JPH10186290A - Double focus lens - Google Patents
Double focus lensInfo
- Publication number
- JPH10186290A JPH10186290A JP8355199A JP35519996A JPH10186290A JP H10186290 A JPH10186290 A JP H10186290A JP 8355199 A JP8355199 A JP 8355199A JP 35519996 A JP35519996 A JP 35519996A JP H10186290 A JPH10186290 A JP H10186290A
- Authority
- JP
- Japan
- Prior art keywords
- distance
- distance portion
- height
- optical axis
- along
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 33
- 230000004075 alteration Effects 0.000 abstract description 12
- 201000009310 astigmatism Diseases 0.000 description 26
- 230000000052 comparative effect Effects 0.000 description 23
- 238000010586 diagram Methods 0.000 description 14
- 210000001747 pupil Anatomy 0.000 description 3
- 206010002945 Aphakia Diseases 0.000 description 2
- 230000004308 accommodation Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 208000001491 myopia Diseases 0.000 description 2
Landscapes
- Eyeglasses (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は二重焦点レンズに関
し、特に眼の調節力の補助として使用される二重焦点レ
ンズに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bifocal lens, and more particularly to a bifocal lens used as an aid in accommodation of the eye.
【0002】[0002]
【従来の技術】通常、眼の調節力の補助として使用され
る従来の二重焦点レンズでは、遠距離物体を見るための
遠用部および近距離物体を見るための近用部がともに球
面レンズで形成されている。なお、実公昭63−478
49号公報には、無水晶体眼の矯正のための強度(遠用
度数が+8〜+20ディオプター)を有し遠用部および
近用部の双方に非球面が導入された二重焦点レンズが開
示されている。2. Description of the Related Art In a conventional bifocal lens which is usually used for assisting the accommodation power of an eye, a distance portion for viewing a long-distance object and a near portion for viewing a short-distance object are both spherical lenses. It is formed with. In addition, 63-478
No. 49 discloses a bifocal lens having an intensity for correcting aphakic eyes (distance power of +8 to +20 diopters) and having aspherical surfaces in both the distance portion and the near portion. Have been.
【0003】[0003]
【発明が解決しようとする課題】遠用部を形成する台玉
および近用部を形成する小玉がともに球面レンズで形成
された従来の二重焦点レンズでは、遠用部が正の度数
(頂点屈折力)を有するプラスレンズの場合には遠用部
におけるレンズ中心厚が大きくなり、遠用部が負の度数
を有するマイナスレンズの場合には遠用部におけるレン
ズ縁厚が大きくなる。その結果、プラスレンズの場合も
マイナスレンズの場合も、レンズ全体の重量が大きくな
ってしまう。また、遠用部および近用部がともに球面レ
ンズであるため、収差を良好に補正することができな
い。In a conventional bifocal lens in which both a base lens forming a distance portion and a small ball forming a near portion are formed of spherical lenses, the distance portion has a positive power (vertex). In the case of a plus lens having refractive power, the lens center thickness in the distance portion becomes large, and in the case of a minus lens having a negative power, the lens edge thickness in the distance portion becomes large. As a result, both the plus lens and the minus lens increase the weight of the entire lens. In addition, since the distance portion and the near portion are both spherical lenses, aberrations cannot be satisfactorily corrected.
【0004】一方、実公昭63−47849号公報に開
示の従来の二重焦点レンズは、その適用が無水晶体眼の
矯正のためのプラスレンズに限定されている。また、非
球面の導入により台玉と小玉との境界線が円弧状から大
きく歪んでしまうため、外観的に好ましくない。本発明
は、前述の課題に鑑みてなされたものであり、薄くて軽
量で、外観的にも良好で、収差が良好に補正された二重
焦点レンズを提供することを目的とする。On the other hand, the application of the conventional bifocal lens disclosed in Japanese Utility Model Publication No. 63-47849 is limited to a plus lens for correcting aphakic eyes. In addition, the introduction of the aspherical surface causes the boundary between the base ball and the small ball to be greatly distorted from the arc shape, which is not preferable in appearance. The present invention has been made in view of the above-described problems, and has as its object to provide a bifocal lens that is thin, lightweight, has good appearance, and has aberrations well corrected.
【0005】[0005]
【課題を解決するための手段】前記課題を解決するため
に、本発明においては、物体側の屈折面と眼側の屈折面
とを有し、遠距離物体を見るための遠用部と、該遠用部
の一部に形成されて近距離物体を見るための近用部とを
備えた二重焦点レンズにおいて、前記遠用部は、−15
ディオプターよりも大きく且つ+8ディオプターよりも
小さい度数を有し、前記遠用部の物体側の面は、非球面
状に形成され、前記遠用部の光軸に垂直な方向に沿った
高さをyとし、高さyにおける前記遠用部の物体側の非
球面の頂点曲率半径に基づく仮想球面と前記遠用部の物
体側の非球面との間の前記遠用部の光軸に沿った距離を
dxとしたとき、 1×10-6<|dx/y|<5×10-1 の条件を満足することを特徴とする二重焦点レンズを提
供する。In order to solve the above-mentioned problems, in the present invention, there is provided a distance portion having a refracting surface on the object side and a refracting surface on the eye side for viewing a long-distance object; A bifocal lens having a near portion formed on a part of the far portion for viewing a near object;
It has a power greater than diopter and less than +8 diopter, the object-side surface of the distance portion is formed in an aspherical shape, and has a height along a direction perpendicular to the optical axis of the distance portion. y, along the optical axis of the distance portion between the virtual sphere based on the vertex radius of curvature of the object-side aspheric surface of the distance portion at the height y and the object-side aspheric surface of the distance portion. Provided is a bifocal lens characterized by satisfying a condition of 1 × 10 −6 <| dx / y | <5 × 10 −1 when a distance is dx.
