JPH10194713A - Production of granular graphite - Google Patents
Production of granular graphiteInfo
- Publication number
- JPH10194713A JPH10194713A JP9002993A JP299397A JPH10194713A JP H10194713 A JPH10194713 A JP H10194713A JP 9002993 A JP9002993 A JP 9002993A JP 299397 A JP299397 A JP 299397A JP H10194713 A JPH10194713 A JP H10194713A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- mesophase pitch
- heat
- hydrocarbon
- boron trifluoride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 229910002804 graphite Inorganic materials 0.000 title claims abstract description 17
- 239000010439 graphite Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 239000011302 mesophase pitch Substances 0.000 claims abstract description 37
- -1 polycyclic hydrocarbon Chemical class 0.000 claims abstract description 20
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Substances FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims abstract description 11
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical class O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- 229910017604 nitric acid Inorganic materials 0.000 claims abstract description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 8
- 229910015900 BF3 Inorganic materials 0.000 claims abstract description 6
- 238000010298 pulverizing process Methods 0.000 claims abstract description 6
- 239000002253 acid Substances 0.000 claims abstract description 5
- JRKICGRDRMAZLK-UHFFFAOYSA-N peroxydisulfuric acid Chemical compound OS(=O)(=O)OOS(O)(=O)=O JRKICGRDRMAZLK-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000000379 polymerizing effect Effects 0.000 claims abstract description 5
- 150000003839 salts Chemical class 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000005087 graphitization Methods 0.000 claims description 9
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical class OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims description 5
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims description 5
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical class ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 claims description 4
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical class OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052755 nonmetal Inorganic materials 0.000 claims description 4
- DZCCLNYLUGNUKQ-UHFFFAOYSA-N n-(4-nitrosophenyl)hydroxylamine Chemical compound ONC1=CC=C(N=O)C=C1 DZCCLNYLUGNUKQ-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 abstract description 14
- 238000005187 foaming Methods 0.000 abstract description 10
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 abstract description 8
- 238000003763 carbonization Methods 0.000 abstract description 7
- 238000011282 treatment Methods 0.000 abstract description 7
- 239000012298 atmosphere Substances 0.000 abstract description 4
- 238000002844 melting Methods 0.000 abstract description 3
- 230000008018 melting Effects 0.000 abstract description 3
- 239000000155 melt Substances 0.000 abstract description 2
- 230000003287 optical effect Effects 0.000 abstract description 2
- 150000002430 hydrocarbons Chemical class 0.000 abstract 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract 1
- 229910052739 hydrogen Inorganic materials 0.000 abstract 1
- 239000001257 hydrogen Substances 0.000 abstract 1
- 239000011369 resultant mixture Substances 0.000 abstract 1
- QHDCFDQKXQIXLF-UHFFFAOYSA-N sulfuric acid sulfurous acid Chemical class OS(O)=O.OS(O)(=O)=O QHDCFDQKXQIXLF-UHFFFAOYSA-N 0.000 abstract 1
- LEMQFBIYMVUIIG-UHFFFAOYSA-N trifluoroborane;hydrofluoride Chemical compound F.FB(F)F LEMQFBIYMVUIIG-UHFFFAOYSA-N 0.000 abstract 1
- 238000000034 method Methods 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000002994 raw material Substances 0.000 description 8
- 239000011295 pitch Substances 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229910001416 lithium ion Inorganic materials 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 239000002931 mesocarbon microbead Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 239000007773 negative electrode material Substances 0.000 description 3
- XNKFCDGEFCOQOM-UHFFFAOYSA-N 1,2-dinitronaphthalene Chemical compound C1=CC=CC2=C([N+]([O-])=O)C([N+](=O)[O-])=CC=C21 XNKFCDGEFCOQOM-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- LQNUZADURLCDLV-UHFFFAOYSA-N nitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1 LQNUZADURLCDLV-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- FVHAWXWFPBPFOS-UHFFFAOYSA-N 1,2-dimethyl-3-nitrobenzene Chemical group CC1=CC=CC([N+]([O-])=O)=C1C FVHAWXWFPBPFOS-UHFFFAOYSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- WWILHZQYNPQALT-UHFFFAOYSA-N 2-methyl-2-morpholin-4-ylpropanal Chemical compound O=CC(C)(C)N1CCOCC1 WWILHZQYNPQALT-UHFFFAOYSA-N 0.000 description 1
- IQUPABOKLQSFBK-UHFFFAOYSA-N 2-nitrophenol Chemical compound OC1=CC=CC=C1[N+]([O-])=O IQUPABOKLQSFBK-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- WMVSVUVZSYRWIY-UHFFFAOYSA-N [(4-benzoyloxyiminocyclohexa-2,5-dien-1-ylidene)amino] benzoate Chemical compound C=1C=CC=CC=1C(=O)ON=C(C=C1)C=CC1=NOC(=O)C1=CC=CC=C1 WMVSVUVZSYRWIY-UHFFFAOYSA-N 0.000 description 1
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000010405 anode material Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- VLZLOWPYUQHHCG-UHFFFAOYSA-N nitromethylbenzene Chemical compound [O-][N+](=O)CC1=CC=CC=C1 VLZLOWPYUQHHCG-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011271 tar pitch Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Carbon And Carbon Compounds (AREA)
- Working-Up Tar And Pitch (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウムイオン電池
用負極材料に好適な高結晶性粒状黒鉛の製造方法に関す
る。The present invention relates to a method for producing highly crystalline granular graphite suitable for a negative electrode material for a lithium ion battery.
