JPH10185960A - High frequency signal detection probe - Google Patents
High frequency signal detection probeInfo
- Publication number
- JPH10185960A JPH10185960A JP8359756A JP35975696A JPH10185960A JP H10185960 A JPH10185960 A JP H10185960A JP 8359756 A JP8359756 A JP 8359756A JP 35975696 A JP35975696 A JP 35975696A JP H10185960 A JPH10185960 A JP H10185960A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- current
- waveform
- transmission line
- terminal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measurement Of Current Or Voltage (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は主としてIC製造工程
中のプラズマエッチング装置のリアクターに伝送線路か
ら負荷される高周波電力の高周波電圧およびその波形,
高周波電流およびその波形,電圧電流相互間の位相角,
および高周波電圧中の直流成分,さらには電圧波形中の
高調波成分,電流波形中の高調波成分を検出する目的で
使用上簡便な形に一体構成されたプローブに関するもの
である。これ等検出された信号はオッシロスコープ,検
波器,記録計,直流電圧計,位相計,スペクトラムアナ
ライザ等の測定器を必要に応じて使用し,データー化す
ることができる。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a high-frequency voltage and a waveform of a high-frequency power applied from a transmission line to a reactor of a plasma etching apparatus during an IC manufacturing process.
High-frequency current and its waveform, phase angle between voltage and current,
The present invention relates to a probe which is integrally formed in a simple and easy-to-use form for the purpose of detecting a DC component in a high-frequency voltage, a harmonic component in a voltage waveform, and a harmonic component in a current waveform. These detected signals can be converted into data by using measuring instruments such as an oscilloscope, a detector, a recorder, a DC voltmeter, a phase meter, and a spectrum analyzer as necessary.
【0002】[0002]
【従来の技術】従来高周波電圧の測定にはその周波数帯
域の広さと簡便性によりオッシロスコープが常用されて
きた。高周波電流の測定では,やはり周波数帯域の制限
により一般にトロイダルコイルを電流変圧器として使用
するか或いは負荷に直列に低抵抗を挿入して電流を電圧
に変換しオッシロスコープで測定するかの何れかと見ら
れる。2. Description of the Related Art Conventionally, an oscilloscope has been commonly used for measuring a high frequency voltage because of its wide frequency band and simplicity. In the measurement of high-frequency current, it is generally considered that either a toroidal coil is used as a current transformer or a low resistance is inserted in series with a load to convert the current to a voltage and measure with an oscilloscope due to the limitation of the frequency band. .
【0003】[0003]
【発明が解決しようとする課題】従来の技術では高周波
電圧および高周波電流の検出を伝送線路上個別に行って
いた。従って一般に測定に必要な都度検出回路を配置し
配線しなければならず簡便性の見地から不具合であり,
被測定波が波長の短い関係で,測定位置の微少なずれ或
いは傾きが検出信号の再現性に大きく影響されることが
あり,配線方法によっては誘導障害によって検出信号が
不安定になることがあった。また検出装置が空中に露出
せざるを得ず,大電力の高周波電力を扱う場合の危険性
も無視し得ないものであった。本発明はこのような問題
点を解決するために成されたものである。In the prior art, high-frequency voltage and high-frequency current are detected individually on the transmission line. Therefore, in general, a detection circuit must be arranged and wired each time necessary for measurement, which is disadvantageous from the viewpoint of simplicity.
Due to the short wavelength of the wave to be measured, slight deviation or inclination of the measurement position may be greatly affected by the reproducibility of the detection signal, and the detection signal may become unstable due to an induction failure depending on the wiring method. Was. In addition, the detection device must be exposed to the air, and the danger of handling high-frequency high-frequency power cannot be ignored. The present invention has been made to solve such a problem.