【0006】本発明の好ましい態様によれば、前記遠用
部の光軸に垂直な方向に沿った高さをyとし、高さyに
おける前記遠用部の物体側の非球面上の点と前記遠用部
の物体側の非球面の頂点との間の前記遠用部の光軸に沿
った距離をxとし、前記遠用部の物体側の非球面の頂点
曲率半径をRとし、円錐係数をκとし、n次の非球面係
数をCn としたとき、前記遠用部の物体側の非球面は、According to a preferred aspect of the present invention, the height of the distance portion along a direction perpendicular to the optical axis is defined as y, and a point on the object-side aspherical surface of the distance portion at the height y. Let x be the distance along the optical axis of the distance portion between the vertex of the object-side aspheric surface of the distance portion and R be the radius of curvature of the vertex of the object-side aspheric surface of the distance portion. When the coefficient is κ and the n-th order aspheric coefficient is Cn, the object-side aspheric surface of the distance portion is
【数3】x=(y2 /R)/{1+(1−κ・y2 /R
2 )1/2 }+C4 ・y4 +C6 ・y6 +C8 ・y8 +C
10・y10 の数式で表され、前記4次の非球面係数C4 は、 |C4 |<1×10-3 の条件を満足する。X = (y 2 / R) / {1+ (1-κ · y 2 / R
2) 1/2} + C 4 · y 4 + C 6 · y 6 + C 8 · y 8 + C
Represented by formula 10 · y 10, the fourth-order aspherical coefficients C 4 is, | satisfies <1 × 10 -3 conditions | C 4.
【0007】また、本発明の別の局面によれば、物体側
の屈折面と眼側の屈折面とを有し、遠距離物体を見るた
めの遠用部と、該遠用部の一部に形成されて近距離物体
を見るための近用部とを備えた二重焦点レンズにおい
て、前記遠用部は、−15ディオプターよりも大きく且
つ+8ディオプターよりも小さい度数を有し、前記近用
部の物体側の面は、回転対称非球面状に形成され、前記
近用部の回転対称軸に垂直な方向に沿った高さをyと
し、高さyにおける前記近用部の物体側の非球面の頂点
曲率半径に基づく仮想球面と前記近用部の物体側の非球
面との間の前記近用部の回転対称軸に沿った距離をdx
としたとき、 1×10-6<|dx/y|<5×10-1 の条件を満足することを特徴とする二重焦点レンズを提
供する。According to another aspect of the present invention, a distance portion for viewing a distant object having a refractive surface on the object side and a refractive surface on the eye side, and a part of the distance portion Wherein the distance portion has a power greater than -15 diopters and less than +8 diopters, wherein the near vision portion has a near vision portion for viewing near objects. The object-side surface of the portion is formed in a rotationally symmetric aspherical shape, and the height along a direction perpendicular to the rotational symmetry axis of the near portion is y, and the object-side surface of the near portion at height y is y. The distance along the rotational symmetry axis of the near portion between the virtual sphere based on the apex radius of curvature of the aspheric surface and the aspheric surface on the object side of the near portion is dx.
And a bifocal lens characterized by satisfying the following condition: 1 × 10 −6 <| dx / y | <5 × 10 −1
【0008】また、本発明のさらに別の局面によれば、
物体側の屈折面と眼側の屈折面とを有し、遠距離物体を
見るための遠用部と、該遠用部の一部に形成された近距
離物体を見るための近用部とを備えた二重焦点レンズに
おいて、前記遠用部は、−15ディオプターよりも大き
く且つ+8ディオプターよりも小さい度数を有し、前記
遠用部の物体側の面および前記近用部の物体側の面は、
ともに非球面状に形成され、前記遠用部の光軸に垂直な
方向に沿った高さをyとし、高さyにおける前記遠用部
の物体側の非球面の頂点曲率半径に基づく仮想球面と前
記遠用部の物体側の非球面との間の前記遠用部の光軸に
沿った距離をdxとしたとき、 1×10-6<|dx/y|<5×10-1 の条件を満足することを特徴とする二重焦点レンズを提
供する。[0008] According to still another aspect of the present invention,
Having a refracting surface on the object side and a refracting surface on the eye side, a distance portion for viewing a long-distance object, and a near portion for viewing a short-distance object formed in a part of the distance portion. Wherein the distance portion has a power greater than −15 diopters and smaller than +8 diopters, and includes an object-side surface of the distance portion and an object-side surface of the near portion. The surface is
Both are aspherical, the height along the direction perpendicular to the optical axis of the distance portion is y, and a virtual spherical surface based on the vertex radius of curvature of the object-side aspheric surface of the distance portion at height y. When the distance along the optical axis of the distance portion between the distance portion and the aspherical surface on the object side of the distance portion is dx, 1 × 10 −6 <| dx / y | <5 × 10 −1 Provided is a bifocal lens that satisfies conditions.
【0009】[0009]
【発明の実施の形態】本発明の二重焦点レンズでは、遠
用度数が−15ディオプター〜+8ディオプターであ
り、遠用部の物体側の面および近用部の物体側の面のう
ちの少なくとも一方が非球面状に形成され、眼側の屈折
面は乱視矯正などに用いられる。まず、本発明におい
て、遠用部の物体側の面が非球面状に形成されている場
合、その非球面は次の条件式(1)を満足する。 1×10-6<|dx/y|<5×10-1 (1) ここで、 y :遠用部の光軸に垂直な方向に沿った高さ dx:高さyにおける遠用部の非球面の頂点曲率半径に
基づく仮想球面と遠用部の非球面との間の遠用部の光軸
に沿った距離DESCRIPTION OF THE PREFERRED EMBODIMENTS The bifocal lens according to the present invention has a distance power of -15 diopters to +8 diopters, and at least one of an object-side surface of a distance portion and an object-side surface of a near portion. One is formed in an aspherical shape, and the refractive surface on the eye side is used for correcting astigmatism and the like. First, in the present invention, when the object-side surface of the distance portion is formed in an aspherical shape, the aspherical surface satisfies the following conditional expression (1). 1 × 10 −6 <| dx / y | <5 × 10 −1 (1) where, y: height along the direction perpendicular to the optical axis of the distance portion dx: distance of the distance portion at height y Distance along the optical axis of the distance portion between the virtual sphere and the aspheric surface of the distance portion based on the apex radius of curvature of the aspheric surface
【0010】遠用部の物体側の面を非球面状に形成する
ことにより、レンズの厚さおよび重量を軽減するととも
に、遠用部におけるサジタル像面の非点収差およびメリ
ディオナル像面の非点収差をともに小さく抑えることが
できる。ただし、条件式(1)の下限値を下回ると、非
球面の形状が球面に近づきすぎて、レンズの厚さおよび
重量を十分軽減することができず、非点収差の補正も不
足してしまう。一方、条件式(1)の上限値を上回る
と、レンズの厚さおよび重量を十分軽減することができ
るが、非点収差の補正が過剰になってしまう。By forming the object-side surface of the distance portion to be aspherical, the thickness and weight of the lens can be reduced, and the astigmatism of the sagittal image surface and the astigmatism of the meridional image surface in the distance portion can be reduced. Both aberrations can be kept small. However, when the value goes below the lower limit of conditional expression (1), the shape of the aspheric surface becomes too close to the spherical surface, so that the thickness and weight of the lens cannot be sufficiently reduced, and the correction of astigmatism is also insufficient. . On the other hand, when the value exceeds the upper limit of conditional expression (1), the thickness and weight of the lens can be sufficiently reduced, but correction of astigmatism becomes excessive.