【0002】[0002]
【従来の技術】マルチメディア化のめざましい進展に伴
い、リチウム二次電池は高度情報社会を支えるキーデバ
イスとして、その重要性がますます高まってきている。
負極に炭素材料を用いたリチウムイオン電池は、クリー
ンで高エネルギー密度を有し、充放電サイクル特性に優
れていることから、急速に実用化が進んでいるが、最近
の各種電子機器の小型・軽量化に対応するため、一層の
高容量化が強く求められている。こうした要求に応える
べく負極材料候補としてさまざまな炭素材料が取り上げ
られ活発な研究開発が進められている中で、結晶構造の
発達した天然黒鉛やメソカーボンマイクロビーズ(MC
MB)は実用電極材料として大きな注目を集めている。2. Description of the Related Art With the remarkable progress of multimedia, lithium secondary batteries have been increasingly important as a key device supporting an advanced information society.
Lithium-ion batteries using carbon material for the negative electrode have been rapidly commercialized because of their cleanliness, high energy density, and excellent charge-discharge cycle characteristics. In order to cope with weight reduction, higher capacity is strongly required. In response to these demands, various carbon materials have been taken up as potential anode materials, and active research and development are underway. Natural graphite and mesocarbon microbeads (MC
MB) has received great attention as a practical electrode material.
【0003】天然黒鉛は優れた結晶性を示しきわめて高
い真密度をもっているので、負極の充填密度を上げ高エ
ネルギー密度を得るうえで有利であると考えられる。し
かしながら、その形状が鱗片状であるため嵩高く、電極
成形に際し塗着ムラの生成や粒子の脱落等により塗着性
が低下するため、安定した電極構造を確保することが困
難で、電池性能の悪化(特にサイクル寿命の低下)や内
部短絡の原因となりやすいといった問題がある。Since natural graphite has excellent crystallinity and a very high true density, it is considered to be advantageous in increasing the packing density of the negative electrode and obtaining a high energy density. However, the shape is bulky because of its scale-like shape, and the coating property is reduced due to the generation of coating unevenness or the falling off of particles during electrode molding, so that it is difficult to secure a stable electrode structure, and the battery performance is poor. There is a problem that deterioration (especially reduction in cycle life) and internal short circuit are likely to occur.
【0004】一方、MCMBはコールタールや石油系重
質油を加熱処理した際に生成するメソフェーズ小球体を
マトリックスピッチから抽出・分離したもので、これを
そのまま仮焼、黒鉛化すれば負極用炭素材料として適用
可能な黒鉛粉末が得られる(特開平7−145387
号)。この黒鉛粉末は、その形状が球形であるため電極
充填性を高められるという利点を有する。しかしなが
ら、MCMBの調製の際には、マトリックスピッチから
の抽出・分離操作で多量の溶剤を必要とすること、原料
ピッチに対するメソフェ−ズ小球体の歩留まりが極めて
低いこと、一定品質を安定して確保することが容易でな
いことなどの問題を抱えており、環境面・コスト面での
改善が強く求められている。更にMCMB由来の黒鉛
は、天然黒鉛に比べると結晶性が大幅に低下するため電
池性能の面においても必ずしも満足すべきレベルとは言
えない。[0004] On the other hand, MCMB is obtained by extracting and separating mesophase spherules generated from heat treatment of coal tar or petroleum heavy oil from the matrix pitch. A graphite powder applicable as a material is obtained (JP-A-7-145387).
issue). This graphite powder has an advantage that the electrode filling property can be enhanced because its shape is spherical. However, in the preparation of MCMB, a large amount of solvent is required for the extraction and separation operations from the matrix pitch, the yield of mesophase spheres relative to the raw material pitch is extremely low, and a constant quality is stably ensured. There is a problem that it is not easy to do so, and there is a strong demand for environmental and cost improvements. Furthermore, graphite derived from MCMB has a significantly lower crystallinity than natural graphite, so that it cannot be said that the level of battery performance is always satisfactory.