【0004】[0004]
【課題を解決するための手段】この発明の骨子は図1に
示す電圧検出器15と電流検出器16とをケース1内で
合理的に合体させ,その結果原理的に生じる新しい機能
を持った商品を提供し,従来問題の多かった伝送線路上
の電気情報の検出測定方法に関し,新しい技術を提供し
ようとする点にある。ケース1には伝送線路端子2が取
り付けられており,ここへ一対の伝送線路の片側即ち伝
送線路5の末端が接続される。伝送線路5はケース1の
内部で電流検出器のトロイダルコイルを貫通し反対側の
伝送線路端子3に到る。トロイダルコイルで得られた電
流検出信号は電流信号端子9を経て電流信号線10で外
部へ導出される。一方,伝送線路4,5間の電圧は前記
トロイダルコイルの近傍の伝送線路上に導通された電圧
測定点Pとアース端子間の電位として検出される。この
時,伝送線路4は図2に示すように負荷の一端に接続さ
れかつアースされるからアース端子8より引き出された
アース線17は負荷のアース点に接続される。このよう
にして検出された高周波電圧は,電圧検出器15内の低
抵抗R1,R2,コンデンサC1,C2より成る抵抗分
圧器で分圧され,その出力が電圧信号端子7から電圧信
号線11に導出される。今,抵抗による減衰比をKとす
れば 検出点の電圧をVとすれば検出電圧信号VEは VE=KV 従ってKを前もって設定しておけば換算は極めて容易で
ある。なお,C1,C2は位相補償用コンデンサであっ
て減衰比Kを周波数に無関係に一定に保つために使用さ
れる。また図1の電流検出器16内の抵抗器Rはトロイ
ダルコイルとストレーキャパシティとの共振を抑制する
ためのダンピング抵抗である。課題を解決するための手
段として以上のごとく構成するとその組合せ効果によっ
て原理的に新規性を有する機能が出現するので,これ等
の特筆すべき効果を以下に列挙する。 (イ)同一地点および同一時点における電圧波形および
電流波形が時間遅れなく同時に検出できる。これは従来
それぞれ単独の検出器による方法では作業上困難を伴う
が,本発明のプローブではケース1の内部で相方の検出
器15,16は機械的強固に固定され,位置的経年変化
を生じないから,もし伝送線路上のケース1の取り付け
位置を変更したとしても,電圧信号と電流信号の同時性
は良好に保たれる。これ等波形の観察或いは測定は通常
の2現象オッシロスコープで行える。 (ロ)(イ)項により電圧波形,電流波形がそれぞれ検
出できれば電圧電流相互間の位相角が検出できる。これ
は従来の単機能の検出器では行い得ない新規性のある機
能である。 (ハ)位相角がわかれば負荷電力が計算できる。 (ニ)位相角が定まれば負荷のインピーダンスも決定さ
れる。 (ホ)抵抗分圧器を使用しているので,高周波電圧に含
まれる直流成分も検出できる。 (ヘ)(イ)項により波形測定ができるのであるから電
圧および電流信号のそれぞれ単独のあらゆる電気的情報
が得られる。即ち(ロ)項の他,例えば高調波成分含有
率,周波数,周期,波形の立上り,立下り,デューティ
サイクル,パルス幅,変調度,時間間隔等々である。 (ト)本発明のプローブを取り付けても負荷に与える効
果は無視できるほど小さく,負荷の動作に全く影響を与
えない。 (チ)非常にコンパクトな構成であり,狭い箇所の取り
付け容易で利便性があり,長時間取り付けたままでも良
い。 以上,要約すれば本発明の高周波信号プローブは検出信
号出力としてアース線17を含め計3本の信号線のみを
有し,使用電源不要な小型箱状物体をなし,伝送線路上
任意の位置に装着可能で,同一地点,同一時点における
多くの電気的情報を簡便に検出できる新しい器具である
と言えよう。The gist of the present invention is that the voltage detector 15 and the current detector 16 shown in FIG. 1 are rationally combined in the case 1 and have a new function which is generated in principle. An object of the present invention is to provide a product and to provide a new technology for a method of detecting and measuring electric information on a transmission line, which has been a problem in many cases. A transmission line terminal 2 is attached to the case 1, to which one end of a pair of transmission lines, that is, an end of the transmission line 5 is connected. The transmission line 5 penetrates through the toroidal coil of the current detector inside the case 1 and reaches the transmission line terminal 3 on the opposite side. A current detection signal obtained by the toroidal coil is led out through a current signal terminal 9 to a current signal line 10. On the other hand, the voltage between the transmission lines 4 and 5 is detected as a potential between the voltage measuring point P conducted on the transmission line near the toroidal coil and the ground terminal. At this time, as shown in FIG. 2, the transmission line 4 is connected to one end of the load and is grounded. Therefore, the ground wire 17 drawn from the ground terminal 8 is connected to the ground point of the load. The high-frequency voltage detected in this manner is divided by a resistance voltage divider composed of low resistances R 1 , R 2 and capacitors C 1 , C 2 in the voltage detector 15, and