molecules containing OH groups and CH groups by cracking. In this compression stroke, as shown in FIG. 2, from the reforming laser source 13 toward the air-fuel mixture in the cylinder 2, a few msec before the compression top dead center (TDC).
A laser beam with a wavelength of μm is irradiated, and this laser beam excites and decomposes the hydrocarbon fuel, and has a small molecular weight that has the effect of reducing NOx reduction and soot generation mechanisms before reaching the compression top dead center. A large amount of hydrogen is generated and fuel reforming is performed. The compression ratio at the compression top dead center is set such that the mixture temperature at the compression top dead center (TDC) is lower than the self-ignition temperature by ΔT and does not self-ignite as shown in FIG. . Even if the compression ratio is set so as not to cause self-ignition, the fuel reforming is reliably performed by irradiating the reforming laser light.
Then, immediately after the compression top dead center (TDC), the laser source 11
Irradiates the inside of the combustion chamber 5 with a laser beam having a wavelength of about 310 nm to excite OH groups in the air-fuel mixture in the irradiation region to generate OH radicals. That is, 310 nm
Is the light of the excitation band of the OH group, and the OH group has a wavelength of 10
OH radicals are formed at a reaction rate of about -9 sec. In addition,
The light energy of the laser beam applied for this reaction is sufficient to be 10 to 20 mJ. In this way, as soon as a large amount of OH radicals are generated, a chain reaction of combustion starts immediately, and the air-fuel mixture is immediately heated to the self-ignition temperature or higher as shown in FIG. 2, and a chain reaction of combustion is started at multiple points simultaneously. You. For this reason, the isocapacity is improved and the efficiency is high, and the flame propagation distance is shortened due to multipoint ignition, so that combustion at a lean air-fuel ratio becomes possible, and the maximum flame temperature is reduced, and as described above. Since the fuel reforming is reliably performed during the compression stroke, low NOx combustion is realized.

【0012】なお、上記説明では着火時にほぼ310n
mのレーザー光を照射してOH基を励起することにより
OHラジカルを生成する例を示したが、ほぼ430nm
のレーザー光を照射してCH基を励起することによりC
Hラジカルを生成するようにしても良い。
In the above description, approximately 310 n at the time of ignition
In this example, OH radicals are generated by irradiating a laser beam of m to excite OH groups.
Is irradiated with a laser beam to excite the CH group.
H radicals may be generated.

【0013】また、上記実施形態では吸気バルブ7が開
弁する前にインジェクタ10から燃料を噴射して吸気ポ
ート6内で予混合気を形成するとともに、圧縮上死点で
混合気が自着火しない温度になるようにし、所望の時期
にレーザー光を照射して自着火させるようにした内燃機
関の例を示したが、吸気行程中にインジェクタ10から
燃料を噴射して気筒2内で混合気を形成し、圧縮上死点
直後に着火用レーザー源11からレーザー光を照射して
着火させるようにした内燃機関や、さらに従来の点火プ
ラグにより着火するようにした内燃機関に適用すること
もでき、同様に燃料改質による低エミッションに大きな
効果を発揮する。
Further, in the above embodiment, before the intake valve 7 opens, fuel is injected from the injector 10 to form a premixture in the intake port 6, and the mixture does not self-ignite at the compression top dead center. Although the example of the internal combustion engine in which the temperature is adjusted and the laser light is radiated at a desired time to cause self-ignition has been described, the fuel mixture is injected from the injector 10 during the intake stroke to cause the air-fuel mixture in the cylinder 2. It can be applied to an internal combustion engine that is formed and ignited by irradiating a laser beam from the ignition laser source 11 immediately after the compression top dead center, or an internal combustion engine that is ignited by a conventional ignition plug. Similarly, it exerts a great effect on low emission by fuel reforming.

【0014】[0014]

【発明の効果】本発明の内燃機関によれば、以上のよう
にシリンダヘッドと上下動可能なピストンにて上下が閉
鎖された気筒内に混合気を導入してピストンの上動によ
り混合気を圧縮し、圧縮した高温高圧の混合気を着火燃
焼させる内燃機関において、圧縮行程中に炭化水素燃料
を分解する波長のレーザー光を照射するレーザー源を設
けているので、着火燃焼前にレーザー光の照射によって
炭化水素燃料を分解してNOx還元作用や煤の発生メカ
ニズムを絶つ作用を持つ分子量の小さい炭化水素を多量
に生成させることができ、その結果燃料改質が行われて
低エミッションを実現することができる。
According to the internal combustion engine of the present invention, the air-fuel mixture is introduced into the cylinder whose upper and lower parts are closed by the cylinder head and the vertically movable piston as described above, and the air-fuel mixture is moved upward by the piston. In an internal combustion engine that ignites and compresses a compressed high-temperature and high-pressure air-fuel mixture, a laser source that irradiates laser light with a wavelength that decomposes hydrocarbon fuel during the compression stroke is provided. Irradiation can decompose hydrocarbon fuel to produce a large amount of low molecular weight hydrocarbons that have the effect of reducing NOx reduction and soot generation mechanisms, resulting in fuel reforming and low emission. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内燃機関の一実施形態の概略構成を示
し、(a)は縦断面図、(b)は要部の配置構成の平面
図である。
FIG. 1 shows a schematic configuration of an embodiment of an internal combustion engine of the present invention, (a) is a longitudinal sectional view, and (b) is a plan view of an arrangement configuration of a main part.