【0005】[0005]
【発明が解決しようとする課題】本発明者らは先に、電
極充填性を高めて高エネルギー密度を獲得すると同時に
良好な電極構造を確保し充放電サイクルの長寿命化を可
能にするような、高結晶性を有する非鱗片状黒鉛粉末の
製造法について提案した(特願平8−278012
号)。すなわち縮合多環炭化水素またはこれを含有する
物質を弗化水素・三弗化硼素の存在下で重合させて得ら
れた合成メソフェーズピッチを原料として、これを非酸
化性雰囲気下で熱処理したのち粉砕処理し、黒鉛化する
ことによって、電極材料として好適な粒状黒鉛を製造す
る方法である。DISCLOSURE OF THE INVENTION The present inventors have previously attempted to obtain a high energy density by enhancing the electrode filling property, and at the same time, secure a good electrode structure and extend the life of the charge / discharge cycle. Proposed a method for producing non-flaky graphite powder having high crystallinity (Japanese Patent Application No. 8-278012).
issue). That is, synthetic mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride is used as a raw material, which is heat-treated in a non-oxidizing atmosphere and then pulverized. This is a method for producing granular graphite suitable as an electrode material by treating and graphitizing.
【0006】しかしながら、この方法では合成メソフェ
ーズピッチの熱処理過程で著しい溶融発泡を伴うため、
製造効率や操作性の点で更なる改善が必要である。すな
わち上記の如く高性能化を目指した負極炭素材料の開発
を進める中で、製造の効率化による一層の低価格化が実
用化のための重要なファクターとなる。本発明の目的
は、合成メソフェーズピッチの熱処理、粉砕処理、およ
び黒鉛化処理によってリチウムイオン電池の負極材料と
して好適な粒状黒鉛を製造するに際し、熱処理工程での
メソフェーズピッチの激しい溶融発泡を抑制し、製造効
率ならびに操作性を高める方法を提供することにある。[0006] However, this method involves remarkable melting and foaming during the heat treatment process of the synthetic mesophase pitch.
Further improvements are required in terms of manufacturing efficiency and operability. That is, in the development of the negative electrode carbon material aiming at the high performance as described above, the further reduction in the price due to the efficiency of the production is an important factor for practical use. An object of the present invention is to perform heat treatment of synthetic mesophase pitch, pulverization, and graphitization to produce granular graphite suitable as a negative electrode material of a lithium ion battery, and to suppress intense melt foaming of mesophase pitch in the heat treatment step. It is an object of the present invention to provide a method for improving manufacturing efficiency and operability.
【0007】[0007]
【課題を解決するための手段】本発明者らは合成メソフ
ェーズピッチの熱処理技術の向上を目指して鋭意研究を
重ねた結果、硬化作用(粘度上昇作用)を示す特定の化
合物と合成メソフェ−ズピッチとを反応させれば、熱処
理工程での著しい発泡を抑制でき、効率的に操作性良く
黒鉛前駆体が調製できることを見い出し本発明に至っ
た。すなわち本発明は、縮合多環炭化水素またはこれを
含有する物質を弗化水素・三弗化硼素の存在下で重合さ
せて得られたメソフェーズピッチを、芳香族ニトロ化合
物、硝酸、キノンジオキシム類、および硝酸、亜硝酸、
ペルオキソ硝酸、硫酸、亜硫酸、ペルオキソ硫酸、ペル
オキソ二硫酸の非金属塩の中から選ばれた1種または2
種以上の共存下で熱処理したのち粉砕処理および黒鉛化
処理を行うことを特徴とする粒状黒鉛の製造方法であ
る。Means for Solving the Problems The inventors of the present invention have conducted intensive studies with the aim of improving the heat treatment technology of synthetic mesophase pitch. As a result, a specific compound having a hardening action (viscosity increasing action) and a synthetic mesophase pitch have been obtained. The present inventors have found that, by reacting the above, remarkable foaming in the heat treatment step can be suppressed, and a graphite precursor can be efficiently prepared with good operability. That is, the present invention provides a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride to obtain an aromatic nitro compound, nitric acid, quinone dioxime or the like. , And nitric acid, nitrous acid,
One or two selected from non-metal salts of peroxonitrate, sulfuric acid, sulfurous acid, peroxosulfuric acid and peroxodisulfuric acid
This is a method for producing granular graphite, which comprises subjecting to a heat treatment in the presence of at least one species, followed by a pulverization treatment and a graphitization treatment.
【0008】[0008]
【発明の実態の形態】本発明において用いられる原料メ
ソフェーズピッチは縮合多環炭化水素またはこれを含有
する物質弗化水素・三弗化硼素の存在下で重合させて得
られたメソフェーズピッチであり、特開平1−1396
21号、特開平1−254796号および特開平3−2
23391号に示されるように、ナフタレン、アントラ
セン、メチルナフタレン、フェナントレン、アセナフテ
ン、アセナフチレン、ピレン等ならびにこれらの骨格を
有する縮合多環炭化水素、およびこれらの混合物ないし
これらを含有する物質から合成されたピッチである。こ
の合成メソフェーズピッチはすでに商業生産されてお
り、品質、価格、化学純度等の点で優れた特長を有して
いる。The raw material mesophase pitch used in the present invention is a mesophase pitch obtained by polymerization in the presence of a condensed polycyclic hydrocarbon or a substance containing the same, hydrogen fluoride / boron trifluoride, JP-A-1-1396
21, JP-A-1-254796 and JP-A-3-2
No. 23391, naphthalene, anthracene, methylnaphthalene, phenanthrene, acenaphthene, acenaphthylene, pyrene and the like, condensed polycyclic hydrocarbons having these skeletons, and mixtures thereof or pitches synthesized from substances containing these It is. This synthetic mesophase pitch is already commercially produced and has excellent features in terms of quality, price, chemical purity and the like.