the output is supplied from a voltage signal terminal 7 to a voltage signal terminal 7. It is led to the signal line 11. Now, if the damping ratio due to resistance is K, Voltage V Tosureba detected voltage signal V E of the detection points converted if to preset the V E = KV Therefore K is very easy. C 1 and C 2 are phase compensation capacitors, and are used to keep the attenuation ratio K constant regardless of the frequency. A resistor R in the current detector 16 in FIG. 1 is a damping resistor for suppressing resonance between the toroidal coil and the stray capacity. When configured as described above as a means for solving the problems, a function having a principle of novelty appears due to a combination effect thereof. These notable effects are listed below. (A) Voltage waveforms and current waveforms at the same point and at the same time can be detected simultaneously without time delay. Conventionally, this method has a difficulty in operation using a single detector. However, in the probe of the present invention, the opposite detectors 15 and 16 are mechanically and firmly fixed inside the case 1 and do not cause positional aging. Therefore, even if the mounting position of the case 1 on the transmission line is changed, good synchronism between the voltage signal and the current signal can be maintained. Observation or measurement of these waveforms can be performed with a normal two-phenomenon oscilloscope. (B) If the voltage waveform and the current waveform can be respectively detected by the term (a), the phase angle between the voltage and the current can be detected. This is a novel function that cannot be performed by a conventional single-function detector. (C) If the phase angle is known, the load power can be calculated. (D) Once the phase angle is determined, the impedance of the load is also determined. (E) Since a resistance voltage divider is used, a DC component included in the high-frequency voltage can also be detected. (F) Since the waveform measurement can be performed by the item (a), all the individual electrical information of the voltage and current signals can be obtained. That is, in addition to the term (b), for example, the harmonic component content, frequency, period, rise and fall of the waveform, duty cycle, pulse width, modulation degree, time interval, and the like are included. (G) Even if the probe of the present invention is attached, the effect on the load is negligibly small and does not affect the operation of the load at all. (H) It has a very compact configuration, is easy to install in narrow places, is convenient, and may be installed for a long time. In summary, the high-frequency signal probe of the present invention has only a total of three signal lines including the ground line 17 as a detection signal output, forms a small box-shaped object that does not require a power supply, and is located at an arbitrary position on the transmission line. It can be said that it is a new device that can be installed and can easily detect a lot of electrical information at the same point and the same time.