【図2】同実施形態におけるクランク角と温度の特性図
である。
FIG. 2 is a characteristic diagram of crank angle and temperature in the embodiment.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 気筒 3 ピストン 4 シリンダヘッド 13 改質用レーザー源 DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Piston 4 Cylinder head 13 Reforming laser source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 シリンダヘッドと上下動可能なピストン
にて上下が閉鎖された気筒内に混合気を導入してピスト
ンの上動により混合気を圧縮し、圧縮した高温高圧の混
合気を着火燃焼させる内燃機関において、圧縮行程中に
炭化水素燃料を分解する波長のレーザー光を照射するレ
ーザー源を設けたことを特徴とする内燃機関。
An air-fuel mixture is introduced into a cylinder whose upper and lower parts are closed by a cylinder head and a vertically movable piston, the air-fuel mixture is compressed by upward movement of the piston, and the compressed high-temperature and high-pressure air-fuel mixture is ignited and burned. An internal combustion engine, comprising: a laser source for irradiating a laser beam having a wavelength that decomposes hydrocarbon fuel during a compression stroke.
JP421197A 1997-01-14 1997-01-14 Internal combustion engine Pending JPH10196471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP421197A JPH10196471A (en) 1997-01-14 1997-01-14 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP421197A JPH10196471A (en) 1997-01-14 1997-01-14 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPH10196471A true JPH10196471A (en) 1998-07-28

Family

ID=11578304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP421197A Pending JPH10196471A (en) 1997-01-14 1997-01-14 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPH10196471A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683964A2 (en) * 2002-03-26 2006-07-26 Electro-Motive Diesel, Inc. Diesel injection igniter and method
WO2007031881A2 (en) * 2005-05-18 2007-03-22 Hitoshi Yoshimoto Devices and methods for conditioning or vaporizing liquid fuel in an internal combustion engine
US7661401B2 (en) 2005-04-28 2010-02-16 Denso Corporation Laser type engine ignition device
WO2017041833A1 (en) 2015-09-08 2017-03-16 Toyota Motor Europe Nv/Sa Internal combustion engine and auto-ignition control method
CN109058004A (en) * 2016-06-03 2018-12-21 贾海亮 A kind of waste heat constant temperature energy-saving emission reduction device of oil-burning internal combustion engine

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1683964A2 (en) * 2002-03-26 2006-07-26 Electro-Motive Diesel, Inc. Diesel injection igniter and method
EP1683964A3 (en) * 2002-03-26 2006-08-30 Electro-Motive Diesel, Inc. Diesel injection igniter and method
US7661401B2 (en) 2005-04-28 2010-02-16 Denso Corporation Laser type engine ignition device
DE102006000205B4 (en) * 2005-04-28 2012-11-08 Denso Corporation Laser Maschinenzündvorrichtung
WO2007031881A2 (en) * 2005-05-18 2007-03-22 Hitoshi Yoshimoto Devices and methods for conditioning or vaporizing liquid fuel in an internal combustion engine
WO2007031881A3 (en) * 2005-05-18 2007-10-04 Hitoshi Yoshimoto Devices and methods for conditioning or vaporizing liquid fuel in an internal combustion engine
US7404395B2 (en) 2005-05-18 2008-07-29 Hitoshi Yoshimoto Devices and methods for conditioning or vaporizing liquid fuel in an intermittent combustion engine
WO2017041833A1 (en) 2015-09-08 2017-03-16 Toyota Motor Europe Nv/Sa Internal combustion engine and auto-ignition control method
CN109058004A (en) * 2016-06-03 2018-12-21 贾海亮 A kind of waste heat constant temperature energy-saving emission reduction device of oil-burning internal combustion engine

Similar Documents

Publication Publication Date Title
Dale et al. Enhanced ignition for IC engines with premixed gases
JP3558370B2 (en) Compression ignition gasoline engine
US11761393B2 (en) Multiple combustion mode engine with ammonia fuel and control method thereof
US20080257304A1 (en) Internal combustion engine and combustion method of the same
US7398743B2 (en) Compression ignition initiation device and internal combustion engine using same
US20030233996A1 (en) Internal combustion engine using premixed combustion of stratified charges
JP4739906B2 (en) Gas engine with improved fuel ignitability
JPS623119A (en) Compression ignition engine
JPH10196471A (en) Internal combustion engine
JPH10196508A (en) Internal combustion engine and start of combustion control method
JP3952710B2 (en) Compression self-ignition internal combustion engine
Ando et al. A keynote on future combustion engines
JP3218323B2 (en) Method for improving fuel ignitability in premixed gas compression ignition engine
Oikawa et al. Attainment of high thermal efficiency and near-zero emissions by optimizing injected spray configuration in direct injection hydrogen engines
JP4073315B2 (en) Sub-chamber engine
JP2009500560A (en) Internal combustion engine operation method
CN118159719A (en) Combustion method and fuel injection system for hydrogen
JP3379177B2 (en) Subchamber gas engine
JPS6045716A (en) Internal-combustion engine
JP2020159238A (en) Dual fuel engine
JPH10205397A (en) Ignitability improving method for fuel in intake pipe fuel injection compression ignition engine
JP3637391B2 (en) Internal combustion engine for injecting gaseous fuel into cylinder and ignition method for internal combustion engine
JP2004285928A (en) Engine and its operation method
JPH09317470A (en) Diesel engine for low volatile fuel
JP2004108225A (en) Combustion control device in compression ignition type internal combustion engine