【0009】該メソフェーズピッチは、フローテスター
法による軟化点が170℃以上、光学的異方性相含有率
が70%以上、炭化収率が70%以上のものが好まし
い。なお本発明において「光学的異方性相」とは、常温
近くで固化したピッチ塊の断面を研磨し、反射型光学顕
微鏡で直交ニコル下で観察したとき、試料または直交ニ
コルを回転して光輝が認められる部分、すなわち光学的
異方性である部分を意味し、「光学的異方性相含有率」
とは、顕微鏡で観察した際のこの光学的異方性相の面積
分率を意味する。また「炭化収率」とは、メソフェーズ
ピッチ粉末を不活性ガス雰囲気下で昇温し(10℃/m
in)、600℃に到達後2時間保持したときの数値で
ある。The mesophase pitch preferably has a softening point by a flow tester method of 170 ° C. or more, an optically anisotropic phase content of 70% or more, and a carbonization yield of 70% or more. In the present invention, the term “optically anisotropic phase” refers to a method of polishing a cross section of a solidified pitch mass near a room temperature and rotating the sample or the orthogonal Nicols when observed under a reflective optical microscope under orthogonal Nicols. Means the portion where is observed, that is, the portion that is optically anisotropic, "optically anisotropic phase content"
Means the area fraction of this optically anisotropic phase when observed with a microscope. The “carbonization yield” means that the temperature of the mesophase pitch powder is raised in an inert gas atmosphere (10 ° C./m
in), a value when the temperature was maintained for 2 hours after reaching 600 ° C.
【0010】本発明により該メソフェーズピッチの熱処
理工程で発泡を抑制するための化合物としては、芳香族
ニトロ化合物、硝酸、キノンジオキシム類、および硝
酸、亜硝酸、ペルオキソ硝酸、硫酸、亜硫酸、ペルオキ
ソ硫酸、ペルオキソ二硫酸の非金属塩が用いられる。芳
香族ニトロ化合物の具体例としては、ジニトロナフタレ
ン、(ジ)ニトロベンゼン、(ジ)ニトロトルエン、
(ジ)ニトロキシレン、(ジ)ニトロフェノ−ルなどが
挙げられる。またキノンジオキシム類の具体例として
は、p−キノンジオキシムや p,p'-ジベンゾイルキノ
ンジオキシムなどが挙げられる。また硝酸、亜硝酸、ペ
ルオキソ硝酸、硫酸、亜硫酸、ペルオキソ硫酸、ペルオ
キソ二硫酸の非金属塩としては、アンモニウム塩やアミ
ン塩などの有機アルカリ塩等が挙げられる。もしこれら
の金属塩を用いた場合には、メソフェーズピッチ熱処理
物中に金属分が取り込まれるため、黒鉛化しても黒鉛粉
末中に金属分が不純物として残存しやすくなり、電極材
料としての物性に好ましくない影響を及ぼす恐れがあ
る。Compounds for suppressing foaming in the heat treatment step of the mesophase pitch according to the present invention include aromatic nitro compounds, nitric acid, quinone dioximes, nitric acid, nitrous acid, peroxonitrate, sulfuric acid, sulfurous acid, peroxosulfuric acid Non-metal salts of peroxodisulfuric acid are used. Specific examples of the aromatic nitro compound include dinitronaphthalene, (di) nitrobenzene, (di) nitrotoluene,
(Di) nitroxylene, (di) nitrophenol, and the like. Specific examples of quinone dioximes include p-quinone dioxime and p, p'-dibenzoylquinone dioxime. Examples of the nonmetal salts of nitric acid, nitrous acid, peroxonitrate, sulfuric acid, sulfurous acid, peroxosulfuric acid, and peroxodisulfuric acid include organic alkali salts such as ammonium salts and amine salts. If these metal salts are used, the metal component is taken into the mesophase pitch heat-treated product, so that the metal component easily remains as an impurity in the graphite powder even if it is graphitized, which is preferable for the physical properties as an electrode material. There may be no effect.