【0011】また、本発明において、近用部の物体側の
面が回転対称非球面状に形成されている場合、その非球
面は次の条件式(2)を満足する。 1×10-6<|dx/y|<5×10-1 (2) ここで、 y :近用部の回転対称軸に垂直な方向に沿った高さ dx:高さyにおける近用部の非球面の頂点曲率半径に
基づく仮想球面と近用部の非球面との間の近用部の回転
対称軸に沿った距離In the present invention, when the object-side surface of the near portion is formed in a rotationally symmetric aspherical shape, the aspherical surface satisfies the following conditional expression (2). 1 × 10 −6 <| dx / y | <5 × 10 −1 (2) where, y: height along the direction perpendicular to the rotational symmetry axis of the near portion dx: near portion at height y Distance along the rotational symmetry axis of the near portion between the virtual sphere and the near aspheric surface based on the apex radius of curvature of the aspheric surface of the lens
【0012】近用部の物体側の面を非球面状に形成する
ことにより、近用部におけるサジタル像面の非点収差お
よびメリディオナル像面の非点収差をともに小さく抑え
ることができる。ただし、条件式(2)の下限値を下回
ると、非球面の形状が球面に近づきすぎて、非点収差の
補正が不足してしまう。一方、条件式(2)の上限値を
上回ると、非点収差の補正が過剰になってしまう。By forming the object-side surface of the near portion to be aspherical, both the astigmatism of the sagittal image surface and the astigmatism of the meridional image surface in the near portion can be reduced. However, when the value goes below the lower limit of conditional expression (2), the shape of the aspheric surface becomes too close to the spherical surface, and the correction of astigmatism becomes insufficient. On the other hand, when the value exceeds the upper limit of conditional expression (2), the correction of astigmatism becomes excessive.
【0013】ところで、本発明において、遠用部の物体
側の非球面を次の数式(a)で表すことができる。In the present invention, the aspheric surface on the object side of the distance portion can be represented by the following equation (a).
【数4】 x=(y2 /R)/{1+(1−κ・y2 /R2 )1/2 } +C4 ・y4 +C6 ・y6 +C8 ・y8 +C10・y10 (a) ここで、 y :光軸に垂直な方向に沿った高さ x :高さyにおける非球面上の点と非球面の頂点との
間の光軸に沿った距離 R :非球面の頂点曲率半径 κ :円錐係数 Cn :n次の非球面係数Equation 4] x = (y 2 / R) / {1+ (1-κ · y 2 / R 2) 1/2} + C 4 · y 4 + C 6 · y 6 + C 8 · y 8 + C 10 · y 10 (A) where: y: height along the direction perpendicular to the optical axis x: distance along the optical axis between a point on the aspheric surface at the height y and the vertex of the aspheric surface R: the aspherical surface Apex radius of curvature κ: cone coefficient Cn: nth order aspheric coefficient
【0014】この場合、遠用部の物体側の非球面におい
て、4次の非球面係数C4 は次の条件式(3)を満足す
ることが好ましい。 |C4 |<1×10-3 (3) 条件式(3)の上限値を上回ると、マイナスレンズでは
遠用部におけるレンズ縁厚が大きくなり、プラスレンズ
では遠用部におけるレンズ中心厚が大きくなってしま
う。In this case, it is preferable that the fourth-order aspherical surface coefficient C 4 satisfies the following conditional expression (3) on the object-side aspherical surface of the distance portion. | C 4 | <1 × 10 −3 (3) When the value exceeds the upper limit of conditional expression (3), the lens edge thickness in the distance portion becomes large in the minus lens, and the lens center thickness in the distance portion becomes large in the plus lens. It gets bigger.
【0015】[0015]
【実施例】以下、本発明の各実施例を、添付図面に基づ
いて説明する。第1実施例および第2実施例において、
光軸に垂直な方向に沿った高さをyとし、高さyにおけ
る非球面上の点と非球面の頂点との間の光軸に沿った距
離をxとし、非球面の頂点曲率半径をRとし、円錐係数
をκとし、n次の非球面係数をCn としたとき、各非球
面は次の数式(a)で表される。Embodiments of the present invention will be described below with reference to the accompanying drawings. In the first embodiment and the second embodiment,
The height along the direction perpendicular to the optical axis is y, the distance along the optical axis between the point on the aspheric surface at the height y and the vertex of the aspheric surface is x, and the vertex radius of curvature of the aspheric surface is Assuming that R is R, the conic coefficient is κ, and the nth order aspherical surface coefficient is Cn, each aspherical surface is represented by the following equation (a).
【数5】 x=(y2 /R)/{1+(1−κ・y2 /R2 )1/2 } +C4 ・y4 +C6 ・y6 +C8 ・y8 +C10・y10 (a)Equation 5] x = (y 2 / R) / {1+ (1-κ · y 2 / R 2) 1/2} + C 4 · y 4 + C 6 · y 6 + C 8 · y 8 + C 10 · y 10 (A)
【0016】〔第1実施例および第1比較例〕図1は、
本発明の第1実施例にかかる二重焦点レンズの構成を示
す図であって、(a)は装用状態における二重焦点レン
ズを遠用部の光軸に沿って物体側から見た正面図であ
り、(b)は装用状態における二重焦点レンズの側面図
である。第1実施例は、遠用度数が−5ディオプターの
マイナスレンズに本発明を適用した例であり、遠用部の
物体側の面が非球面状に形成されている。一方、第1比
較例では、遠用部の物体側の面が球面状に形成されてい
る。図1を参照すると、第1実施例の二重焦点レンズ
は、遠用部1と、その一部に形成された近用部2とから
構成されている。遠用部1の中心O1を通る光軸AX1
に沿った遠用部の中心における厚さが遠用部1のレンズ
中心厚T1であり、光軸AX1に沿った遠用部の周縁に
おける厚さが遠用部1のレンズ縁厚T2である。[First Embodiment and First Comparative Example] FIG.