【0005】[0005]
【作用】図2は伝送線路4,5により高周波電力を給電
されている負荷の端子電圧及び負荷電流を検出する場合
の具体例である。本発明の高周波信号検出プローブはイ
ンピーダンス整合器と負荷の間に伝送線路4,5によっ
て接続され,かつ伝送線路端子3と負荷端子との配線距
離はなるべく小さくされるようにしてある。これは位相
角検出の際の誤差を防ぐためである。インピーダンス整
合器を経て,負荷に電力を供給する。この時,負荷イン
ピーダンスと電源出力インピーダンスが整合されるよう
に,インピーダンス整合器入力よりの反射波が最小とな
るように整合器の回路定数を調整する。本発明のプロー
ブの挿入されている位置はこの整合条件に最も敏感な所
であるが,電圧,電流の検出素子の形状,寸法,構造,
配置等を実験的に最適条件に定めた結果,負荷インピー
ダンス及び負荷に及ぼす影響は実用上無視して良い事が
判明している。これは例えば後述のIC製造時のプラズ
マエッチング工程でリアクター内で発生したプラズマの
電流を測定する場合,低抵抗値の抵抗器を電流検出素子
としてインピーダンス整合器とリアクターの間に直列に
挿入したケースでは,抵抗器の発熱及びエッチング能力
の低下のため使用不能となった例もあり,信号検出プロ
ーブを使用しても他に影響を与えないことはプローブ構
成上最重要課題の一つである。本発明の高周波信号検出
プローブで信号出力を測定するには,オッシロスコープ
及び検波器と直流電圧計の使用が便利である。オッシロ
スコープでは,電圧検出信号も電流検出信号共に電圧信
号波形として検出され,オッシロスコープ上の波形のV
P−P値或いはVP値が求められる。レコーダー上に記
録するには検波器でこの電圧波形を整流しVP値を求め
る。図1に示すごとく抵抗分圧器を使用し,この減衰率
Kが判っているので伝送線路4,5間の電圧Vは検出電
圧信号VEのK倍である。負荷電流の測定も同様の方法
であって電流信号出力V1ボルトに一定の定数Nを乗じ
て得られる電圧値を電流値に換算して求められる。定数
Nは前もって実験的に求めておく。FIG. 2 shows a specific example in which the terminal voltage and load current of a load to which high-frequency power is supplied by the transmission lines 4 and 5 are detected. The high-frequency signal detection probe of the present invention is connected between the impedance matching device and the load by the transmission lines 4 and 5, and the wiring distance between the transmission line terminal 3 and the load terminal is made as small as possible. This is to prevent an error in detecting the phase angle. Power is supplied to the load via the impedance matching device. At this time, the circuit constant of the matching unit is adjusted so that the reflected wave from the input of the impedance matching unit is minimized so that the load impedance and the power supply output impedance are matched. The position where the probe of the present invention is inserted is the most sensitive to this matching condition. However, the shape, size, structure,
As a result of optimizing the arrangement and the like experimentally, it has been found that the effect on the load impedance and the load can be ignored in practical use. This is the case, for example, when measuring the plasma current generated in the reactor during the plasma etching process during IC manufacturing described below, a resistor with a low resistance value is inserted in series between the impedance matching device and the reactor as a current detecting element. In some cases, the use of a signal detection probe has no effect on the use of a signal detection probe, which is one of the most important issues in probe configuration. In order to measure the signal output with the high frequency signal detection probe of the present invention, it is convenient to use an oscilloscope, a detector and a DC voltmeter. In the oscilloscope, both the voltage detection signal and the current detection signal are detected as a voltage signal waveform, and the V
A PP value or a VP value is obtained. To record on a recorder, this voltage waveform is rectified by a detector to obtain a VP value. Using the resistive divider as shown in Figure 1, the voltage V between the transmission lines 4 and 5 because the attenuation factor K is found is K times the detected voltage signal V E. The load current is measured in the same manner, and the voltage value obtained by multiplying the current signal output V 1 volt by a constant N is converted to a current value. The constant N is determined experimentally in advance.
【0006】[0006]
【実施例1】図3に基づき以下に実施例1を説明する。 (イ)金属製ケース1に伝送線路端子2として入力用同
軸コネクタを取り付ける。同様に伝送線路端子3として
出力用同軸コネクタを取り付ける。 (ロ)電圧信号端子7として小型同軸コネクタを,同様
に電流信号端子9として小型同軸コネクタを取り付け
る。 (ハ)電圧検出器15と電流検出器16が複合されたプ
リント基板をケース1に格納し,上記の各端子2,3,
7,9と半田付により固定し同時に電気的に導通させ
る。 (ニ)ふた12を閉じる。実施例1はこのようにして一
体構造化されたもので,構成の特長として伝送線路が同
軸ケーブルの場合に適用される方式である。なお,同軸
ケーブルを使用する関係上,負荷と接続するのにこの編
組線をアース線と共用しているので特にアース端子は設
けていない。またこのプローブはシールド形であるから
外部より誘導雑音を拾いにくい特長がある。Embodiment 1 Embodiment 1 will be described below with reference to FIG. (A) An input coaxial connector is attached to the metal case 1 as the transmission line terminal 2. Similarly, an output coaxial connector is attached as the transmission line terminal 3. (B) A small coaxial connector is mounted as the voltage signal terminal 7 and a small coaxial connector is similarly mounted as the current signal terminal 9. (C) The printed circuit board in which the voltage detector 15 and the current detector 16 are combined is stored in the case 1 and the terminals 2, 3,
7 and 9 are fixed by soldering and are electrically connected at the same time. (D) Close the lid 12. The first embodiment has an integral structure as described above, and is a system applied as a feature of the configuration when the transmission line is a coaxial cable. In addition, since the coaxial cable is used, since the braided wire is shared with the ground wire to connect to the load, no ground terminal is provided. Also, since this probe is a shield type, it has a feature that it is difficult to pick up induced noise from outside.
【実施例2】実施例2は図4のごとく構成されている。 (イ)プラスチック製ケース1の側面に角穴をあけ,そ
こに伝送線路端子2および3として銅帯を貫通させ,電
流検出素子としてトロイダルコイルが動作できるように
する。 (ロ)電圧信号端子7及び電流信号端子9として小型同
軸コネクタをそれぞれ取り付ける。 (ハ)適当な構造のアース端子8を設ける。 (ニ)電圧検出器15と電流検出器16が複合されたプ
リント基板をケース1に収納し配線及び半田付を行う。 (ホ)ふた13を閉め一体構造化させる。実施例2はこ
のようにスプリットライン型の伝送線路に適したプロー
ブである。Embodiment 2 Embodiment 2 is configured as shown in FIG. (A) A square hole is made in the side surface of the plastic case 1 and copper bands are penetrated therethrough as the transmission line terminals 2 and 3 so that the toroidal coil can operate as a current detecting element. (B) A small coaxial connector is attached as each of the voltage signal terminal 7 and the current signal terminal 9. (C) A ground terminal 8 having an appropriate structure is provided. (D) A printed circuit board in which the voltage detector 15 and the current detector 16 are combined is housed in the case 1 and wiring and soldering are performed. (E) Close the lid 13 to form an integral structure. Embodiment 2 is a probe suitable for a split line type transmission line as described above.
【0007】[0007]
【発明の効果】高周波電力の伝送において特に負荷の状
態を厳密にリアルタイムで知りたい場合がある。この好
例がIC製造時のプラズマエッチング工程で見られる。
本発明の高周波信号検出プローブはこの工程の安定化を
目的に開発された一種の診断装置であるので,以下本工
程において実際に採用される前日本発明のプローブを実
験的にテストした結果得られた効果につき説明する。プ
ラズマ反応室内の高周波放電現象は直接的には使用する
ガスの種類,及びその組合せ,圧力,或いは反応による
厠次生成物の種類及び量,反応室及び電極の形状寸法及
びその表面状態並びに反応時間等により,間接的には,
印加される高周波電力量,その波形,電圧尖頭値,電流
尖頭値,及びその位相角,電圧電流波形の高調波成分含
有率等により,或いは前段に接続されたインピーダンス
整合器内の回路定数の選び方等々によりその状態が大き
く左右される。プラズマエッチング工程において効率的
かつ経済的にこの作業を遂行するためには,上記の極め
て複雑かつ相互に関連性のある諸要因を充分に把握する
事が必要不可欠であることは言うまでもない。しかし、
従来このように多くの電気的情報を実行中の反応プロセ
スに何等の影響も与えずリアルタイムで,同時にかつ連
続的に検出するための満足すべきプローブは市場に存在
しなかったのである。本発明のプローブはこの要求にま
さに全て合致するばかりでなく,実際に稼働中の機器の
狭い箇所に簡単に取り付けできる簡便性を有し,また同
軸型もしくはストリップライン型の何れにも対応できる
から現存のプラズマエッチング装置の大多数に使用でき
る汎用性も併せて有するものである。従って本発明のプ
ローブは新しい有力なプラズマ診断装置或いはプラズマ
反応室用モニターとして多大な利用価値があるものであ
る。以下これ等の特長を応用した用途及び効果の数例に
つき箇条書きに列挙する。 (イ)プラズマプロセス診断モニター 特に枚葉式プラズマプロセス装置は連続的にウエハ処理
が行われるが,本発明のプローブを使用し,そのプロセ
ス結果に全く影響を与えずかつプローブ自体の発熱もな
く長期間安定に連続的にモニター可能であった。プロセ
ス中の異常は特に電圧電流波形,電圧電流特性等により
判定され正常と異常の相違点を確実に把握できた。 (ロ)異常プラズマ放電検出モニター 反応室内のプラズマは何等かの原因によって局部的な小
さな火花放電を生じプロセス自体が失敗に終わることが
ある。本発明のプローブはオッシロスコープでリアルタ
イムに波形観測ができるから火花放電の如き高速現象も
確実に検出可能である。この結果見逃しがちな異常放電
を検出しエッチング条件の改善に役立てることができ
た。 (ハ)終点検出モニター エッチング工程の終点検出法は,従来光学的にプラズマ
のスペクトルを観測する方法が多かったが,本発明のプ
ローブでプラズマの電圧電流特性を検出した結果,光学
的方法に依らず容易に終点を検出することができた。 (ニ)プラズマ装置機差診断モニター 工場内では,同一の工程で使用される多数のプラズマ装
置がある。当然各機種の特性が揃っていないと効率が上
がらない。この目的で本発明のプローブを使用し特定の
電気的特性を検出比較した結果,何れの機種も良好な互
換性が得られるように装置間のばらつきを減少させるこ
とができた。以上に示した応用例は本発明の高周波信号
検出プローブの少数の応用例にしか過ぎず更に多くの可
能性を秘めていることは容易に推測できよう。In the transmission of high-frequency power, there is a case where it is particularly desired to know the state of the load strictly in real time. A good example of this is seen in the plasma etching process during IC manufacture.
Since the high-frequency signal detection probe of the present invention is a kind of diagnostic device developed for the purpose of stabilizing this process, it can be obtained as a result of an experimental test of the probe of the present invention prior to being actually employed in this process. The effect will be described. The high-frequency discharge phenomenon in the plasma reaction chamber is directly related to the type of gas used, its combination, pressure, the type and amount of labile products produced by the reaction, the dimensions of the reaction chamber and electrodes, their surface conditions, and the reaction time. By indirectly,
The amount of high frequency power applied, its waveform, voltage peak value, current peak value, its phase angle, the harmonic content of the voltage / current waveform, etc., or the circuit constant in the impedance matching device connected in the preceding stage The state greatly depends on the selection of the item. It is needless to say that in order to perform this operation efficiently and economically in the plasma etching process, it is essential to fully understand the above-mentioned various factors that are extremely complicated and mutually related. But,
Heretofore, there has been no satisfactory probe on the market for detecting such a large amount of electrical information in real time, simultaneously and continuously without affecting the running reaction process. The probe of the present invention not only satisfies all of these requirements, but also has the simplicity of being easily attached to a narrow portion of a device that is actually operating, and can cope with either a coaxial type or a stripline type. It also has general versatility that can be used for the majority of existing plasma etching apparatuses. Therefore, the probe of the present invention has great value as a new powerful plasma diagnostic apparatus or a monitor for a plasma reaction chamber. Hereinafter, several examples of uses and effects that apply these features are listed in a bulleted list. (A) Plasma process diagnostic monitor In particular, a single-wafer type plasma process apparatus continuously performs wafer processing, but uses the probe of the present invention, has no effect on the process result, and has a long time without heat generation of the probe itself. It was possible to monitor continuously for a stable period. Abnormalities during the process were determined based on the voltage-current waveform, voltage-current characteristics, etc., and the difference between normal and abnormal could be grasped reliably. (B) Abnormal plasma discharge detection monitor The plasma in the reaction chamber may cause a local small spark discharge for some reason, and the process itself may fail. Since the probe of the present invention enables real-time waveform observation with an oscilloscope, it can reliably detect high-speed phenomena such as spark discharge. As a result, abnormal discharge which is often overlooked was detected, which was useful for improving etching conditions. (C) End point detection monitor Conventionally, the end point of the etching process has been optically observed for the plasma spectrum. However, as a result of detecting the voltage-current characteristics of the plasma with the probe of the present invention, the end point detection monitor depends on the optical method. The end point could be easily detected. (D) Diagnosis monitor for plasma equipment differences In a factory, there are many plasma equipment used in the same process. Naturally, efficiency cannot be improved unless the characteristics of each model are uniform. As a result of detecting and comparing specific electrical characteristics using the probe of the present invention for this purpose, it was possible to reduce variations among devices so as to obtain good compatibility in all models. It can be easily inferred that the above-mentioned application examples are only a few application examples of the high-frequency signal detection probe of the present invention and have many more possibilities.
【図1】本発明の構成原理を示す構成図である。FIG. 1 is a configuration diagram showing the configuration principle of the present invention.
【図2】本発明を使用法を示す説明図である。FIG. 2 is an explanatory view showing how to use the present invention.
【図3】本発明の実施例1を示す製品の六面図である。FIG. 3 is a six-sided view of a product showing the first embodiment of the present invention.
【図4】本発明の実施例2を示す製品の六面図である。FIG. 4 is a six-sided view of a product showing Example 2 of the present invention.
1 ケース 2 伝送線路端子 3 伝送線路端子 4 伝送線路 5 伝送線路 6 トロイダルコイル 7 電圧信号端子 8 アース端子 9 電流信号端子 10 電流信号線 11 電圧信号線 12 ふた 13 ふた 14 取付金具 15 電圧検出器 16 電流検出器 17 アース線 DESCRIPTION OF SYMBOLS 1 Case 2 Transmission line terminal 3 Transmission line terminal 4 Transmission line 5 Transmission line 6 Toroidal coil 7 Voltage signal terminal 8 Ground terminal 9 Current signal terminal 10 Current signal line 11 Voltage signal line 12 Lid 13 Lid 14 Mounting bracket 15 Voltage detector 16 Current detector 17 Ground wire
Claims (1)
および負荷に接続された伝送線路端子3を装着したケー
ス1に電圧検出器15および電流検出器16を内蔵さ
せ,伝送線路端子2または3とアース端子8間の高周波
電圧およびその波形を検出すると同時に伝送線路端子
2,3間に流れる高周波電流およびその波形を検出し,
ケース1に装着された電圧信号端子7および電流信号端
子9から,この伝送線路上の同一地点,同一時点におけ
る高周波電圧値およびその波形,高周波電流値およびそ
の波形,電圧電流相互間の位相角,高周波電圧中の直流
成分,電圧波形中の高調波成分,電流波形中の高調波成
分等の電気的情報を全て一括して同時に検出しその信号
を出力することができることを特徴とし,あわせて一体
構造化による小型簡便性を追及した高周波信号検出プロ
ーブA transmission line terminal connected to a transmission line.
A voltage detector 15 and a current detector 16 are built in the case 1 in which the transmission line terminal 3 connected to the load is mounted, and a high-frequency voltage between the transmission line terminal 2 or 3 and the ground terminal 8 and its waveform are detected. Detecting the high-frequency current flowing between the transmission line terminals 2 and 3 and its waveform,
From the voltage signal terminal 7 and the current signal terminal 9 mounted on the case 1, the high-frequency voltage value and its waveform at the same point and the same time on this transmission line, the high-frequency current value and its waveform, the phase angle between the voltage and current, It is characterized by being able to simultaneously detect all the electrical information such as the DC component in the high-frequency voltage, the harmonic component in the voltage waveform, and the harmonic component in the current waveform, and output the signal at the same time. High frequency signal detection probe pursuing compactness and simplicity by structuring
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8359756A JPH10185960A (en) | 1996-12-20 | 1996-12-20 | High frequency signal detection probe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8359756A JPH10185960A (en) | 1996-12-20 | 1996-12-20 | High frequency signal detection probe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10185960A true JPH10185960A (en) | 1998-07-14 |
Family
ID=18466140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8359756A Pending JPH10185960A (en) | 1996-12-20 | 1996-12-20 | High frequency signal detection probe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10185960A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513480A (en) * | 2003-12-02 | 2007-05-24 | エムケーエス インスツルメンツ インコーポレイテッド | Characterization of high frequency measurements for on-site installation and convenience of plasma processing systems |
US7489145B2 (en) | 2005-12-14 | 2009-02-10 | Daihen Corporation | Plasma processing system |
JP2009231683A (en) * | 2008-03-25 | 2009-10-08 | Tokyo Electron Ltd | Plasma processing device and power supply rod |
JP2020115124A (en) * | 2018-12-31 | 2020-07-30 | テクトロニクス・インコーポレイテッドTektronix,Inc. | Test measurement device and signal extraction method |
-
1996
- 1996-12-20 JP JP8359756A patent/JPH10185960A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007513480A (en) * | 2003-12-02 | 2007-05-24 | エムケーエス インスツルメンツ インコーポレイテッド | Characterization of high frequency measurements for on-site installation and convenience of plasma processing systems |
JP4898454B2 (en) * | 2003-12-02 | 2012-03-14 | エムケーエス インスツルメンツ,インコーポレイテッド | High frequency measurement system for facilitating parts replacement on site and its replacement method |
US7489145B2 (en) | 2005-12-14 | 2009-02-10 | Daihen Corporation | Plasma processing system |
JP2009231683A (en) * | 2008-03-25 | 2009-10-08 | Tokyo Electron Ltd | Plasma processing device and power supply rod |
US8287689B2 (en) | 2008-03-25 | 2012-10-16 | Tokyo Electron Limited | Plasma processing apparatus and feeder rod used therein |
JP2020115124A (en) * | 2018-12-31 | 2020-07-30 | テクトロニクス・インコーポレイテッドTektronix,Inc. | Test measurement device and signal extraction method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3228816B2 (en) | Circuit board test apparatus and circuit board test method | |
WO1999041616A9 (en) | Apparatus for fast measurements of current and power with scaleable wand-like sensor | |
JPH07191080A (en) | Equipment and method to measure perfectness of electrical connection | |
JP3126414B2 (en) | Wire breakage detector for wire laying equipment | |
US4952869A (en) | Dual purpose probe for simultaneous voltage and current sampling | |
JP3479061B2 (en) | Mounting structure and method of current detection resistor | |
JPH10185960A (en) | High frequency signal detection probe | |
KR20100036567A (en) | Apparatus for detecting partial discharging signal and method for driving the same | |
US3727129A (en) | Logarithmic-response corona detector | |
US2839723A (en) | Impedance measuring device | |
JP3295863B2 (en) | Semiconductor laser modulation spectroscopy test method and apparatus therefor | |
GB2161936A (en) | Alternating current potential drop crack detection | |
JP2003121478A (en) | Voltage detection circuit for current detecting resistor | |
JP3597162B2 (en) | Apparatus and method for measuring inductance of current detection low resistor | |
JP2001349923A (en) | Insulation coating uniformity tester and tester | |
JP2001330631A (en) | Circuit board inspecting method and device therefor | |
US5136241A (en) | Device for sensing unwanted electric and magnetic fields in a remote sensor electrical lead | |
JPH08101262A (en) | Magnetic field waveform measurement system | |
JPH07209372A (en) | Method and apparatus for measuring current | |
JP3818299B2 (en) | Electronic circuit inspection equipment | |
Black et al. | The application of the pulse discrimination system to the measurement of partial discharges in insulation under noisy conditions | |
JPH0718908B2 (en) | Insulation test equipment for power cables | |
RU2240571C1 (en) | Device for controlling technical condition of transformer windings | |
JPH05256892A (en) | Method and instrument for measuring cable impedance | |
JPS59126961A (en) | Measuring device of large current |