【0011】以上の化合物から選ばれた1種または2種
以上と原料メソフェーズピッチを充分に混合した状態で
加熱すると、溶融粘度が上昇してやがてメソフェーズピ
ッチが固形化(硬化)する。原料メソフェーズピッチと
該化合物との量的関係や熱処理条件はメソフェーズピッ
チの性状と該化合物の種類に依存するが、一般には原料
メソフェーズピッチ100重量部に対して5〜40重量
部の該化合物が用いられる。原料メソフェーズピッチと
該化合物との混合方法については特に限定されない。熱
処理温度は一般に150〜350℃、熱処理時間は一般
に1〜120分の範囲である。硬化処理が終了したの
ち、必要に応じて400℃以上の温度で二次的な熱処理
が行なう。二次熱処理の時間は1〜240分、好ましく
は10〜120分である。When the raw material mesophase pitch is heated in a state in which one or more selected from the above compounds and the raw material mesophase pitch are sufficiently mixed, the melt viscosity increases and the mesophase pitch is solidified (hardened). The quantitative relationship between the raw material mesophase pitch and the compound and the heat treatment conditions depend on the properties of the mesophase pitch and the type of the compound. Generally, 5 to 40 parts by weight of the compound is used for 100 parts by weight of the raw material mesophase pitch. Can be The method of mixing the raw material mesophase pitch with the compound is not particularly limited. The heat treatment temperature is generally in the range of 150 to 350C, and the heat treatment time is generally in the range of 1 to 120 minutes. After the completion of the curing treatment, a secondary heat treatment is performed at a temperature of 400 ° C. or more as necessary. The time of the second heat treatment is 1 to 240 minutes, preferably 10 to 120 minutes.
【0012】このようなメソフェーズピッチの硬化現象
を説明するメカニズムは、共存させる化合物の種類によ
って異なる。例えば芳香族ニトロ化合物を共存させた場
合には、主としてラジカル反応によるピッチ構成分子の
重縮合促進によるものと考えられる。また硝酸を用いた
場合は、まずニトロ基が導入され、これに引き続き脱ニ
トロ化反応と同時に重合反応が加速され粘度上昇を引き
起こすものと考えられる。他方キノンジオキシム類の共
存下では、架橋による重合が粘度上昇に支配的な役割を
果たすと考えられる。このように共存させる化合物の種
類によって硬化反応のメカニズムは異なるものであり、
正確に記述することが困難である。The mechanism for explaining the curing phenomenon of the mesophase pitch differs depending on the type of the coexisting compound. For example, when an aromatic nitro compound is allowed to coexist, it is considered that polycondensation of pitch constituent molecules is mainly promoted by a radical reaction. When nitric acid is used, it is considered that a nitro group is first introduced, and subsequently, a polymerization reaction is accelerated simultaneously with the denitration reaction to cause an increase in viscosity. On the other hand, in the presence of quinone dioximes, polymerization by crosslinking is thought to play a dominant role in increasing viscosity. The mechanism of the curing reaction differs depending on the type of the compound thus coexisted,
It is difficult to describe accurately.
【0013】メソフェーズピッチを上記のような硬化作
用をもつ化合物とともに熱処理すれば、著しい溶融発泡
を効果的に抑制できるので、容積効率、操作性、再現性
の点において顕著な改善が達成され、生産性の高効率化
が可能となる。粒状黒鉛を製造するには、まず上述のよ
うに硬化剤として機能する化合物との反応により溶融発
泡の抑制されたメソフェーズピッチ熱処理物を室温近く
まで冷却後粉砕する。粉末の粒度は平均粒径(メジアン
径)で通常1〜50μm、好ましくは10〜30μmの
範囲になるように粉砕条件が選択される。粉砕機はジェ
ットミルや衝撃式粉砕機等から適宜、最適機種が選択さ
れ、特に限定されない。また分級機は機械式分級機、風
力式分級機等から適宜,最適機種が選択され、特に限定
されない。次に粉砕されたメソフェーズピッチ熱処理物
は黒鉛化前に通常仮焼されるが、この仮焼工程を省い
て、粉砕後すぐに黒鉛化処理を行なってもよい。一般に
仮焼は非酸化性雰囲気下で800〜1600℃で行なわ
れる。黒鉛化処理は1900℃以上、好ましくは240
0℃以上で行なわれる。When the mesophase pitch is heat-treated together with the compound having the above-mentioned hardening action, remarkable melting and foaming can be effectively suppressed, so that a remarkable improvement in volume efficiency, operability and reproducibility is achieved. Efficiency can be improved. In order to produce granular graphite, first, the mesophase pitch heat-treated product in which melt foaming is suppressed by the reaction with the compound functioning as a curing agent as described above is cooled to near room temperature and then pulverized. The pulverization conditions are selected so that the particle size of the powder is in the range of usually 1 to 50 μm, preferably 10 to 30 μm in average particle size (median diameter). As the pulverizer, an optimal model is appropriately selected from a jet mill, an impact pulverizer, and the like, and is not particularly limited. As the classifier, an optimal model is appropriately selected from a mechanical classifier, a wind classifier, and the like, and is not particularly limited. Next, the pulverized mesophase pitch heat-treated product is usually calcined before graphitization. However, the calcining step may be omitted and the graphitization treatment may be performed immediately after pulverization. Generally, the calcination is performed at 800 to 1600 ° C. in a non-oxidizing atmosphere. The graphitization treatment is performed at 1900 ° C. or more, preferably 240 ° C.
Performed at 0 ° C. or higher.