FIG. 2A is a diagram illustrating a configuration of a bifocal lens according to a first example of the present invention, and FIG. 2A is a front view of the bifocal lens in a wearing state as viewed from an object side along an optical axis of a distance portion. (B) is a side view of the bifocal lens in the wearing state. The first embodiment is an example in which the present invention is applied to a minus lens having a distance power of -5 diopters, and the object side surface of the distance portion is formed in an aspherical shape. On the other hand, in the first comparative example, the object-side surface of the distance portion is formed in a spherical shape. Referring to FIG. 1, the bifocal lens according to the first embodiment includes a distance portion 1 and a near portion 2 formed at a part thereof. Optical axis AX1 passing through center O1 of distance section 1
The thickness at the center of the distance portion along the distance is the lens center thickness T1 of the distance portion 1, and the thickness at the periphery of the distance portion along the optical axis AX1 is the lens edge thickness T2 of the distance portion 1. .
【0017】ところで、従来技術にしたがって近用部2
の光学中心O2を通過する遠用部1の物体側の面の法線
N1と回転対称軸AX2とを一致させると、近用部と遠
用部との間の境界線3’が円弧状から大きく外側へ歪ん
でしまい、外観が損なわれることになる。第1実施例で
は、法線N1よりも近用部2の回転対称軸AX2のほう
を装用状態における水平面に対して大きく傾けて設定す
ることにより、近用部2の下方部分と遠用部1との間の
境界線3をほぼ円弧状に形成している。このように、近
用部2の回転対称軸AX2を法線N1に対して傾けるこ
とにより、遠用部1の非球面形状や近用部2の加入度に
依存することなく近用部領域(遠用部との境界によって
定められる領域)の形状を一定にすることができる。By the way, according to the prior art, the near portion 2
When the normal line N1 of the object-side surface of the distance portion 1 passing through the optical center O2 of the lens is made to coincide with the rotational symmetry axis AX2, the boundary line 3 ′ between the near portion and the distance portion becomes circular. It will be greatly distorted outward and the appearance will be impaired. In the first embodiment, the lower portion of the near portion 2 and the far portion 1 are set by setting the rotational symmetric axis AX2 of the near portion 2 to be larger than the normal line N1 with respect to the horizontal plane in the wearing state. Is formed in a substantially arc shape. As described above, by inclining the rotational symmetric axis AX2 of the near portion 2 with respect to the normal line N1, the near portion region (regardless of the aspherical shape of the far portion 1 and the addition of the near portion 2). (A region defined by the boundary with the distance portion) can be made constant.
【0018】次の表(1)に、本発明の第1実施例の諸
元の値および従来技術にしたがう第1比較例の諸元の値
を掲げる。表(1)において、R1は遠用部の物体側の
面の頂点曲率半径(mm)を、R2は遠用部の眼側の面
の頂点曲率半径(mm)を、T1は遠用部のレンズ中心
厚(mm)を、T2は遠用部のレンズ縁厚(mm)を、
D1は遠用部のレンズの外径(直径:mm)をそれぞれ
表している。The following Table (1) shows values of data of the first embodiment of the present invention and values of data of the first comparative example according to the prior art. In Table (1), R1 is the vertex radius of curvature (mm) of the object-side surface of the distance portion, R2 is the vertex radius of curvature (mm) of the eye-side surface of the distance portion, and T1 is the distance radius of the distance portion. The lens center thickness (mm), T2 is the lens edge thickness (mm) of the distance portion,
D1 represents the outer diameter (diameter: mm) of the lens of the distance portion.
【0019】[0019]
【表1】 〔第1比較例〕 R1=400 R2=80 T1=1.5 D1=60 T2=6.2 〔第1実施例〕 R1=400 R2=80 T1=1.5 D1=60 T2=6.0 κ=−20 C4 =0.5×10-6 C6 =−0.3×10-9 C8 =0.1×10-12 C10=−0.2×10-16 〔第1実施例の条件対応値〕 (1)y=10のとき |dx/y|=0.43×10-3 y=20のとき |dx/y|=0.28×10-2 y=30のとき |dx/y|=0.70×10-2 (3)|C4 |=0.5×10-6 [First Comparative Example] R1 = 400 R2 = 80 T1 = 1.5 D1 = 60 T2 = 6.2 [First Example] R1 = 400 R2 = 80 T1 = 1.5 D1 = 60 T2 = 6.0 κ = −20 C 4 = 0.5 × 10 −6 C 6 = −0.3 × 10 −9 C 8 = 0.1 × 10 −12 C 10 = −0.2 × 10 −16 [Condition-corresponding values of the first embodiment] (1) When y = 10 | dx / y | = 0.43 × 10 −3 When y = 20 | dx / y | = 0.28 × 10 −2 y | Dx / y | = 0.70 × 10 −2 (3) | C 4 | = 0.5 × 10 −6
【0020】図2は第1実施例の遠用部における非点収
差を示す図であり、図3は第1比較例の遠用部における
非点収差を示す図である。図2および図3において、縦
軸はディオプターを、横軸は装用者の眼の瞳への入射角
(度)をそれぞれ示している。また、図2および図3に
おいて、Mはメリディオナル像面の非点収差を、Sはサ
ジタル像面の非点収差をそれぞれ示している。図2と図
3とを参照すると、第1比較例ではメリディオナル像面
の非点収差が最大で−1.0ディオプターであるのに対
し、第1実施例ではメリディオナル像面の非点収差およ
びサジタル像面の非点収差がともに0.5ディオプター
以下に抑えられている。また、表(1)を参照すると、
本発明にしたがう第1実施例では、遠用部のレンズ縁厚
T2が第1比較例よりも0.2mm小さくなっている。FIG. 2 is a diagram showing astigmatism in the distance portion of the first embodiment, and FIG. 3 is a diagram showing astigmatism in the distance portion of the first comparative example. 2 and 3, the vertical axis indicates diopter, and the horizontal axis indicates the angle of incidence (degree) on the pupil of the wearer's eye. 2 and 3, M indicates astigmatism on the meridional image plane, and S indicates astigmatism on the sagittal image plane. Referring to FIG. 2 and FIG. 3, the astigmatism of the meridional image plane is -1.0 diopter at the maximum in the first comparative example, whereas the astigmatism and the sagittal of the meridional image plane are in the first embodiment. Both astigmatism on the image plane are suppressed to 0.5 diopter or less. Also, referring to Table (1),
In the first embodiment according to the present invention, the lens edge thickness T2 of the distance portion is 0.2 mm smaller than that of the first comparative example.
【0021】〔第2実施例および第2比較例〕図4は、
本発明の第2実施例にかかる二重焦点レンズの構成を示
す図であって、(a)は装用状態における二重焦点レン
ズを遠用部の光軸に沿って物体側から見た正面図であ
り、(b)は装用状態における二重焦点レンズの側面図
である。第2実施例は、遠用度数が+5ディオプターの
プラスレンズに本発明を適用した例であり、遠用部の物
体側の面が非球面状に形成されている。一方、第2比較
例では、遠用部の物体側の面が球面状に形成されてい
る。図4を参照すると、第2実施例の二重焦点レンズ
は、遠用部1と、その一部に形成された近用部2とから
構成されている。遠用部1の中心O1を通る光軸AX1
に沿った遠用部の中心における厚さが遠用部1のレンズ
中心厚T1であり、光軸AX1に沿った遠用部の周縁に
おける厚さが遠用部1のレンズ縁厚T2である。[Second Embodiment and Second Comparative Example] FIG.
FIG. 7A is a diagram illustrating a configuration of a bifocal lens according to a second embodiment of the present invention, and FIG. 7A is a front view of the bifocal lens in a wearing state as viewed from an object side along an optical axis of a distance portion. (B) is a side view of the bifocal lens in the wearing state. The second embodiment is an example in which the present invention is applied to a plus lens having a distance power of +5 diopter, and the object-side surface of the distance portion is formed in an aspherical shape. On the other hand, in the second comparative example, the object-side surface of the distance portion is formed in a spherical shape. Referring to FIG. 4, the bifocal lens according to the second embodiment includes a distance portion 1 and a near portion 2 formed in a part thereof. Optical axis AX1 passing through center O1 of distance section 1
The thickness at the center of the distance portion along the distance is the lens center thickness T1 of the distance portion 1, and the thickness at the periphery of the distance portion along the optical axis AX1 is the lens edge thickness T2 of the distance portion 1. .
【0022】ところで、従来技術にしたがって近用部2
の光学中心O2を通過する遠用部1の物体側の面の法線
N1と回転対称軸AX2とを一致させると、近用部と遠
用部との間の境界線3’が円弧状から大きく内側へ歪ん
でしまい、外観が損なわれることになる。第2実施例で
は、法線N1よりも近用部2の回転対称軸AX2のほう
を装用状態における水平面に対して小さく傾けて設定す
ることにより、近用部2の下方部分と遠用部1との間の
境界線3をほぼ円弧状に形成している。このように、近
用部2の回転対称軸AX2を法線N1に対して傾けるこ
とにより、遠用部1の非球面形状や近用部2の加入度に
依存することなく近用部領域(遠用部との境界によって
定められる領域)の形状を一定にすることができる。By the way, according to the prior art, the near portion 2
When the normal line N1 of the object-side surface of the distance portion 1 passing through the optical center O2 of the lens is made to coincide with the rotational symmetry axis AX2, the boundary line 3 ′ between the near portion and the distance portion becomes circular. It is greatly distorted inward, and the appearance is impaired. In the second embodiment, the lower portion of the near portion 2 and the far portion 1 are set by setting the rotational symmetric axis AX2 of the near portion 2 smaller than the normal N1 with respect to the horizontal plane in the wearing state. Is formed in a substantially arc shape. As described above, by inclining the rotational symmetric axis AX2 of the near portion 2 with respect to the normal line N1, the near portion region (regardless of the aspherical shape of the far portion 1 and the addition of the near portion 2). (A region defined by the boundary with the distance portion) can be made constant.
【0023】次の表(2)に、本発明の第2実施例の諸
元の値および従来技術にしたがう第2比較例の諸元の値
を掲げる。表(2)において、R1は遠用部の物体側の
面の頂点曲率半径(mm)を、R2は遠用部の眼側の面
の頂点曲率半径(mm)を、T1は遠用部のレンズ中心
厚(mm)を、T2は遠用部のレンズ縁厚(mm)を、
D1は遠用部のレンズの外径(直径:mm)をそれぞれ
表している。The following Table 2 shows the values of the specifications of the second embodiment of the present invention and the values of the specifications of the second comparative example according to the prior art. In Table (2), R1 is the vertex radius of curvature (mm) of the object-side surface of the distance portion, R2 is the vertex radius of curvature (mm) of the eye-side surface of the distance portion, and T1 is the distance radius of the distance portion. The lens center thickness (mm), T2 is the lens edge thickness (mm) of the distance portion,
D1 represents the outer diameter (diameter: mm) of the lens of the distance portion.
【0024】[0024]
【表2】 〔第2比較例〕 R1=80 R2=357.5 T2=1.0 D1=60 T1=5.6 〔第2実施例〕 R1=80 R2=360.5 T2=1.0 D1=60 T1=5.2 κ=−1.8 C4 =0 C6 =0.5×10-10 C8 =0 C10=0.1×10-15 〔第2実施例の条件対応値〕 (1)y=10のとき |dx/y|=0.70×10-3 y=20のとき |dx/y|=0.52×10-2 y=30のとき |dx/y|=0.14×10-1 (3)|C4 |=0[Second Comparative Example] R1 = 80 R2 = 357.5 T2 = 1.0 D1 = 60 T1 = 5.6 [Second Example] R1 = 80 R2 = 360.5 T2 = 1.0 D1 = 60 T1 = 5.2 κ = −1.8 C 4 = 0 C 6 = 0.5 × 10 −10 C 8 = 0 C 10 = 0.1 × 10 −15 [ Conforming to the condition of the second embodiment] Value] (1) When y = 10 | dx / y | = 0.70 × 10 −3 When y = 20 | dx / y | = 0.52 × 10 −2 When y = 30 | dx / y | = 0.14 × 10 −1 (3) | C 4 | = 0
【0025】図5は第2実施例の遠用部における非点収
差を示す図であり、図6は第2比較例の遠用部における
非点収差を示す図である。図5および図6において、縦
軸はディオプターを、横軸は装用者の眼の瞳への入射角
(度)をそれぞれ示している。また、図5および図6に
おいて、Mはメリディオナル像面の湾曲収差を、Sはサ
ジタル像面の湾曲収差をそれぞれ示している。図5と図
6とを参照すると、第2比較例ではメリディオナル像面
の湾曲収差が最大で+1.6ディオプターであるのに対
し、第2実施例ではメリディオナル像面の湾曲収差およ
びサジタル像面の湾曲収差がともに0.5ディオプター
以下に抑えられている。また、表(2)を参照すると、
本発明にしたがう第2実施例では、遠用部のレンズ中心
厚T1が第2比較例よりも0.4mm小さくなってい
る。FIG. 5 is a diagram showing astigmatism in the distance portion of the second embodiment, and FIG. 6 is a diagram showing astigmatism in the distance portion of the second comparative example. 5 and 6, the vertical axis represents diopter, and the horizontal axis represents the angle of incidence (degree) on the pupil of the wearer's eye. 5 and 6, M indicates the curvature of the meridional image plane, and S indicates the curvature of the sagittal image plane. Referring to FIG. 5 and FIG. 6, the curvature aberration of the meridional image plane is +1.6 diopter at the maximum in the second comparative example, whereas the curvature aberration of the meridional image plane and the sagittal image plane in the second embodiment are maximum. Both the curvature aberrations are suppressed to 0.5 diopter or less. Also, referring to Table (2),
In the second embodiment according to the present invention, the lens center thickness T1 of the distance portion is 0.4 mm smaller than that of the second comparative example.
【0026】〔第3実施例および第3比較例〕第3実施
例は、遠用度数が+5ディオプターの第1実施例の二重
焦点レンズにおいて加入度+2ディオプターの近用部の
物体側の面を非球面状に形成した例である。一方、第3
比較例では、近用部の物体側の面は球面状に形成されて
いる。次の表(3)に、本発明の第3実施例の諸元の値
および従来技術にしたがう第3比較例の諸元の値を掲げ
る。表(3)において、R3は近用部の物体側の面の頂
点曲率半径(mm)を、R4は近用部の眼側の面の頂点
曲率半径(mm)を、T3は近用部のレンズ中心厚(m
m)を、D2は近用部のレンズ外径(直径:mm)をそ
れぞれ表している。[Third Embodiment and Third Comparative Example] In the third embodiment, the object side surface of the near portion having an addition power of +2 diopter in the bifocal lens of the first embodiment having a distance power of +5 diopter is used. Is formed in an aspherical shape. Meanwhile, the third
In the comparative example, the object-side surface of the near portion is formed in a spherical shape. Table 3 below summarizes data values of the third example of the present invention and data values of the third comparative example according to the related art. In Table (3), R3 is the vertex radius of curvature (mm) of the object-side surface of the near portion, R4 is the vertex radius of curvature (mm) of the near-side eye-side surface, and T3 is the near radius of the near portion. Lens center thickness (m
m), and D2 represents the lens outer diameter (diameter: mm) of the near portion.
【0027】[0027]
【表3】 〔第3比較例〕 R3=155 R4=80 T3=1.95 D2=30 〔第3実施例〕 R3=155 R4=80 T3=1.95 D2=30 κ=−1.7 C4 =0.42×10-6 C6 =−0.15×10-8 C8 =0.36×10-11 C10=0.19×10-13 〔第3実施例の条件対応値〕 (2)y=5のとき |dx/y|=0.40×10-4 y=10のとき |dx/y|=0.20×10-3 y=15のとき |dx/y|=0.13×10-2 [Third Comparative Example] R3 = 155 R4 = 80 T3 = 1.95 D2 = 30 [Third Example] R3 = 155 R4 = 80 T3 = 1.95 D2 = 30 κ = −1.7 C 4 = 0.42 × 10 −6 C 6 = −0.15 × 10 −8 C 8 = 0.36 × 10 −11 C 10 = 0.19 × 10 −13 [Conditional value of the third embodiment] (2) When y = 5 | dx / y | = 0.40 × 10 −4 When y = 10 | dx / y | = 0.20 × 10 −3 When y = 15 | dx / y | = 0.13 × 10 -2
【0028】図7は第3実施例の近用部における非点収
差を示す図であり、図8は第3比較例の近用部における
非点収差を示す図である。図7および図8において、縦
軸はディオプターを、横軸は装用者の眼の瞳への入射角
(度)をそれぞれ示している。また、図7および図8に
おいて、Mはメリディオナル像面の湾曲収差を、Sはサ
ジタル像面の湾曲収差をそれぞれ示している。図7と図
8とを参照すると、第3比較例ではメリディオナル像面
の湾曲収差が最大で−0.15ディオプターであるのに
対し、第3実施例ではメリディオナル像面の湾曲収差お
よびサジタル像面の湾曲収差がともに0.05ディオプ
ター以下に抑えられている。FIG. 7 is a diagram showing astigmatism in the near portion of the third embodiment, and FIG. 8 is a diagram showing astigmatism in the near portion of the third comparative example. 7 and 8, the vertical axis represents diopter, and the horizontal axis represents the angle of incidence (degree) on the pupil of the wearer's eye. 7 and 8, M indicates the curvature aberration of the meridional image plane, and S indicates the curvature aberration of the sagittal image plane. Referring to FIGS. 7 and 8, in the third comparative example, the curvature aberration of the meridional image surface is -0.15 diopter at the maximum, whereas in the third embodiment, the curvature aberration of the meridional image surface and the sagittal image surface are different. Are suppressed to 0.05 diopter or less.
【0029】[0029]
【効果】以上説明したように、本発明によれば、−15
ディオプターよりも大きく且つ+8ディオプターよりも
小さい遠用度数を有し、薄くて軽量で、外観的にも良好
で、収差が良好に補正された二重焦点レンズを実現する
ことができる。As described above, according to the present invention, -15
A bifocal lens having a dioptric power larger than diopter and smaller than +8 diopter, thin, lightweight, good in appearance, and well corrected in aberration can be realized.
【図1】本発明の第1実施例にかかる二重焦点レンズの
構成を示す図であって、(a)は装用状態における二重
焦点レンズを遠用部の光軸に沿って物体側から見た正面
図であり、(b)は装用状態における二重焦点レンズの
側面図である。FIG. 1 is a view showing a configuration of a bifocal lens according to a first embodiment of the present invention, wherein (a) shows a bifocal lens in a wearing state from an object side along an optical axis of a distance portion; It is the front view which looked at, and (b) is a side view of the bifocal lens in a wearing state.
【図2】第1実施例の遠用部における非点収差を示す図
である。FIG. 2 is a diagram illustrating astigmatism in a distance portion according to the first embodiment.
【図3】第1比較例の遠用部における非点収差を示す図
である。FIG. 3 is a diagram illustrating astigmatism in a distance portion of a first comparative example.
【図4】本発明の第2実施例にかかる二重焦点レンズの
構成を示す図であって、(a)は装用状態における二重
焦点レンズを遠用部の光軸に沿って物体側から見た正面
図であり、(b)は装用状態における二重焦点レンズの
側面図である。FIG. 4 is a view showing a configuration of a bifocal lens according to a second embodiment of the present invention, wherein (a) shows a bifocal lens in a wearing state from an object side along an optical axis of a distance portion; It is the front view which looked at, and (b) is a side view of the bifocal lens in a wearing state.
【図5】第2実施例の遠用部における非点収差を示す図
である。FIG. 5 is a diagram illustrating astigmatism in a distance portion according to a second embodiment.
【図6】第2比較例の遠用部における非点収差を示す図
である。FIG. 6 is a diagram illustrating astigmatism in a distance portion of a second comparative example.
【図7】第3実施例の近用部における非点収差を示す図
である。FIG. 7 is a diagram showing astigmatism in a near portion of the third embodiment.
【図8】第3比較例の近用部における非点収差を示す図
である。FIG. 8 is a diagram illustrating astigmatism in a near portion of a third comparative example.
1 遠用部 2 近用部 AX1 遠用部の光軸 AX2 近用部の回転対称軸 O1 遠用部の中心 O2 近用部の中心 N1 法線 Reference Signs List 1 distance portion 2 near portion AX1 optical axis of distance portion AX2 rotational symmetry axis of near portion O1 center of distance portion O2 center of near portion N1 normal line
Claims (7)
し、遠距離物体を見るための遠用部と、該遠用部の一部
に形成されて近距離物体を見るための近用部とを備えた
二重焦点レンズにおいて、 前記遠用部は、−15ディオプターよりも大きく且つ+
8ディオプターよりも小さい度数を有し、 前記遠用部の物体側の面は、非球面状に形成され、 前記遠用部の光軸に垂直な方向に沿った高さをyとし、
高さyにおける前記遠用部の物体側の非球面の頂点曲率
半径に基づく仮想球面と前記遠用部の物体側の非球面と
の間の前記遠用部の光軸に沿った距離をdxとしたと
き、 1×10-6<|dx/y|<5×10-1 の条件を満足することを特徴とする二重焦点レンズ。An object-side refracting surface, an eye-side refracting surface, and a distance portion for viewing a long-distance object, and a part of the distance portion for viewing a short-distance object. Wherein the distance portion is larger than -15 diopters and +
The diopter has a power less than 8 diopters, the object-side surface of the distance portion is formed in an aspherical shape, and a height along a direction perpendicular to an optical axis of the distance portion is y,
The distance along the optical axis of the distance portion between the virtual spherical surface based on the apex radius of curvature of the aspheric surface on the object side of the distance portion at the height y and the object-side aspheric surface of the distance portion is dx. Where: 1 × 10 −6 <| dx / y | <5 × 10 −1 .
高さをyとし、高さyにおける前記遠用部の物体側の非
球面上の点と前記遠用部の物体側の非球面の頂点との間
の前記遠用部の光軸に沿った距離をxとし、前記遠用部
の物体側の非球面の頂点曲率半径をRとし、円錐係数を
κとし、n次の非球面係数をCn としたとき、前記遠用
部の物体側の非球面は、 【数1】x=(y2 /R)/{1+(1−κ・y2 /R
2 )1/2 }+C4 ・y4 +C6 ・y6 +C8 ・y8 +C
10・y10 の数式で表され、前記4次の非球面係数C4 は、 |C4 |<1×10-3 の条件を満足することを特徴とする請求項1に記載の二
重焦点レンズ。2. A height of the distance portion along a direction perpendicular to the optical axis is defined as y, and a point on the object-side aspherical surface of the distance portion at a height y and the object side of the distance portion. Let x be the distance along the optical axis of the distance portion between the vertex of the aspheric surface of R, the radius of curvature of the vertex of the aspheric surface on the object side of the distance portion be R, the conic coefficient be κ, and the nth order non when the spherical coefficient was Cn, the aspherical surface on the object side of the distance portion is ## EQU1 ## x = (y 2 / R) / {1+ (1-κ · y 2 / R of
2) 1/2} + C 4 · y 4 + C 6 · y 6 + C 8 · y 8 + C
Represented by formula 10 · y 10, the fourth-order aspherical coefficients C 4 is, | C 4 | <bifocal according to claim 1, characterized by satisfying the 1 × 10 -3 conditions lens.
し、遠距離物体を見るための遠用部と、該遠用部の一部
に形成されて近距離物体を見るための近用部とを備えた
二重焦点レンズにおいて、 前記遠用部は、−15ディオプターよりも大きく且つ+
8ディオプターよりも小さい度数を有し、 前記近用部の物体側の面は、回転対称非球面状に形成さ
れ、 前記近用部の回転対称軸に垂直な方向に沿った高さをy
とし、高さyにおける前記近用部の物体側の非球面の頂
点曲率半径に基づく仮想球面と前記近用部の物体側の非
球面との間の前記近用部の回転対称軸に沿った距離をd
xとしたとき、 1×10-6<|dx/y|<5×10-1 の条件を満足することを特徴とする二重焦点レンズ。3. A distance portion for viewing a distant object having a refracting surface on the object side and a refracting surface on the eye side, and formed on a part of the distance portion to view a short distance object. Wherein the distance portion is larger than -15 diopters and +
The object-side surface of the near portion is formed in a rotationally symmetric aspherical shape, and the height along a direction perpendicular to the rotational symmetry axis of the near portion is y.
Along a rotationally symmetric axis of the near portion between a virtual sphere based on the vertex radius of curvature of the aspheric surface on the object side of the near portion at height y and the aspheric surface on the object side of the near portion. Distance d
A bifocal lens characterized by satisfying the following condition: 1 × 10 −6 <| dx / y | <5 × 10 −1
し、遠距離物体を見るための遠用部と、該遠用部の一部
に形成された近距離物体を見るための近用部とを備えた
二重焦点レンズにおいて、 前記遠用部は、−15ディオプターよりも大きく且つ+
8ディオプターよりも小さい度数を有し、 前記遠用部の物体側の面および前記近用部の物体側の面
は、ともに非球面状に形成され、 前記遠用部の光軸に垂直な方向に沿った高さをyとし、
高さyにおける前記遠用部の物体側の非球面の頂点曲率
半径に基づく仮想球面と前記遠用部の物体側の非球面と
の間の前記遠用部の光軸に沿った距離をdxとしたと
き、 1×10-6<|dx/y|<5×10-1 の条件を満足することを特徴とする二重焦点レンズ。4. A far vision part having a refracting surface on the object side and a refracting face on the eye side for viewing a long-distance object, and viewing a short-distance object formed in a part of the far vision part. Wherein the distance portion is larger than -15 diopters and +
The object-side surface of the distance portion and the object-side surface of the near portion both have an aspheric shape, and have a power smaller than 8 diopters, and are in a direction perpendicular to the optical axis of the distance portion. Let y be the height along
The distance along the optical axis of the distance portion between the virtual spherical surface based on the apex radius of curvature of the aspheric surface on the object side of the distance portion at the height y and the object-side aspheric surface of the distance portion is dx. Where: 1 × 10 −6 <| dx / y | <5 × 10 −1 .
高さをyとし、高さyにおける前記遠用部の物体側の非
球面上の点と前記遠用部の物体側の非球面の頂点との間
の前記遠用部の光軸に沿った距離をxとし、前記遠用部
の物体側の非球面の頂点曲率半径をRとし、円錐係数を
κとし、n次の非球面係数をCn としたとき、前記遠用
部の物体側の非球面は、 【数2】x=(y2 /R)/{1+(1−κ・y2 /R
2 )1/2 }+C4 ・y4 +C6 ・y6 +C8 ・y8 +C
10・y10 の数式で表され、前記4次の非球面係数C4 は、 |C4 |<1×10-3 の条件を満足することを特徴とする請求項4に記載の二
重焦点レンズ。5. A height of the distance portion along a direction perpendicular to the optical axis is defined as y, and a point on the object-side aspherical surface of the distance portion at the height y and the object side of the distance portion. Let x be the distance along the optical axis of the distance portion between the vertex of the aspheric surface of R, the radius of curvature of the vertex of the aspheric surface on the object side of the distance portion be R, the conic coefficient be κ, and the nth order non when the spherical coefficient was Cn, the aspherical surface on the object side of the distance portion is Equation 2] x = (y 2 / R) / {1+ (1-κ · y 2 / R of
2) 1/2} + C 4 · y 4 + C 6 · y 6 + C 8 · y 8 + C
Represented by formula 10 · y 10, the fourth-order aspherical coefficients C 4 is, | C 4 | <bifocal according to claim 4, characterized by satisfying the 1 × 10 -3 conditions lens.
し、遠距離物体を見るための遠用部と、該遠用部の一部
に形成された近距離物体を見るための近用部とを備えた
二重焦点レンズにおいて、 前記遠用部の物体側の面は、非球面状に形成され、 前記遠用部の非球面形状および前記近用部の加入度に依
存することなく、前記近用部領域の形状をほぼ同一にし
たことを特徴とする二重焦点レンズ。6. A distance portion for viewing a long-distance object having a refractive surface on the object side and a refractive surface on the eye side, and a short-distance object formed on a part of the distance portion. In the bifocal lens including the near portion, the object-side surface of the far portion is formed in an aspherical shape, and depends on the aspheric shape of the far portion and the addition of the near portion. A bifocal lens in which the shape of the near portion region is made substantially the same without performing the above.
成されていることを特徴とする請求項6に記載の二重焦
点レンズ。7. The bifocal lens according to claim 6, wherein an object-side surface of the near portion is formed in an aspherical shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8355199A JPH10186290A (en) | 1996-12-20 | 1996-12-20 | Double focus lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8355199A JPH10186290A (en) | 1996-12-20 | 1996-12-20 | Double focus lens |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10186290A true JPH10186290A (en) | 1998-07-14 |
Family
ID=18442526
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8355199A Pending JPH10186290A (en) | 1996-12-20 | 1996-12-20 | Double focus lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10186290A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006119646A (en) * | 2004-10-18 | 2006-05-11 | Franciscus Leonardus Oosterhof | Magnifying glass and spectacle frame provided with one or more such magnifying glasses |
WO2009075140A1 (en) * | 2007-12-10 | 2009-06-18 | Hisayoshi Kurosaki | Bifocal lens and bifocal eyeglasses |
CN102116921A (en) * | 2011-03-03 | 2011-07-06 | 刘华友 | Short-distance eyeglasses |
JP2018112633A (en) * | 2017-01-10 | 2018-07-19 | 伊藤光学工業株式会社 | Progressive refractive power lens |
-
1996
- 1996-12-20 JP JP8355199A patent/JPH10186290A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006119646A (en) * | 2004-10-18 | 2006-05-11 | Franciscus Leonardus Oosterhof | Magnifying glass and spectacle frame provided with one or more such magnifying glasses |
WO2009075140A1 (en) * | 2007-12-10 | 2009-06-18 | Hisayoshi Kurosaki | Bifocal lens and bifocal eyeglasses |
JP2009139824A (en) * | 2007-12-10 | 2009-06-25 | Omg Co Ltd | Double focus lens and bifocal glasses |
US8172396B2 (en) | 2007-12-10 | 2012-05-08 | Hisayoshi Kurosaki | Bifocal lens and bifocal eyeglasses |
CN102116921A (en) * | 2011-03-03 | 2011-07-06 | 刘华友 | Short-distance eyeglasses |
JP2018112633A (en) * | 2017-01-10 | 2018-07-19 | 伊藤光学工業株式会社 | Progressive refractive power lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3852116B2 (en) | Progressive multifocal lens and spectacle lens | |
JP4228966B2 (en) | Eyeglass lenses | |
WO2015196965A1 (en) | Chromatic aberration-free wide-angle lens for headgear, and headgear | |
WO2004074907A1 (en) | Progressive refractive power lens | |
CN206102780U (en) | Aspherical intraocular lens | |
CN106970466A (en) | Eyepiece optical system | |
CN216449846U (en) | Forward out-of-focus spectacle lens and spectacles | |
US6056401A (en) | Spectacle lens | |
TWI745092B (en) | Progressive continuous zoom contact lenses | |
JP3222528B2 (en) | Aspherical spectacle lens | |
JPH085966A (en) | Aspherical spectacle lens | |
JP4841784B2 (en) | Single vision glasses lens design method | |
JP4190764B2 (en) | Aspheric spectacle lens | |
JPH10186290A (en) | Double focus lens | |
JP2002372689A (en) | Progressive multifocal lens and spectacle lens | |
JP4036921B2 (en) | Eyeglass lenses | |
CN115639686A (en) | orthokeratology lens | |
JP3236263B2 (en) | Aspherical spectacle lens design method | |
JP2002323681A (en) | Method of manufacturing progressive multifocal lens | |
JPH085967A (en) | Aspherical spectacle lens | |
JP3038745B2 (en) | Eyeglass lens | |
JP2000047144A (en) | Spectacle lens | |
JP3013396B2 (en) | Eyeglass lens | |
JP2604645B2 (en) | Near-to-medium range distortion-free presbyopic lens | |
JP2001027744A (en) | Aspherical spectacle lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060322 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080519 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080522 |
|
A521 | Written amendment |
Effective date: 20080818 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090525 |
|
A762 | Written abandonment of application |
Effective date: 20090626 Free format text: JAPANESE INTERMEDIATE CODE: A762 |