【0014】本発明の方法によりる粒状黒鉛は、高い結
晶性を有し、また導電性にも優れている。該粒状黒鉛を
リチウムイオン電池の負極材料に用いれば、高導電性の
高密度電極成形が可能となり、高いエネルギー密度が得
られる。しかも安定した電極構造を確保できるので、充
放電効率に優れ、サイクル寿命も改善される。なお米国
特許第2500208号および2500209号には、
タールピッチ等の重合促進剤として芳香族ニトロ化合物
を用いる方法が記載されている。しかしながら、これら
はいずれもコークスなどのフィラーとピッチなどのバイ
ンダーから構成される炭素成型体の製造に関するもので
あり、炭化収率のアップや操作性の改善などのバインダ
ー成分の性能向上を目指したものである。従って、粒状
黒鉛を製造するに際しメソフェーズピッチの熱処理工程
における発泡防止を目的として硬化剤を用いる本発明の
技術思想とは本質的に異なるものである。The granular graphite obtained by the method of the present invention has high crystallinity and excellent conductivity. If the granular graphite is used as a negative electrode material of a lithium ion battery, high conductivity and high density electrode molding can be performed, and a high energy density can be obtained. In addition, since a stable electrode structure can be secured, the charge / discharge efficiency is excellent and the cycle life is improved. U.S. Patent Nos. 2500208 and 25000020 include:
A method using an aromatic nitro compound as a polymerization accelerator such as tar pitch is described. However, these are all related to the production of carbon moldings composed of fillers such as coke and binders such as pitches, with the aim of improving the performance of binder components such as increasing the carbonization yield and improving operability. It is. Therefore, this is essentially different from the technical idea of the present invention in which a hardening agent is used for the purpose of preventing foaming in the heat treatment step of mesophase pitch in producing granular graphite.
【0015】[0015]
【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し、本発明はこれら実施例によりなんら制
限されるものではない。The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by these examples.
【0016】実施例1 弗化水素・三弗化硼素の存在下でナフタレンを重合させ
て得られた合成メソフェーズピッチ(軟化点:255
℃、光学的異方性相含有率:100%、炭化収率:90
%)80重量部と工業用ジニトロナフタレン20重量部
との均一混合粉末を、混練且つ加熱可能な連続式リアク
ターに供給し、250℃で熱処理を行ない硬化反応を完
了させたのち、リアクター出口より生成物を顆粒状で回
収した。該生成物を電気炉を用いて窒素雰囲気下さらに
350℃で1時間の後硬化処理を行なった。これを室温
まで冷却後、ボールミルによって粉砕し平均粒子径15
μmとした。該粉末を窒素雰囲気下5℃/minで昇温
し、1000℃に到達後10分保持して仮焼を行なっ
た。この際、粒子同士の接着は全く見られず、解砕処理
は不要であった。引き続き、アルゴン雰囲気下3000
℃で黒鉛化処理を行なった。得られた粒状黒鉛の結晶構
造をX線回折法によって調べたところ、(002)回折
線から得られる格子定数C0 は0.6726nm、結晶
子の大きさLc は100nm以上であった。Example 1 Synthetic mesophase pitch obtained by polymerizing naphthalene in the presence of hydrogen fluoride / boron trifluoride (softening point: 255)
° C, optically anisotropic phase content: 100%, carbonization yield: 90
%) A homogeneous mixed powder of 80 parts by weight and 20 parts by weight of industrial dinitronaphthalene is supplied to a kneaded and heatable continuous reactor, heat-treated at 250 ° C. to complete a curing reaction, and then produced from a reactor outlet. The product was collected in the form of granules. The product was post-cured for 1 hour at 350 ° C. in a nitrogen atmosphere using an electric furnace. After cooling this to room temperature, it was pulverized by a ball mill to obtain an average particle size of 15
μm. The temperature of the powder was increased at a rate of 5 ° C./min in a nitrogen atmosphere. At this time, no adhesion between the particles was observed, and no crushing treatment was required. Then, under argon atmosphere, 3000
Graphitization was performed at ℃. When the crystal structure of the obtained granular graphite was examined by an X-ray diffraction method, the lattice constant C 0 obtained from the (002) diffraction line was 0.6726 nm, and the crystallite size Lc was 100 nm or more.
【0017】実施例2 実施例1と同一のメソフェーズピッチ82重量部と硝酸
アンモニウム18重量部の均一混合粉末を混練且つ加熱
可能な連続式リアクターに供給し、280℃で熱処理を
行ない硬化反応を完了させたのち、生成物をリアクター
出口より顆粒状で回収した。さらに該生成物を炭化炉に
移し450℃で1時間の二次熱処理を行なった。この
際、激しい発泡は起こらず、わずかに粒子間接着が見ら
れた程度であった。該熱処理物をボールミルで粉砕し平
均粒径14μmとしたのち、実施例1と同様の条件で仮
焼を行なった。このとき粒子同士の融着は見られなかっ
た。引き続きこのまま実施例1と同様の条件で黒鉛化を
実施した。該粒状黒鉛のX線解析によれば(002)回
折線から得られる格子定数C0 は0.6724nm、結
晶子の大きさLc は100nm以上であった。Example 2 The same homogeneous powder of 82 parts by weight of mesophase pitch and 18 parts by weight of ammonium nitrate as in Example 1 was supplied to a kneaded and heatable continuous reactor, and heat-treated at 280 ° C. to complete the curing reaction. After that, the product was recovered in granular form from the reactor outlet. Further, the product was transferred to a carbonization furnace and subjected to a secondary heat treatment at 450 ° C. for 1 hour. At this time, vigorous foaming did not occur, and the adhesion between particles was slightly observed. The heat-treated product was pulverized with a ball mill to an average particle size of 14 μm, and then calcined under the same conditions as in Example 1. At this time, no fusion between the particles was observed. Subsequently, graphitization was carried out under the same conditions as in Example 1. According to the X-ray analysis of the granular graphite, the lattice constant C 0 obtained from the (002) diffraction line was 0.6724 nm, and the crystallite size Lc was 100 nm or more.
【0018】実施例3 実施例1と同一のメソフェーズピッチ88重量部と硫酸
水素アンモニウム12重量部の均一混合粉末を混練且つ
加熱可能な連続式リアクターに供給し、250℃で熱処
理を行ない硬化反応を完了させたのち、生成物をリアク
ター出口より顆粒状で回収した。さらに該生成物を炭化
炉に移し450℃で1時間の二次熱処理を行なった。こ
の際、1.5倍体積の膨張が見られた程度で、発泡は大
幅に抑制された。該熱処理物をボールミルで粉砕し平均
粒径14μmとしたのち、実施例1と同様の条件で仮焼
を行なった。このとき粒子同士の融着は見られなかっ
た。引き続きこのまま実施例1と同様の条件で黒鉛化を
実施した。該粒状黒鉛のX線解析によれば(002)回
折線から得られる格子定数Cは0.6723nm、結晶
子の大きさLc は100nm以上であった。Example 3 The same homogeneous mixed powder of 88 parts by weight of mesophase pitch and 12 parts by weight of ammonium hydrogen sulfate as in Example 1 was fed to a continuous reactor capable of kneading and heating, and heat-treated at 250 ° C. to carry out a curing reaction. After completion, the product was recovered in granular form from the reactor outlet. Further, the product was transferred to a carbonization furnace and subjected to a secondary heat treatment at 450 ° C. for 1 hour. At this time, foaming was significantly suppressed to the extent that a 1.5-fold volume expansion was observed. The heat-treated product was pulverized with a ball mill to an average particle size of 14 μm, and then calcined under the same conditions as in Example 1. At this time, no fusion between the particles was observed. Subsequently, graphitization was carried out under the same conditions as in Example 1. According to the X-ray analysis of the granular graphite, the lattice constant C obtained from the (002) diffraction line was 0.6723 nm, and the crystallite size Lc was 100 nm or more.
【0019】[0019]
【発明の効果】本発明の方法により合成メソフェーズピ
ッチを熱処理する際に硬化作用(重合促進作用)をもつ
化合物を共存させることによって、従来問題となってい
たメソフェーズピッチの熱処理時の著しい溶融発泡を効
果的に抑制できるので、容積効率、操作性、ならびに再
現性を顕著に向上させることができる。従って本発明に
より、合成メソフェーズピッチから粒状黒鉛を製造する
プロセスが大幅に簡略化され、リチウムイオン電池の負
極炭素材料に好適な黒鉛粉末が工業的に有利に得られる
ようになり、本発明の工業的意義は大きい。According to the method of the present invention, when a synthetic mesophase pitch is heat-treated, a compound having a hardening action (polymerization accelerating action) is allowed to coexist with the heat-treated synthetic mesophase pitch. Since they can be effectively suppressed, the volume efficiency, operability, and reproducibility can be significantly improved. Therefore, according to the present invention, the process of producing granular graphite from synthetic mesophase pitch is greatly simplified, and graphite powder suitable for a negative electrode carbon material of a lithium ion battery can be industrially advantageously obtained. The significance is significant.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/04 H01M 4/04 A 4/58 4/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01M 4/04 H01M 4/04 A 4/58 4/58
Claims (1)
物質を弗化水素・三弗化硼素の存在下で重合させて得ら
れたメソフェーズピッチを、芳香族ニトロ化合物、硝
酸、キノンジオキシム類、および硝酸、亜硝酸、ペルオ
キソ硝酸、硫酸、亜硫酸、ペルオキソ硫酸、ペルオキソ
二硫酸の非金属塩の中から選ばれた1種または2種以上
の共存下で熱処理したのち、粉砕処理および黒鉛化処理
を行うことを特徴とする粒状黒鉛の製造方法。1. A mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride, to obtain an aromatic nitro compound, nitric acid, quinone dioxime or the like. And heat treatment in the presence of one or more selected from nonmetal salts of nitric acid, nitrous acid, peroxonitrate, sulfuric acid, sulfurous acid, peroxosulfuric acid, and peroxodisulfuric acid, followed by pulverization and graphitization A method for producing granular graphite.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9002993A JPH10194713A (en) | 1997-01-10 | 1997-01-10 | Production of granular graphite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9002993A JPH10194713A (en) | 1997-01-10 | 1997-01-10 | Production of granular graphite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10194713A true JPH10194713A (en) | 1998-07-28 |
Family
ID=11544912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9002993A Pending JPH10194713A (en) | 1997-01-10 | 1997-01-10 | Production of granular graphite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10194713A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10233208A (en) * | 1996-12-20 | 1998-09-02 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2002063902A (en) * | 2000-08-16 | 2002-02-28 | Kawasaki Steel Corp | Method for producing carbon material and lithium ion secondary battery |
WO2005001965A1 (en) * | 2003-06-30 | 2005-01-06 | Tdk Corporation | Carbon material for electrode and method for producing same, battery electrode and method for producing same, and battery and method for producing same |
JP2005019097A (en) * | 2003-06-24 | 2005-01-20 | Nec Corp | Resin composition for cathode active material of secondary battery, carbon material for cathode active material, its manufacturing method, and secondary battery |
KR101094785B1 (en) * | 2010-02-19 | 2011-12-20 | 국방과학연구소 | Manufacturing method of pitch for carbon-carbon composite impregnation |
JP2014026991A (en) * | 2013-11-05 | 2014-02-06 | Sony Corp | Secondary battery, and graphite material for secondary battery |
-
1997
- 1997-01-10 JP JP9002993A patent/JPH10194713A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10233208A (en) * | 1996-12-20 | 1998-09-02 | Matsushita Electric Ind Co Ltd | Nonaqueous electrolyte secondary battery |
JP2002063902A (en) * | 2000-08-16 | 2002-02-28 | Kawasaki Steel Corp | Method for producing carbon material and lithium ion secondary battery |
JP2005019097A (en) * | 2003-06-24 | 2005-01-20 | Nec Corp | Resin composition for cathode active material of secondary battery, carbon material for cathode active material, its manufacturing method, and secondary battery |
WO2005001965A1 (en) * | 2003-06-30 | 2005-01-06 | Tdk Corporation | Carbon material for electrode and method for producing same, battery electrode and method for producing same, and battery and method for producing same |
KR101094785B1 (en) * | 2010-02-19 | 2011-12-20 | 국방과학연구소 | Manufacturing method of pitch for carbon-carbon composite impregnation |
JP2014026991A (en) * | 2013-11-05 | 2014-02-06 | Sony Corp | Secondary battery, and graphite material for secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7008526B2 (en) | Processes for producing coke, artificial graphite and carbon material for negative electrode of non-aqueous solvent type secondary battery and pitch composition used therefor | |
CN104969389B (en) | Active material for negative pole of Li-ion secondary battery graphite powder | |
JP4403327B2 (en) | Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery | |
KR20000058189A (en) | Production process of material for lithium-ion secondary batteries, material obtained by the process, and batteries | |
JP2000156230A (en) | Carbon material active material for lithium ion secondary batteries | |
JP2015072809A (en) | Silicon-containing material, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and production method thereof | |
KR101563358B1 (en) | Manufacturing method for negative electrode active material of lithium secondary battery and lithium secondary batterys | |
JPH10194713A (en) | Production of granular graphite | |
JP3666032B2 (en) | Method for producing carbon-based composite material | |
JP3000272B2 (en) | Method for producing carbonaceous powder for negative electrode active material of lithium ion secondary battery | |
JP2000086343A (en) | Carbon composite material and its production | |
JP4973247B2 (en) | Carbon material for electrodes | |
JP4403324B2 (en) | Method for producing graphite powder for negative electrode of lithium ion secondary battery and lithium ion secondary battery | |
JP3698181B2 (en) | Negative electrode material for lithium ion secondary battery | |
JP2000149946A (en) | Carbon material for nonaqueous solvent secondary battery negative electrode and its manufacture | |
JP4179720B2 (en) | Method for producing carbon material and graphite material, and material for negative electrode of lithium ion secondary battery | |
JP2002362913A (en) | Manufacturing method of graphite powder | |
CN118495536B (en) | Coal tar pitch-based silicon-carbon composite precursor material, silicon-carbon anode material prepared from coal tar pitch-based silicon-carbon composite precursor material and preparation methods of coal tar pitch-based silicon-carbon composite precursor material and silicon-carbon anode material | |
JP2002121570A (en) | Method for producing bulk mesophase carbon and graphite powder | |
JP2002124256A (en) | Nonaqueous solvent secondary battery | |
JPH09251855A (en) | Method for producing carbon powder for negative electrode of lithium-ion secondary battery_ | |
JP2000149947A (en) | Graphite powder for lithium ion battery negative electrode | |
JP2002124255A (en) | Nonaqueous solvent secondary battery | |
JP3646689B2 (en) | Method for producing graphite powder for negative electrode of lithium ion secondary battery | |
JP2001023634A (en) | Method for producing graphite powder for negative electrode of lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |