JPH10185887A - Method and device for measuring supplied calorific value, and gas manufacturing equipment - Google Patents
Method and device for measuring supplied calorific value, and gas manufacturing equipmentInfo
- Publication number
- JPH10185887A JPH10185887A JP8343020A JP34302096A JPH10185887A JP H10185887 A JPH10185887 A JP H10185887A JP 8343020 A JP8343020 A JP 8343020A JP 34302096 A JP34302096 A JP 34302096A JP H10185887 A JPH10185887 A JP H10185887A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- measured
- calorific value
- supply
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000007789 gas Substances 0.000 claims abstract description 232
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 94
- 238000005259 measurement Methods 0.000 claims abstract description 43
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 19
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 19
- 230000020169 heat generation Effects 0.000 claims description 17
- 238000009795 derivation Methods 0.000 claims description 8
- 230000001902 propagating effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 7
- 239000003345 natural gas Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 239000003209 petroleum derivative Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000006200 vaporizer Substances 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001028 reflection method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、都市ガス製造プラ
ント等で行われいる製品ガスを製造するとともに、製造
された製品ガスを消費者に販売する場合に必要となる供
給熱量の測定技術に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for measuring a supply heat quantity required for producing a product gas used in a city gas production plant or the like and for selling the produced product gas to consumers.
【0002】[0002]
【従来の技術】今日、所謂、都市ガスを消費者に供給す
る場合にあっては、熱量調整済の製品ガスを供給すると
ともに、その供給過程で、供給量(流量)を測定して、
ガス消費量に対する請求を求めるものとしている。一
方、例えば、発熱プラント、焼却炉プラント等の大口の
消費者に対して、熱量調整済の製品ガスを供給すること
なく、発熱量がある程度の範囲内にある製品ガスを供給
して、需要に供することも提案されている。このような
場合にあっても、ガス消費量に対する請求が必要となる
が、この場合も、基本的には、供給された熱量単位でこ
れをおこなうのが合理的である。このような状況から、
供給熱量を測定することが必要であるが、従来、この供
給熱量の測定は、製品ガスの発熱量が基準値の範囲内に
あることを仮定し、ガスの供給量を測定することで、こ
の量を供給熱量に換算して、これを求めることとしてい
る。2. Description of the Related Art Today, when supplying so-called city gas to a consumer, a product gas whose calorific value has been adjusted is supplied, and in the supply process, the supply amount (flow rate) is measured.
A request for gas consumption is required. On the other hand, for example, a large-scale consumer such as an exothermic plant or an incinerator plant is supplied with a product gas having a calorific value within a certain range without supplying a calorie-adjusted product gas to meet demand. It has also been proposed to provide. Even in such a case, it is necessary to charge for the gas consumption, but in this case, it is basically reasonable to do this in units of the supplied heat. From this situation,
It is necessary to measure the amount of heat supplied, but conventionally, the measurement of the amount of heat supplied assumes that the calorific value of the product gas is within the range of the reference value, and measures the amount of gas supply. The amount is converted to the amount of heat supplied, and this is determined.
【0003】[0003]
【発明が解決しようとする課題】従って、上記した供給
熱量の測定方法にあっては、例えば、発熱量が所定の範
囲内にはあるが、厳密な意味で一定と見なせない状態に
ある測定対象ガスを大口需要者に供給する場合に、的確
に対応することが難しい。Accordingly, in the above-described method for measuring the amount of heat supplied, for example, a method in which the calorific value is within a predetermined range but cannot be considered to be strictly constant. When supplying the target gas to large customers, it is difficult to respond appropriately.
【0004】一方、従来、製品ガスの発熱量の測定は、
製品ガスを製造ラインから抜きとり、大気圧状態までサ
ンプルガスの圧力を減圧して、ラウター式比重計を使用
して、比重を計測することにより行われている。従っ
て、このような手法にあっては、以下のような問題があ
った。 (1) 製造ラインとは別個の比重計を用いた測定とな
り、製造ラインでのリアルタイムの測定が行えない。従
って、発熱量制御は、タイムラグを伴った、断続的な制
御となり、改良の余地がある。 (2) 上記の比重計を使用することとなるため、計測
が大気圧状態での計測となり、高圧状態にある製造ライ
ンでの実情を代表しにくい場合もある。 (3) さらに、測定に使用した大気圧状態まで減圧し
たサンプルガスは、放散、廃棄するよりない。 (4) さらに、従来型の上記の比重計を使用する測定
方法にあっては、精度に改良の余地があり、発熱量制御
には、改善の余地がある。従って、この手法から確定さ
れる発熱量を使用して、供給熱量の確定をおこなうに
は、サンプリングの回数、タイムラグ、測定精度、サン
プルガスの廃棄等の問題があり、事実問題として、この
方法で発熱量を、リアルタイム、オンラインで測定しな
がら、供給熱量を求めるのは、難点が多い。On the other hand, conventionally, the calorific value of a product gas has been measured by:
This is performed by extracting product gas from a production line, reducing the pressure of the sample gas to atmospheric pressure, and measuring the specific gravity using a Lauter-type hydrometer. Therefore, such a method has the following problems. (1) Measurement is performed using a hydrometer separate from the production line, and real-time measurement cannot be performed on the production line. Therefore, the calorific value control is an intermittent control accompanied by a time lag, and there is room for improvement. (2) Since the above-described hydrometer is used, the measurement is performed in the atmospheric pressure state, and it may be difficult to represent the actual situation in the production line in the high pressure state. (3) Furthermore, the sample gas depressurized to the atmospheric pressure state used for the measurement can be dissipated and discarded. (4) Further, in the conventional measuring method using the specific gravity meter, there is room for improvement in accuracy, and there is room for improvement in heat generation control. Therefore, using the calorific value determined from this method to determine the amount of heat to be supplied involves problems such as the number of samplings, time lag, measurement accuracy, and sample gas disposal. Determining the amount of heat to be supplied while measuring the heat generation in real time and online has many difficulties.
【0005】本発明の目的は、上記の様々な問題を解消
するとともに、特に、製造ライン上で、リアルタイムの
連続的な供給熱量測定を可能とする供給熱量測定方法及
び装置を得ることにあり、さらに、製造ライン上で、リ
アルタイムの連続的な供給熱量測定をおこなうガス製造
設備を得ることにある。[0005] It is an object of the present invention to solve the above-mentioned various problems, and in particular, to provide a method and an apparatus for measuring the amount of heat supplied, which enable continuous real-time measurement of the amount of heat supplied on a production line. It is still another object of the present invention to provide a gas production facility for real-time continuous measurement of supplied heat on a production line.
【0006】[0006]
【課題を解決するための手段】この目的を達成するため
の本発明による、メタンを主成分とし、メタン以外の炭
化水素ガスを含む混合ガスである測定対象ガス(これ
が、実施上は製品ガスである)の供給熱量を測定する供
給熱量測定方法の特徴手段は、請求項1に記載されてい
るように、前記メタンと前記メタン以外の炭化水素ガス
とが異なった割合で混合された複数の標準ガスについて
各々の音速(ここで音速とはガス中での音波の伝播速度
をいい、以下同じ)と発熱量との関係から求まる音速−
発熱量関係指標を予め求めておき、前記測定対象ガスの
音速と供給量とを測定し、求められた前記測定対象ガス
の音速から、前記音速−発熱量関係指標に基づいて前記
測定対象ガスの発熱量を求めるとともに、求められた前
記測定対象ガスの発熱量と測定された前記供給量とか
ら、前記供給熱量を求めることにある。According to the present invention for achieving this object, a gas to be measured which is a mixed gas containing methane as a main component and a hydrocarbon gas other than methane (this is a product gas in practice) The method according to claim 1, further comprising the step of: measuring a supply calorific value of the methane and the hydrocarbon gas other than the methane at different ratios. The sound speed obtained from the relationship between the sound speed of each gas (here, the sound speed means the propagation speed of a sound wave in a gas; the same applies hereinafter) and the calorific value-
The calorific value related index is obtained in advance, the sound speed and supply amount of the gas to be measured are measured, and from the obtained sound speed of the gas to be measured, based on the sound speed-calorific value related index, The calorific value is determined, and the supplied calorific value is determined from the calorific value of the gas to be measured and the measured supply amount.
【0007】この手法にあっても、供給熱量の測定にあ
たって、測定対象ガス固有の物性である発熱量と、供給
量とが測定され、例えば、これらの積として供給熱量を
求める。 ここで、本願方法にあっては、発熱量の測定
方法が独特の手法で行われる。即ち、ここで採用する手
法は、ベースガス(メタン)とメタン以外のガスとの混
合ガスの発熱量を計測したい場合、この混合ガスの音速
を測定すれば、この混合ガスの発熱量を知ることができ
るという知見に基づいている。この知見は、今般、発明
者が新たに見出したものである。この知見について、簡
単に説明すると、単一のガス物質(純ガスと呼ぶ)の音
速は、下式に従う。[0007] Even in this method, the calorific value, which is a physical property of the gas to be measured, and the supply amount are measured when measuring the supply heat amount, and the supply heat amount is obtained as, for example, the product of these. Here, in the method of the present invention, the method of measuring the calorific value is performed by a unique method. That is, the method adopted here is to measure the calorific value of a mixed gas of a base gas (methane) and a gas other than methane, and to know the calorific value of the mixed gas by measuring the sound velocity of the mixed gas. Is based on the finding that This finding has recently been found by the inventors. To briefly explain this finding, the sound velocity of a single gas substance (called pure gas) follows the following equation.
【0008】[0008]
【数1】 (Equation 1)
【0009】さらに、複数のガス物質が混合されてなる
混合ガスの音速は、下式に従う。Further, the sound velocity of a mixed gas obtained by mixing a plurality of gas substances follows the following equation.
【0010】[0010]
【数2】 (Equation 2)
【0011】従って、音速は、混合ガスを成す原料物質
の組成比に関連した情報となっており、逆に音速を測定
することで、混合ガスの分子量を知ることができ、結果
的に発熱量を知ることができる。図4に示すように、本
願が具体的に対象とする熱量調整を経た天然ガスにあっ
ては、音速と発熱量は、一次もしくは二次の相関式とで
きる。そこで、本願にあっては、発熱量の測定にあたっ
ては、予め求められている関係指標に従って、音速から
発熱量を求める。このようにして求められた測定対象ガ
スの発熱量を使用するとともに、測定対象ガスの供給量
とに基づいて、供給熱量を求めるのである。この方法に
あっては、発熱量を、測定対象ガスの音速から求めるも
のであるため、ガス製造プラントにある測定対象ガスの
供給配管内にあるガスを対象として、音速の測定をその
状態のままおこなうことができる。さらに、音速から発
熱量への変換は非常に短時間に行えるため、発熱量のリ
アルタイム、連続的な、測定が可能である。さらに、測
定に供したサンプルガスを廃棄する必要もない。一方、
供給量測定は、比較的確立された技術である流量測定で
行えるため、結果的に、供給熱量を本願の目的に合致し
た状態で測定することができる。また、音速−発熱量関
係指標を予め用意しておく段階で、サンプル数を確保す
ることで、高い測定精度を確保でき、結果的に良好な発
熱量測定をおこなうことができ、この点からも、供給熱
量測定を精度よくできるようになった。Therefore, the sound speed is information relating to the composition ratio of the raw material material constituting the mixed gas. Conversely, by measuring the sound speed, the molecular weight of the mixed gas can be known, and as a result, the calorific value You can know. As shown in FIG. 4, in the natural gas which has been subjected to the calorific value adjustment specifically targeted by the present application, the sound velocity and the calorific value can be expressed by a primary or secondary correlation equation. Therefore, in the present application, when measuring the calorific value, the calorific value is calculated from the speed of sound in accordance with a relation index determined in advance. The calorific value of the gas to be measured thus obtained is used, and the amount of heat to be supplied is calculated based on the supply amount of the gas to be measured. In this method, since the calorific value is obtained from the sound velocity of the gas to be measured, the measurement of the sound velocity of the gas in the supply pipe of the gas to be measured in the gas manufacturing plant is performed as it is. Can do it. Further, since the conversion from the speed of sound to the calorific value can be performed in a very short time, the calorific value can be measured in real time and continuously. Further, there is no need to discard the sample gas used for the measurement. on the other hand,
Since the supply amount measurement can be performed by the flow measurement, which is a relatively established technique, the supply heat amount can be measured in a state that meets the purpose of the present application. Also, at the stage where the sound velocity-calorific value relation index is prepared in advance, by securing the number of samples, high measurement accuracy can be secured, and as a result, good calorific value measurement can be performed. In addition, the calorific value measurement can be performed with high accuracy.
【0012】さらに、上述の供給熱量測定方法におい
て、請求項2に記載されているように、 一対の超音波
送受信器を備え、一方の超音波送受信器から他方の超音
波送受信器へ前記測定対象ガスの流れ内を超音波が伝播
する伝播時間を双方向で捕らえ、得られる一対の伝播時
間から前記測定対象ガスの流速を測定する超音波流速計
を使用して、前記一対の伝播時間を検出し、検出される
前記一対の伝播時間から前記測定対象ガスの音速と流速
を求めるとともに、求められた前記音速から前記発熱量
を、前記流速から前記供給量を求めることが好ましい。
超音波流速計は、流体の流速を超音波を利用して測定す
る手法として確立された技術であり、この流速計にあっ
ては、超音波を流れ方向に沿う方向と、これに逆行する
方向に伝播させて、互いの伝播時間から流速を求める。
ここで得られる一対の伝播時間情報は、流体の音速に関
係した情報であり、この一対の伝播時間から流体の音速
を求めることができる。従って、この構成の供給熱量測
定方法にあっては、超音波流速計からの検出情報に基づ
いて、音速導出手段が測定対象ガスの音速を求め、制御
に有用な情報である発熱量を求める。一方、供給量に関
しては、測定される流速から、供給量を求め、これを利
用する。結果、例えば、測定対象ガスの供給流路に、超
音波流量計を備え、この超音波流量計の出力情報に基づ
いて、測定対象ガスの発熱量と供給量を求めることによ
り、このような機器の追加のみで供給熱量を合理的に求
めることができる。Further, in the above-described method for measuring the amount of supplied heat, as described in claim 2, a pair of ultrasonic transceivers are provided, and the measurement object is transferred from one ultrasonic transceiver to the other ultrasonic transceiver. The propagation time of the ultrasonic wave propagating in the gas flow is captured in both directions, and the pair of propagation times is detected using an ultrasonic current meter that measures the flow velocity of the measurement target gas from the obtained pair of propagation times. It is preferable that the sound speed and the flow velocity of the gas to be measured are obtained from the pair of detected propagation times, and the calorific value is obtained from the obtained sound velocity, and the supply amount is obtained from the flow velocity.
An ultrasonic anemometer is a technology that has been established as a method of measuring the flow velocity of a fluid using ultrasonic waves.In this anemometer, the ultrasonic wave flows in a direction along the flow direction and in a direction opposite to the direction of the flow. And the flow velocity is obtained from each other's propagation time.
The pair of propagation time information obtained here is information related to the sound speed of the fluid, and the sound speed of the fluid can be obtained from the pair of propagation times. Therefore, in the supply calorific value measuring method having this configuration, the sonic speed deriving means obtains the sonic speed of the gas to be measured based on the detection information from the ultrasonic current meter, and obtains the calorific value which is useful information for control. On the other hand, with respect to the supply amount, the supply amount is obtained from the measured flow velocity and used. As a result, for example, an ultrasonic flowmeter is provided in the supply flow path of the measurement target gas, and based on the output information of the ultrasonic flowmeter, the calorific value and the supply amount of the measurement target gas are obtained. The heat quantity to be supplied can be reasonably obtained only by adding.
【0013】さて、本願に係わる、メタンを主成分と
し、メタン以外の炭化水素ガスを含む混合ガスである測
定対象ガスの供給熱量を測定する供給熱量測定装置の特
徴構成は、請求項3に記載されているように、以下のと
おりである。前記メタンと前記メタン以外の炭化水素ガ
スとが異なった割合で混合された複数の標準ガスについ
て各々の音速と発熱量との関係から求まる音速−発熱量
関係指標を備え、測定対象ガスの音速と供給量とを測定
する音速/供給量測定手段を備え、前記音速/供給量測
定手段により測定される前記測定対象ガスの音速から、
前記音速−発熱量関係指標に基づいて前記測定対象ガス
の発熱量を求める発熱量導出手段を備えるとともに、前
記発熱量導出手段により得られる前記測定対象ガスの発
熱量と前記音速/供給量測定手段により得られる前記供
給量とから、前記供給熱量を求める供給熱量導出手段を
備えるのである。この供給熱量測定装置は、先に説明し
た手法に基づいて、供給熱量の測定をおこなうこととな
るが、音速/供給量測定手段が測定対象である測定対象
ガスの音速と供給量を計測し、発熱量導出手段が、前記
音速から予め求められている音速−発熱量関係指標に基
づいて、発熱量を導出し、供給熱量導出手段が測定対象
ガスの発熱量と供給量とから、供給熱量を求める。従っ
て、この装置は、上述の方法で供給熱量測定をおこなう
こととなるため、供給熱量のリアルタイム、連続的な、
測定、監視が可能となる。さらに、その測定精度も優良
とでき、非常に有効な供給熱量測定装置を得ることがで
きた。The characteristic constitution of the supply calorimeter for measuring the supply calorie of the gas to be measured, which is a mixed gas containing methane as a main component and a hydrocarbon gas other than methane, according to the present invention, is described in claim 3. It is as follows. A sound speed-calorific value relationship index obtained from the relationship between each sound speed and the calorific value for a plurality of standard gases in which the methane and the hydrocarbon gas other than the methane are mixed at different ratios, and the sound speed of the gas to be measured. A sound velocity / supply rate measuring means for measuring the supply rate and the sound velocity of the gas to be measured measured by the sound velocity / supply rate measuring means;
A calorific value deriving means for calculating a calorific value of the gas to be measured based on the sound velocity-calorific value relation index; and a calorific value of the gas to be measured obtained by the calorific value deriving means and the sonic / supply amount measuring means. And the supplied heat amount deriving means for obtaining the supplied heat amount from the supplied amount obtained by the above. This supply calorie measuring device measures the supply calorie based on the method described above, and the sonic / supply amount measuring means measures the sonic velocity and supply amount of the gas to be measured which is the measurement target, The calorific value deriving means derives a calorific value based on a sound velocity-calorific value relation index previously obtained from the sound speed, and the supplied calorific value deriving means calculates the supplied calorific value from the calorific value and the supplied amount of the gas to be measured. Ask. Therefore, this device performs the calorific value measurement in the above-described manner, so that the calorific value can be measured in real time, continuously,
Measurement and monitoring are possible. Further, the measurement accuracy was excellent, and a very effective supply calorimeter could be obtained.
【0014】この供給熱量測定装置にあっても、請求項
4に記載されているように、一対の超音波送受信器を備
え、一方の超音波送受信器から他方の超音波送受信器へ
前記測定対象ガス流れ内を超音波が伝播する伝播時間を
双方向で捕らえ、得られる一対の伝播時間から前記測定
対象ガスの流速を測定する超音波流速計を備え、前記音
速/供給量測定手段が、前記超音波流速計と、前記超音
波流速計により得られる前記一対の伝播時間から前記測
定対象ガスの音速を導出する音速導出手段と、前記超音
波流速計により得られる流速から前記供給量を導出する
供給量導出手段とから構成されていることが好ましい。
先にも説明したように、超音波流速計は、流体の流速を
超音波を利用して測定する手法として確立された技術で
あり、この流速計にあっては、超音波を流れ方向に沿う
方向と、これに逆行する方向に伝播させて、互いの伝播
時間から流速を求める。ここで得られる一対の伝播時間
情報は、流体の音速に関係した情報であり、この一対の
伝播時間から流体の音速を求めることができる。従っ
て、この構成の供給熱量測定装置にあっては、超音波流
速計からの検出情報に基づいて、音速/供給量測定手段
に備えられる音速導出手段が測定対象ガスの音速を求
め、有用な情報である発熱量を求める。一方、供給量に
関しては、供給量導出手段が測定される流速から、供給
量を求める。そして、これらの情報が供給熱量の導出に
使用されるのである。結果、例えば、測定対象ガスの供
給流路に、超音波流量計を備え、この超音波流量計の出
力情報に基づいて、測定対象ガスの発熱量と供給量を求
めることにより、このような機器の追加のみで供給熱量
を合理的に求めることができる。In this supply calorimeter, as described in claim 4, a pair of ultrasonic transceivers is provided, and the measuring object is transferred from one ultrasonic transceiver to the other ultrasonic transceiver. An ultrasonic current meter that captures the propagation time of the ultrasonic wave in the gas flow in two directions and measures the flow velocity of the gas to be measured from a pair of obtained propagation times; An ultrasonic current meter, a sound velocity deriving unit that derives a sound velocity of the gas to be measured from the pair of propagation times obtained by the ultrasonic current meter, and the supply amount is derived from a flow velocity obtained by the ultrasonic current meter. It is preferable that it is constituted by supply amount deriving means.
As described above, the ultrasonic velocimeter is a technique established as a method of measuring the flow velocity of a fluid using ultrasonic waves, and in this velocimeter, the ultrasonic waves flow along the flow direction. Propagation is performed in the direction and the direction opposite thereto, and the flow velocity is obtained from the propagation time of each other. The pair of propagation time information obtained here is information related to the sound speed of the fluid, and the sound speed of the fluid can be obtained from the pair of propagation times. Therefore, in the supply calorimeter of this configuration, based on the detection information from the ultrasonic anemometer, the sonic speed deriving unit provided in the sonic / supply amount measuring unit obtains the sonic speed of the gas to be measured, and provides useful information. Is obtained. On the other hand, regarding the supply amount, the supply amount is obtained from the flow rate measured by the supply amount deriving means. Then, such information is used to derive the amount of supplied heat. As a result, for example, an ultrasonic flowmeter is provided in the supply flow path of the measurement target gas, and based on the output information of the ultrasonic flowmeter, the calorific value and the supply amount of the measurement target gas are obtained. The heat quantity to be supplied can be reasonably obtained only by adding.
【0015】さて、本願に於ける、メタンを主成分と
し、メタン以外の炭化水素ガスを含む混合ガスである測
定対象ガスを得るガス製造設備を、以下のようにするこ
とが好ましい。即ち、前記メタンと前記メタン以外の炭
化水素ガスが異なった割合で混合された複数の標準ガス
について各々の音速と発熱量との関係から求まる音速−
発熱量関係指標を備え、供給流路内にある前記測定対象
ガスの音速と供給量とを求める音速/供給量測定手段
と、前記音速/供給量測定手段により求められた前記測
定対象ガスの音速から、前記音速−発熱量関係指標に基
づいて前記測定対象ガスの発熱量を求める発熱量導出手
段を備え、求められた前記測定対象ガスの発熱量と前記
供給量とから、供給熱量を求める供給熱量導出手段を備
えるのである。このガス製造設備は、これまで説明して
きた供給熱量測定方法を使用して、供給熱量を、オンラ
イン、リアルタイムで特定できる状態で、製品ガスを製
造、供給することができ、好ましいプラントの運転状態
を確保できる。このガス製造設備の場合も、請求項6に
記載されているように、一対の超音波送受信器を備え、
一方の超音波送受信器から他方の超音波送受信器へ前記
測定対象ガス流れ内を超音波が伝播する伝播時間を双方
向で捕らえ、得られる一対の伝播時間から前記測定対象
ガスの流速を測定する超音波流速計を備え、前記音速/
供給量測定手段が、前記超音波流速計と、前記超音波流
速計により得られる前記一対の伝播時間から前記測定対
象ガスの音速を導出する音速導出手段と、前記超音波流
速計により得られる流速から前記供給量を導出する供給
量導出手段とから構成されていることが好ましい。この
場合も、超音波流速計を利用して、音速と流速を求め、
この音速から、発熱量を求めるとともに、流速から供給
量を求め、供給熱量測定をおこなうこととなり、既存の
技術を利用して、供給熱量を容易に測定するガス製造設
備を得ることができた。当然、この供給熱量の、監視、
制御も良好におこなうことができる。さらに、上述のガ
ス製造設備の場合、請求項7に記載されているように、
前記測定対象ガスが、熱量調整されたガスであることが
好ましい。本願の供給熱量測定方法は、基本的には、測
定対象ガスが熱量調整されたガスであるかどうかを問題
としないが、ガス製造設備にあっては、ラフな意味で熱
量調整をおこなっう場合もある。このような場合にあっ
ても、本願のガス製造設備にあっては、供給熱量を的確
に計測把握して、製品ガスの供給をおこなうことができ
る。Now, in the present application, it is preferable that a gas production facility for obtaining a gas to be measured, which is a mixed gas containing methane as a main component and a hydrocarbon gas other than methane, is as follows. That is, for a plurality of standard gases in which the methane and the hydrocarbon gas other than the methane are mixed at different ratios, the sound speed obtained from the relationship between the sound speed and the calorific value-
A sound speed / supply amount measuring unit that includes a calorific value related index and determines a sound speed and a supply amount of the gas to be measured in a supply flow path; and a sound speed of the measurement target gas obtained by the sound speed / supply amount measuring unit. And a calorific value deriving means for calculating a calorific value of the gas to be measured based on the sound velocity-calorific value relation index, and a supply for calculating a calorific value from the calorific value of the gas to be measured and the supply amount. It has a calorific value deriving means. This gas production facility can produce and supply product gas in a state where the supplied calorie can be specified online and in real time using the supplied calorific value measurement method described above, and the preferable plant operating condition can be determined. Can be secured. In the case of this gas production facility, as described in claim 6, a pair of ultrasonic transceivers is provided,
Capturing the propagation time during which the ultrasonic wave propagates in the flow of the gas to be measured from one ultrasonic transceiver to the other ultrasonic transceiver in two directions, and measuring the flow velocity of the gas to be measured from the obtained pair of propagation times Equipped with an ultrasonic velocimeter,
Supply amount measuring means, the ultrasonic flow meter, sound velocity deriving means for deriving the sound velocity of the gas to be measured from the pair of propagation times obtained by the ultrasonic flow meter, the flow velocity obtained by the ultrasonic flow meter And a supply amount deriving unit that derives the supply amount from. In this case, too, the sound velocity and the flow velocity are obtained using an ultrasonic current meter,
The calorific value was determined from the sound velocity, the supply amount was determined from the flow velocity, and the supplied heat amount was measured. By using the existing technology, a gas production facility capable of easily measuring the supplied heat amount could be obtained. Naturally, monitoring of this heat supply,
Control can be performed well. Further, in the case of the above gas production facility, as described in claim 7,
It is preferable that the gas to be measured is a gas whose calorific value has been adjusted. The supply calorie measurement method of the present application basically does not matter whether the gas to be measured is a calorie-adjusted gas, but in a gas production facility, the calorie adjustment is performed in a rough sense. There is also. Even in such a case, in the gas production facility of the present invention, it is possible to supply the product gas by accurately measuring and grasping the amount of heat supplied.
【0016】[0016]
【発明の実施の形態】本願の実施の形態を、以下、図面
に基づいて説明する。図1は、本願の供給熱量測定装置
1を備えたガス製造設備2の構成を模式的に描いたもの
である。このガス製造設備2は、LNGタンク3、LN
G気化器4を上流側に備えた供給流路5を備えるととも
に、この供給流路5に、熱量調整用の石油ガスを添加す
る調整用ガス添加機構6と、この調整用ガス添加機構6
よりも下流側に備えられる製品ガス(これが測定対象ガ
スとなる)の発熱量と供給量との測定用の測定部7を備
えて構成されている。そして、測定部7において得られ
た測定情報に基づいて、製品ガスの発熱量及び供給量を
求め、この発熱量と供給量から、供給状態にある製品ガ
スの供給熱量を求めることができるようになっている。
さらに、求められた発熱量と製品ガスに求められる発熱
量である目標発熱量との関係から、前記調整用ガス添加
機構6に、調整制御指令が発生されるように構成されて
いる。従って、このガス製造設備2は、発熱量に関して
フィードバックがかかる様に構成されており、製品ガス
の発熱量品質を良好に保つことができるとともに、供給
流路5から供給される製品ガスの供給熱量を求めること
ができる。ここで、本願の供給熱量測定、監視、さらに
発熱量制御は、オンライン、オンタイムの連続測定、監
視、制御であることに特徴がある。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 schematically illustrates a configuration of a gas production facility 2 provided with a supply calorimeter 1 according to the present invention. The gas production facility 2 includes an LNG tank 3, an LN
A supply flow path 5 having a G vaporizer 4 on the upstream side is provided, and an adjustment gas addition mechanism 6 for adding a petroleum gas for calorie adjustment to the supply flow path 5, and an adjustment gas addition mechanism 6
It is provided with a measuring unit 7 for measuring the calorific value and supply amount of the product gas (which is the gas to be measured) provided on the downstream side. Then, based on the measurement information obtained by the measuring unit 7, the calorific value and the supply amount of the product gas are obtained, and the calorific value of the product gas in the supply state can be obtained from the calorific value and the supply amount. Has become.
Further, an adjustment control command is issued to the adjustment gas addition mechanism 6 based on a relationship between the obtained heat generation amount and a target heat generation amount which is a heat generation amount required for the product gas. Therefore, the gas production equipment 2 is configured to provide feedback on the calorific value, can maintain good calorific value quality of the product gas, and supply heat quantity of the product gas supplied from the supply passage 5. Can be requested. Here, the measurement and monitoring of the supplied calorific value and the control of the calorific value of the present application are characterized in that they are continuous measurement, monitoring and control of online and on-time.
【0017】さて、上記の測定、制御を可能とするため
に、前述の供給流路5で、前記調整用ガス添加機構6の
合流部8より上流側に、天然ガスの流量を測定する天然
ガス流量測定器9が備えられている。一方、前述の調整
用ガス添加機構6は、LPGタンク10、LPG気化器
11を上流側に備えた添加用流路12を備えるととも
に、この添加用流路12に流量制御弁13と石油ガス流
量測定器14を備えている。従って、この設備2にあっ
ては、天然ガスの流量、これに対する石油ガスの流量が
常時モニターされ、供給流路下流側に混合状態で送り出
される両者の量比を検出することができる。製品ガスの
発熱量を制御する必要がある場合、この量比が問題とな
るが、天然ガスの供給量を検出しながら、流量制御弁1
3の開度を適切に調整することで、両者の流量比(引い
ては発熱量)を調整することができる。この調整をおこ
なう場合に、前記測定部7において測定される情報か
ら、前記調整用ガス添加機構6への調整制御指令を発生
される。さらに、発熱量の制御系とは別に、供給熱量の
測定系が設けられている。この系は、発熱量の測定と同
時に、測定部7を通過する製品ガスの流量(これが供給
量)を測定し、この発熱量と供給量の積として供給熱量
を求め、出力装置30(具体的には表示装置)に出力す
るものである。Now, in order to enable the above measurement and control, the natural gas for measuring the flow rate of the natural gas is provided in the above-mentioned supply flow path 5 upstream of the junction 8 of the adjusting gas addition mechanism 6. A flow meter 9 is provided. On the other hand, the above-described adjusting gas addition mechanism 6 includes an addition flow path 12 provided with an LPG tank 10 and an LPG vaporizer 11 on the upstream side, and a flow control valve 13 and a petroleum gas flow rate. A measuring device 14 is provided. Therefore, in the facility 2, the flow rate of the natural gas and the flow rate of the petroleum gas with respect to the natural gas are constantly monitored, and it is possible to detect the ratio of the quantity of the two supplied to the downstream side of the supply flow path in a mixed state. When it is necessary to control the calorific value of the product gas, this ratio becomes a problem.
By appropriately adjusting the opening degree of No. 3, it is possible to adjust the flow rate ratio between the two (and, consequently, the calorific value). When performing this adjustment, an adjustment control command to the adjustment gas addition mechanism 6 is generated from information measured by the measurement unit 7. Further, a measuring system for the amount of supplied heat is provided separately from the control system for the amount of generated heat. This system measures the flow rate of the product gas passing through the measuring unit 7 (this is the supply amount) at the same time as the measurement of the heat generation amount, determines the supply heat amount as the product of the heat generation amount and the supply amount, and outputs the output device 30 (specifically, Is output to a display device.
【0018】以上要約すると、本願のガス製造設備2
は、メタンを主成分とするベースガス原料(この例では
天然ガス)が流れる供給流路5を備え、この供給流路内
にあるベースガス原料に、メタンより発熱量の大きい熱
量調整用ガス原料(この例では石油ガス)を、添加量を
調整しながら添加する調整用ガス添加機構6を備え、熱
量調整された製品ガスを得る構成となっている。そし
て、この供給熱量測定をおこなうために、前述の供給熱
量測定装置1が設けられているのであるが、この供給熱
量測定装置1は、図1、2に示すように、測定部7に備
えられる超音波流速計15、温度計16a、圧力計16
bと、これらの計器からの測定情報に従って、供給熱量
を求める手段とから構成されている。この手段は、マイ
クロコンピュータや半導体メモリ等を主要な機器として
構築される。さらに、発熱量制御用に、導出される発熱
量から前記調整制御指令を生成して、調整用ガス添加機
構6にこの指令を発令する調整制御指令生成手段21も
備えられている。この構成について説明すると、図1に
示すように、記憶手段17a、この記憶手段17aと共
に働く指標生成手段17bを備え、さらに前記超音波流
速計15及び音速導出手段18aと供給量導出手段18
bを備えた音速供給量測定手段19、発熱量導出手段2
0、供給熱量導出手段22、先に説明した調整制御指令
生成手段21が備えられている。ここで、記憶手段17
aは発熱量の導出に必要な情報を記憶したものであり、
指標生成手段17bは後述する図4に示すような音速−
発熱量指標を生成するものであり、音速供給量測定手段
19は製品ガスの音速及び供給量を求めるものであり、
前記発熱量導出手段20は求められた音速から発熱量を
導出するものであり、供給熱量導出手段22は、求めら
れた発熱量と供給量から供給熱量を求めるものであり、
前記調整制御指令生成手段21は、求められた発熱量か
ら調整制御指令を生成するものである。In summary, the gas production facility 2 of the present application
Has a supply flow path 5 through which a base gas raw material (natural gas in this example) containing methane as a main component flows, and a calorie adjusting gas raw material having a larger calorific value than methane is added to the base gas raw material in the supply flow path. (In this example, petroleum gas) is provided with an adjusting gas addition mechanism 6 that adjusts the amount of addition to obtain a product gas whose calorific value has been adjusted. The above-mentioned supplied calorie measuring device 1 is provided to perform the supplied calorie measurement. The supplied calorie measuring device 1 is provided in the measuring section 7 as shown in FIGS. Ultrasonic flowmeter 15, thermometer 16a, pressure gauge 16
b and means for determining the amount of heat supplied in accordance with the measurement information from these instruments. This means is constructed using a microcomputer, a semiconductor memory, and the like as main devices. Further, an adjustment control command generating means 21 for generating the adjustment control command from the derived heat value and issuing the command to the adjustment gas addition mechanism 6 is provided for controlling the heat value. This configuration will be described below. As shown in FIG. 1, a storage unit 17a, an index generation unit 17b working together with the storage unit 17a, the ultrasonic flowmeter 15, the sound velocity derivation unit 18a, and the supply amount derivation unit 18 are provided.
b, sonic supply amount measuring means 19 provided with b, calorific value deriving means 2
0, a supply heat amount deriving unit 22, and the adjustment control command generating unit 21 described above are provided. Here, the storage unit 17
a stores information necessary for deriving the calorific value,
The index generating means 17b calculates a sound speed as shown in FIG.
The heat generation amount index is generated, and the sonic supply amount measuring means 19 is for obtaining the sonic speed and supply amount of the product gas,
The calorific value deriving means 20 is for deriving a calorific value from the determined sound speed, and the supplied calorific value deriving means 22 is for calculating a supplied calorific value from the determined calorific value and the supplied amount.
The adjustment control command generation means 21 generates an adjustment control command from the obtained heat value.
【0019】以下、それぞれの手段の構成、働きについ
てさらに詳細に説明する。前記記憶手段17aは、メタ
ンとメタン以外の炭化水素ガスが異なった割合で混合さ
れた複数の標準ガス各々の音速と発熱量との関係から求
まる音速−発熱量関係指標を導出できる情報を記憶して
いる。このような音速−発熱量関係指標の一例を図4に
示した。同図において、実線及び破線で示されている相
関線(1次相関式及び2次相関式として表すことができ
る)が、このような指標に相当する。この音速−発熱量
関係指標の自動生成は前述の指標生成手段17bによっ
て行われるが、まずこれに関して説明する。この自動生
成には、測定対象ガスの温度と圧力が必要であるが、こ
れらの情報は、温度計16a及び圧力計16bから得る
ことができる。前述の記憶手段17aには、予め発熱量
の判明した複数の標準ガスの音速−温度−圧力の関係指
標(図3に示す)が記憶されている。そして、指標生成
手段17bによる処理にあっては、図3に示す音速−温
度−圧力の関係パネル上から、各発熱量を有するガスに
対する音速が求められ、これが、発熱量と音速に関して
整理されて、図4に示すような音速−発熱量関係指標が
生成される。この指標を使用することにより、例えば、
音速が求まった場合、同図矢印付一点鎖線で示すよう
に、音速から、ガスの発熱量を導き出すことができる。Hereinafter, the configuration and operation of each means will be described in more detail. The storage unit 17a stores information that can derive a sound speed-calorific value relationship index obtained from the relationship between the sound speed and the calorific value of each of a plurality of standard gases in which methane and a hydrocarbon gas other than methane are mixed at different ratios. ing. FIG. 4 shows an example of such a sound speed-calorific value relation index. In the figure, a correlation line (which can be expressed as a first-order correlation expression and a second-order correlation expression) indicated by a solid line and a broken line corresponds to such an index. The automatic generation of the sound speed-calorific value relation index is performed by the above-described index generation means 17b, and this will be described first. This automatic generation requires the temperature and pressure of the gas to be measured, and such information can be obtained from the thermometer 16a and the pressure gauge 16b. The storage means 17a stores sound velocity-temperature-pressure relationship indexes (shown in FIG. 3) of a plurality of standard gases whose calorific values have been determined in advance. Then, in the processing by the index generating means 17b, the sound speed for the gas having each heat value is obtained from the sound speed-temperature-pressure relation panel shown in FIG. 3, and this is arranged in relation to the heat value and the sound speed. A sound velocity-calorific value relation index as shown in FIG. By using this indicator, for example,
When the speed of sound is determined, the calorific value of the gas can be derived from the speed of sound as shown by the dashed line with the arrow in FIG.
【0020】前記音速/供給量測定手段19は、前述の
超音波流速計15及び音速導出手段18aと供給量導出
手段18bとを備えている。前記超音波流速計15から
は、測定部7を流れる測定対象ガスの流速vが得られる
とともに、この流速の測定にあたって、測定される一対
の伝播時間T21、T12が得られる。超音波流速計1
5の詳細構成について、図2、図5に基づいて説明する
と、これは、一対の超音波送受信器15aを供給流路5
を斜めに横断して備えている。ここで、一対の超音波送
受信器15aは、流路の軸Z方向で異なった位置に配設
されるため、両者間を渡る超音波は流速vの影響を受
け、上流側から下流側に伝播される超音波に伝播時間は
加速され、逆の場合は減速される。この流速計15にお
いては、一方の超音波送受信器15aから他方の超音波
送受信器15aへ超音波が前記製品ガスの流れ内を伝播
する伝播時間を双方向で捕らえ(上流側にあるものから
下流側にあるものへの超音波の伝播時間T21と、逆方
向で伝播する超音波の伝播時間T12)、得られる一対
の伝播時間から製品ガスの流速を測定する。従って、こ
の超音波流速計15においては、その測定情報として、
流速vと、前記一対の伝播時間T21、T12を得るこ
とができる。上記の音速導出手段18aは、測定された
製品ガスの一対の伝播時間から、製品ガスの音速を導出
できる構成とされている。この導出過程は、前記一対の
伝播時間T21、T12から音速Cを求めるものであ
る。図5に示すように、前述の超音波流速計15に備え
られる一対の超音波送受信器15aの位置関係が固定さ
れているため、相互に送受信器間を伝播する伝播時間T
12、T21は、図5、式1、式2のように記載でき
る。ここで、Lは図5に示す伝播経路の半分の距離であ
り、Cは音速を、vは製品ガスの流速を、θは、伝播経
路の流路軸からの傾きを示している。式1、式2は、2
元連立方程式であるため、式3、式4に示すように、音
速C及び流速vを、一対の伝播時間T12、T21から
求めることができる。即ち、前述の音速導出手段は、式
3の処理を行うことにより、一対の伝播時間T12、T
21から音速Cを求めることができる。一方、上記の供
給量導出手段18bは、先に説明した超音波流速計15
から得られる流速vに基づいて、測定部7を流れる製品
ガスの供給量を求める。一般に、このような測定部7の
供給流路5断面の断面積は予め判明しているため、この
部位を通過する流速vが判明すると、この流速と断面積
の関係から、供給圧力、温度における供給量を求めるこ
とができ、この処理をおこなうのである。さらに、温
度、圧力情報から予め決められた基準状態に於ける供給
量を導出する。The sound speed / supply amount measuring means 19 includes the above-described ultrasonic flowmeter 15, a sound speed deriving means 18a, and a supply amount deriving means 18b. From the ultrasonic flowmeter 15, the flow velocity v of the gas to be measured flowing through the measuring unit 7 is obtained, and a pair of propagation times T21 and T12 to be measured in measuring the flow velocity are obtained. Ultrasonic current meter 1
5 will be described with reference to FIG. 2 and FIG. 5. This is because a pair of ultrasonic transceivers 15a are connected to the supply flow path 5a.
Is provided diagonally across. Here, since the pair of ultrasonic transceivers 15a are disposed at different positions in the axis Z direction of the flow path, the ultrasonic waves passing between the two are affected by the flow velocity v and propagate from the upstream side to the downstream side. Propagation time is accelerated by the ultrasonic wave being applied, and decelerated otherwise. In the current meter 15, the propagation time during which the ultrasonic wave propagates in the flow of the product gas from one ultrasonic transceiver 15a to the other ultrasonic transceiver 15a is captured in both directions (from upstream to downstream). The flow time of the product gas is measured from the propagation time T21 of the ultrasonic wave to the one on the side, the propagation time T12 of the ultrasonic wave propagating in the opposite direction, and the obtained pair of propagation times. Therefore, in this ultrasonic current meter 15, as the measurement information,
The flow velocity v and the pair of propagation times T21 and T12 can be obtained. The above-mentioned sound velocity deriving means 18a is configured to be able to derive the sound velocity of the product gas from a pair of measured propagation times of the product gas. In this derivation process, the sound velocity C is obtained from the pair of propagation times T21 and T12. As shown in FIG. 5, since the positional relationship between the pair of ultrasonic transceivers 15a provided in the above-described ultrasonic velocity meter 15 is fixed, the propagation time T that propagates between the transmitter and the receiver is fixed.
12, T21 can be described as shown in FIG. Here, L is half the distance of the propagation path shown in FIG. 5, C is the speed of sound, v is the flow velocity of the product gas, and θ is the inclination of the propagation path from the channel axis. Equation 1 and Equation 2 are 2
Since these are simultaneous equations, the sound velocity C and the flow velocity v can be obtained from the pair of propagation times T12 and T21 as shown in Equations 3 and 4. That is, the above-described sound velocity deriving means performs the processing of Expression 3 to obtain a pair of propagation times T12 and T12.
The speed of sound C can be obtained from 21. On the other hand, the above-mentioned supply amount deriving means 18b is provided with the ultrasonic current meter 15 described above.
The supply amount of the product gas flowing through the measuring unit 7 is obtained based on the flow velocity v obtained from the above. In general, since the cross-sectional area of the cross section of the supply flow path 5 of the measuring unit 7 is known in advance, when the flow velocity v passing through this portion is known, the supply pressure and the temperature are determined from the relationship between the flow velocity and the cross-sectional area. The supply amount can be obtained, and this processing is performed. Further, a supply amount in a predetermined reference state is derived from the temperature and pressure information.
【0021】次に、発熱量導出手段20の役割について
説明する。図4に矢印付一点鎖線で示すように、別途、
音速測定手段20により求められる測定対象ガスの音速
から、指標生成手段17bにより記憶手段17aに記憶
された情報から自動生成される音速−発熱量相関指標に
基づいて、この製品ガスの発熱量を求める(図4、矢印
付一点鎖線参照)。このようにして求められた製品ガス
の発熱量は、供給熱量の導出に利用されるとともに、製
品ガスの目標発熱量と比較され、先に説明した調整制御
指令の生成に利用される。即ち、前記供給熱量導出手段
22は、求められた発熱量と供給量との積と関連した値
(補正が加えられる場合もある)として、供給熱量を割
り出し、これを出力装置側に送りだし、以後の用に供す
る。一方、調整制御指令生成手段21は、発熱量と製品
ガスの目標発熱量とを比較し、この関係(例えば差)に
基づいて、先に説明した調整制御指令を生成するととも
に、指令を発令する。以上が、本願のガス製造設備2の
基本構成である。Next, the role of the calorific value deriving means 20 will be described. As shown by an alternate long and short dash line with an arrow in FIG.
The calorific value of the product gas is obtained from the sound velocity of the gas to be measured obtained by the sound velocity measuring means 20 based on a sound velocity-calorific value correlation index automatically generated from the information stored in the storage means 17a by the index generating means 17b. (See FIG. 4, chain line with arrow). The calorific value of the product gas obtained in this way is used for deriving the calorific value of the supplied gas, is compared with the target calorific value of the product gas, and is used for generating the adjustment control command described above. That is, the supply heat amount deriving means 22 calculates the supply heat amount as a value (may be corrected) related to the product of the obtained heat generation amount and the supply amount, and sends this to the output device side. Serve for On the other hand, the adjustment control command generation means 21 compares the calorific value with the target calorific value of the product gas, generates the above-described adjustment control command and issues the command based on the relationship (for example, the difference). . The above is the basic configuration of the gas production facility 2 of the present application.
【0022】従って、この設備2の供給熱量測定は、メ
タンを主成分とし、メタン以外の炭化水素ガスを含む混
合ガスである測定対象ガス(具体的には製品ガス)の供
給熱量を測定する場合に、前記メタンと前記メタン以外
の炭化水素ガスとが異なった割合で混合された複数の標
準ガス各々の音速と発熱量との関係から求まる音速−発
熱量関係指標を予め求めておき、前記測定対象ガスの音
速と供給量とを測定し、求められた前記測定対象ガスの
音速から、前記音速−発熱量関係指標に基づいて前記測
定対象ガスの発熱量を求めるとともに、求められた前記
測定対象ガスの発熱量と測定された前記供給量とから、
前記供給熱量を求めるものとなっている。Accordingly, the calorific value of the equipment 2 is measured by measuring the calorific value of the gas to be measured (specifically, the product gas) which is a mixed gas containing methane as a main component and a hydrocarbon gas other than methane. In advance, a sound speed-calorific value relationship index obtained from the relationship between the sound speed and the calorific value of each of the plurality of standard gases in which the methane and the hydrocarbon gas other than the methane are mixed at different ratios is obtained in advance, and the measurement is performed. The sound speed and supply amount of the target gas are measured, and the calorific value of the gas to be measured is obtained from the obtained sound speed of the gas to be measured based on the sonic speed-calorific value relation index, and the obtained measurement target is measured. From the calorific value of the gas and the measured supply amount,
The heat quantity to be supplied is determined.
【0023】以下、本願の手法を採用するにあたり、発
明者らが行った実験及び実際の制御結果について以下説
明する。 1 音速−温度−圧力の関係指標(テーブル) この指標は、図3に示すような関係指標であり、この関
係指標を求めるのに、パラメータとしての発熱量に関し
ては、原則的に9種のガスを標準ガスとして使用した。
これらの標準ガスの組成(%)、発熱量及び比重を表1
に示した。Hereinafter, experiments and actual control results performed by the inventors in adopting the method of the present invention will be described. 1. Sound velocity-temperature-pressure relation index (table) This index is a relation index as shown in FIG. 3, and in order to obtain this relation index, nine kinds of gases are used in principle regarding the calorific value as a parameter. Was used as a standard gas.
Table 1 shows the composition (%), calorific value and specific gravity of these standard gases.
It was shown to.
【0024】[0024]
【表1】 [Table 1]
【0025】この標準ガスは、主成分として80%程度
以上のメタンをベースガスとして含有するものであり、
このベースガスに発熱量の調整用に熱量調整用ガス(炭
素数2以上の炭化水素ガス)が添加、混合された混合ガ
スである。これらの混合ガスを使用することにより、所
定の状態(温度・圧力状態)での音速が求められる。上
記の標準ガスを利用して、温度に関しては4状態(5、
15、25、35℃)、圧力に関しても4状態(10、
20、30、40kgf/cm2)の各状態(16状
態)について、音速を求めた。結果、図3、各テーブル
に示すように、音速は、圧力をパラメータとして、温度
の一次関係式で表現できるものであった。従って、以下
の表2に示すように、この音速と温度の一次関係の係数
a、bを各標準ガス、各圧力に関して記憶することで、
図3に相当する関係指標を記憶格納され、音速−発熱量
関係指標の導出に使用することができる。This standard gas contains about 80% or more of methane as a base gas as a main component.
A mixed gas obtained by adding and mixing a calorific value adjusting gas (hydrocarbon gas having 2 or more carbon atoms) to the base gas for adjusting the calorific value. By using these mixed gases, the speed of sound in a predetermined state (temperature / pressure state) is required. Using the above standard gas, four states (5,
15, 25, 35 ° C), and 4 states (10,
The sound speed was determined for each state (16 states) of 20, 30, and 40 kgf / cm 2 ). As a result, as shown in FIG. 3 and each table, the speed of sound could be expressed by a linear relational expression of temperature with pressure as a parameter. Therefore, as shown in Table 2 below, by storing the coefficients a and b of the linear relationship between the sound velocity and the temperature for each standard gas and each pressure,
The relation index corresponding to FIG. 3 is stored and can be used for deriving a sound velocity-calorific value relation index.
【0026】[0026]
【表2】 [Table 2]
【0027】2 音速−発熱量関係指標(テーブル) この音速−発熱量関係指標は、先に説明した指標生成手
段17bにより、記憶手段17aに記憶された情報から
自動生成される。この生成にあたっては、上記のように
して得られている音速−温度−圧力の関係指標(テーブ
ル)において、特定の温度・圧力を指定することで、発
熱量の異なった各テーブルから、音速を呼び出す。即
ち、図3の各テーブル間に渡って(テーブルの重なり方
向で)、特定の温度・圧力での音速を読み取ることで、
図4の関係指標を得る。そして、音速と発熱量とに関し
てその相関線(図4の実線(一次相関式)、破線(二次
相関式))を得ることで、特定の温度・圧力状態での両
者の関係指標が得られる。(2) Sound speed-calorific value relation index (table) This sound speed-calorific value relation index is automatically generated from the information stored in the storage device 17a by the index generator 17b described above. In this generation, a specific temperature and pressure are designated in the sound velocity-temperature-pressure relation index (table) obtained as described above, so that the sound velocity is called out from each table having a different calorific value. . That is, by reading the sound speed at a specific temperature and pressure across the tables in FIG. 3 (in the direction in which the tables overlap),
The relation index of FIG. 4 is obtained. Then, by obtaining correlation lines (solid line (first-order correlation expression) and broken line (secondary correlation expression) in FIG. 4) regarding the sound speed and the heat generation amount, a relationship index between the two at a specific temperature and pressure state can be obtained. .
【0028】この手法により、測定対象ガスの温度、圧
力、音速が判明すれば、このガスの発熱量を求めること
ができることが判る。このような手法によって得られた
発熱量の誤差は、発熱量が9500〜10500kca
l/Nm3の範囲にあるもので、15kcal/Nm3程
度とすることができ、従来の比重計を使用する手法に対
して、同等以上の精度を得ることができた。If the temperature, pressure, and sound velocity of the gas to be measured are known by this method, it can be seen that the calorific value of this gas can be obtained. The error of the calorific value obtained by such a method is that the calorific value is 9500 to 10500 kca.
In the range of 1 / Nm 3 , it could be set to about 15 kcal / Nm 3, and the same or higher accuracy could be obtained as compared with the conventional method using a hydrometer.
【0029】本願の供給熱量測定にあっては、上記のよ
うな手法で求められる発熱量と、別途、供給量導出手段
18bにより得られる供給量を使用して、供給熱量を、
オンライン、リアルタイム、連続的に測定することがで
きる。結果、たとえ、発熱量のばらつきの比較的ある測
定対象ガスを供給する場合にあっても、その供給熱量を
合理的に求めることができるようになった。ただし、こ
れまで説明してきた図1に示すガス製造設備2の設備構
成にあっては、発熱量制御の系も備えるため、このよう
なばらつきは非常に小さいものである。In the supply heat amount measurement of the present invention, the supply heat amount is calculated by using the heat amount obtained by the above-described method and the supply amount obtained by the supply amount deriving means 18b separately.
It can be measured online, in real time, and continuously. As a result, even when a gas to be measured having a relatively large variation in the calorific value is supplied, the supplied calorific value can be rationally obtained. However, in the equipment configuration of the gas production equipment 2 shown in FIG. 1 described so far, such a variation is very small because a heating value control system is also provided.
【0030】〔別実施の形態〕 (イ) 上記の実施の形態においては、予め求められて
いる音速−温度−圧力の関係指標から音速−発熱量関係
指標を自動生成するものとしたが、温度/圧力に応じて
た音速−発熱量関係指標を予め記憶しておいて、この指
標を使用するものとしてもよい。 (ロ) 上記の実施の形態においては、天然ガス、石油
ガス共に、気化器を経て、ガス状態になった状態で、混
合する例を示したが、添加混合にあたっては、両者の一
方以上が液状態にあっても良い。但し、発熱量の測定
は、ガス状態でおこなう必要がある。このような生産設
備の例を図6、図7に示した。図6は、LNG気化器4
0において,LPGの添加混合が行われていることを示
している。図7は、気化器4の上流側で、LPGの添加
混合が行われていることを示している。即ち、本願にお
いて、ベースガスに対する熱量調整用ガスの添加混合に
あたっては、これらのガスが気相状態にあるか液相状態
にあるかを問うものではない。即ち、いずれかの状態に
あるベースガス原料熱量調整用ガス原料が、混合状態で
目標発熱量を満たすように添加制御すれは良い。 (ハ) さらに、ベースガスとしてのメタンを主成分と
するガスに、添加される炭化水素ガスは、その炭素数が
2以上であればよい。 (ニ) 上記の実施の形態にあっては、特定構成の超音
波流速計を使用したが、本願にあっては、その出力情報
からガスの供給量とガスの音速を求められるものであれ
ば、任意の構成の超音波流速計を使用することができ
る。また、超音波流速計の設置方式についても、所謂、
シングル反射法を示したが、他の従来行われてきた方式
も使用できる。さらに、この供給量と音速とを別々の手
段で計測するように構成してもよい。[Another Embodiment] (A) In the above-described embodiment, the sound velocity-heat generation amount relation index is automatically generated from the sound velocity-temperature-pressure relation index previously obtained. It is also possible to store in advance a sound speed-calorific value relation index corresponding to / pressure and use this index. (B) In the above-described embodiment, an example has been described in which both natural gas and petroleum gas are mixed in a gaseous state via a vaporizer. You may be in a state. However, it is necessary to measure the calorific value in a gas state. Examples of such production equipment are shown in FIGS. FIG. 6 shows the LNG vaporizer 4
0 indicates that LPG addition and mixing are being performed. FIG. 7 shows that LPG addition and mixing are performed on the upstream side of the vaporizer 4. That is, in the present application, when adding and mixing the calorie adjusting gas to the base gas, it does not matter whether these gases are in a gaseous state or a liquid state. In other words, the addition control of the base gas raw material calorific value adjusting gas source in any state is preferably performed so as to satisfy the target calorific value in the mixed state. (C) Further, the hydrocarbon gas added to the gas containing methane as a main component as the base gas may have a carbon number of 2 or more. (D) In the above-described embodiment, the ultrasonic velocimeter having a specific configuration is used. However, in the present application, if the supply amount of gas and the sound velocity of gas can be obtained from the output information. An ultrasonic velocimeter of any configuration can be used. Also, regarding the installation method of the ultrasonic anemometer, so-called,
Although the single reflection method has been described, other conventional methods can also be used. Further, the supply amount and the sound speed may be measured by different means.
【図1】本願のガス製造設備のブロック構成図FIG. 1 is a block diagram of a gas production facility of the present invention.
【図2】測定部の詳細構造を示す図FIG. 2 is a diagram showing a detailed structure of a measuring unit.
【図3】発熱量をパラメータとする圧力−温度−音速の
関係指標を示す図FIG. 3 is a diagram showing a pressure-temperature-sound speed relationship index using a heat value as a parameter;
【図4】音速から発熱量を導出する場合の音速−発熱量
関係指標を示す図FIG. 4 is a diagram showing a sound speed-heat generation amount relationship index when a heat generation amount is derived from a sound speed.
【図5】音速の測定原理図FIG. 5 is a diagram showing the principle of measuring the speed of sound.
【図6】ガス製造設備の別構成例を示す図FIG. 6 is a diagram showing another configuration example of a gas production facility.
【図7】ガス製造設備の別構成例を示す図FIG. 7 is a diagram showing another configuration example of a gas production facility.
1 供給熱量測定装置 2 ガス製造設備 15 超音波流速計 15a 超音波送受信器 17a 記憶手段 17b 指標生成手段 18a 音速導出手段 18b 供給量導出手段 19 音速/供給量測定手段 20 発熱量導出手段 22 供給熱量導出手段 REFERENCE SIGNS LIST 1 supply heat measurement device 2 gas production equipment 15 ultrasonic current meter 15 a ultrasonic transceiver 17 a storage means 17 b index generation means 18 a sound velocity derivation means 18 b supply quantity derivation means 19 sound velocity / supply quantity measurement means 20 heat generation quantity derivation means 22 supply heat quantity Derivation means
Claims (7)
水素ガスを含む混合ガスである測定対象ガスの供給熱量
を測定する供給熱量測定方法であって、 前記メタンと前記メタン以外の炭化水素ガスとが異なっ
た割合で混合された複数の標準ガスについて各々の音速
と発熱量との関係から求まる音速−発熱量関係指標を予
め求めておき、 前記測定対象ガスの音速と供給量とを測定し、 求められた前記測定対象ガスの音速から、前記音速−発
熱量関係指標に基づいて前記測定対象ガスの発熱量を求
めるとともに、求められた前記測定対象ガスの発熱量と
測定された前記供給量とから、前記供給熱量を求める供
給熱量測定方法。1. A supply calorie measuring method for measuring a supply calorie of a gas to be measured, which is a mixed gas containing methane as a main component and containing a hydrocarbon gas other than methane, wherein the methane and the hydrocarbon gas other than the methane are provided. For a plurality of standard gases mixed at different ratios, a sound velocity-calorific value relation index obtained from the relationship between the sound velocity and the calorific value is obtained in advance, and the sound velocity and the supply amount of the gas to be measured are measured. Calculating the calorific value of the gas to be measured from the obtained sound speed of the gas to be measured based on the sound velocity-calorific value relation index, and determining the calorific value of the gas to be measured and the supply amount measured. And a supply calorie measuring method for obtaining the supply calorie.
音波送受信器から他方の超音波送受信器へ前記測定対象
ガスの流れ内を超音波が伝播する伝播時間を双方向で捕
らえ、得られる一対の伝播時間から前記測定対象ガスの
流速を測定する超音波流速計を使用して、前記一対の伝
播時間を検出し、 検出される前記一対の伝播時間から前記測定対象ガスの
音速と流速を求めるとともに、求められた前記音速から
前記発熱量を、前記流速から前記供給量を求める請求項
1記載の供給熱量測定方法。2. A method according to claim 1, further comprising a pair of ultrasonic transceivers, wherein a propagation time of ultrasonic waves propagating in the flow of the gas to be measured from one ultrasonic transceiver to the other ultrasonic transceiver is captured in both directions. Using an ultrasonic velocimeter that measures the flow velocity of the gas to be measured from the pair of propagation times detected, the pair of propagation times is detected, and the sound velocity and flow velocity of the gas to be measured are detected from the pair of propagation times detected. 2. The method for measuring the amount of heat supplied, according to claim 1, wherein the heat generation amount is obtained from the obtained sound speed, and the supply amount is obtained from the flow velocity.
水素ガスを含む混合ガスである測定対象ガスの供給熱量
を測定する供給熱量測定装置であって、 前記メタンと前記メタン以外の炭化水素ガスとが異なっ
た割合で混合された複数の標準ガスについて各々の音速
と発熱量との関係から求まる音速−発熱量関係指標を備
え、 測定対象ガスの音速と供給量とを測定する音速/供給量
測定手段を備え、 前記音速/供給量測定手段により測定される前記測定対
象ガスの音速から、前記音速−発熱量関係指標に基づい
て前記測定対象ガスの発熱量を求める発熱量導出手段を
備えるとともに、前記発熱量導出手段により得られる前
記測定対象ガスの発熱量と前記音速/供給量測定手段に
より得られる前記供給量とから、前記供給熱量を求める
供給熱量導出手段を備えた供給熱量測定装置。3. A supply calorimeter for measuring a supply calorie of a gas to be measured, which is a mixed gas containing methane as a main component and containing a hydrocarbon gas other than methane, wherein the methane and the hydrocarbon gas other than the methane are measured. A sound speed / heat generation amount index is obtained from a relationship between each sound speed and the heat generation amount for a plurality of standard gases mixed at different ratios, and the sound speed / supply amount for measuring the sound speed and the supply amount of the gas to be measured. A measuring unit, and a calorific value deriving unit for calculating a calorific value of the measuring gas from a sonic speed of the measuring gas measured by the sonic speed / supply amount measuring unit based on the sonic speed-calorific value relation index. A supply calorie value for obtaining the supply calorie value from the calorific value of the gas to be measured obtained by the calorific value derivation means and the supply amount obtained by the sonic / supply amount measurement means. A calorie measuring device provided with an outlet means.
音波送受信器から他方の超音波送受信器へ前記測定対象
ガス流れ内を超音波が伝播する伝播時間を双方向で捕ら
え、得られる一対の伝播時間から前記測定対象ガスの流
速を測定する超音波流速計を備え、 前記音速/供給量測定手段が、前記超音波流速計と、前
記超音波流速計により得られる前記一対の伝播時間から
前記測定対象ガスの音速を導出する音速導出手段と、前
記超音波流速計により得られる流速から前記供給量を導
出する供給量導出手段とから構成されている請求項3の
供給熱量測定装置。4. It is provided with a pair of ultrasonic transceivers, and captures the propagation time of ultrasonic waves propagating in the gas flow to be measured from one ultrasonic transceiver to the other ultrasonic transceiver in both directions. An ultrasonic flowmeter for measuring the flow velocity of the gas to be measured from a pair of propagation times, wherein the sound velocity / supply amount measuring means is the ultrasonic flowmeter and the pair of propagation times obtained by the ultrasonic flowmeter The supply calorie measuring device according to claim 3, comprising: a sound velocity deriving unit that derives a sound velocity of the gas to be measured from the apparatus; and a supply amount deriving unit that derives the supply amount from a flow velocity obtained by the ultrasonic current meter.
水素ガスを含む混合ガスである測定対象ガスを得るガス
製造設備であって、 前記メタンと前記メタン以外の炭化水素ガスが異なった
割合で混合された複数の標準ガスについて各々の音速と
発熱量との関係から求まる音速−発熱量関係指標を備
え、 供給流路内にある前記測定対象ガスの音速と供給量とを
求める音速/供給量測定手段と、前記音速/供給量測定
手段により求められた前記測定対象ガスの音速から、前
記音速−発熱量関係指標に基づいて前記測定対象ガスの
発熱量を求める発熱量導出手段を備え、求められた前記
測定対象ガスの発熱量と前記供給量とから、供給熱量を
求める供給熱量導出手段を備えたガス製造設備。5. A gas production facility for obtaining a gas to be measured, which is a mixed gas containing methane as a main component and containing a hydrocarbon gas other than methane, wherein the methane and the hydrocarbon gas other than methane have different ratios. A sound velocity / heat generation amount index obtained from the relation between the sound velocity and the heat generation amount for each of the plurality of mixed standard gases; and a sound velocity / supply amount for obtaining a sound velocity and a supply amount of the gas to be measured in a supply flow path. Measuring means; and a calorific value deriving means for calculating a calorific value of the gas to be measured based on the sound velocity-calorific value relation index from a sound speed of the gas to be measured obtained by the sound velocity / supply amount measuring means. A gas production facility comprising a supply calorific value deriving means for obtaining a supply calorific value from the calorific value of the measurement target gas and the supply amount.
音波送受信器から他方の超音波送受信器へ前記測定対象
ガス流れ内を超音波が伝播する伝播時間を双方向で捕ら
え、得られる一対の伝播時間から前記測定対象ガスの流
速を測定する超音波流速計を備え、 前記音速/供給量測定手段が、前記超音波流速計と、前
記超音波流速計により得られる前記一対の伝播時間から
前記測定対象ガスの音速を導出する音速導出手段と、前
記超音波流速計により得られる流速から前記供給量を導
出する供給量導出手段とから構成されている請求項5の
ガス製造設備。6. A pair of ultrasonic transceivers, wherein a propagation time of propagation of ultrasonic waves in the gas flow to be measured from one ultrasonic transceiver to the other ultrasonic transceiver is bidirectionally captured and obtained. An ultrasonic flowmeter for measuring the flow velocity of the gas to be measured from a pair of propagation times, wherein the sound velocity / supply amount measuring means is the ultrasonic flowmeter and the pair of propagation times obtained by the ultrasonic flowmeter 6. The gas production facility according to claim 5, further comprising: a sound velocity deriving unit that derives a sound velocity of the gas to be measured from the apparatus; and a supply amount deriving unit that derives the supply amount from a flow velocity obtained by the ultrasonic current meter.
スである請求項5または6記載のガス製造設備。7. The gas production facility according to claim 5, wherein the gas to be measured is a gas whose calorific value has been adjusted.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34302096A JP3717254B2 (en) | 1996-12-24 | 1996-12-24 | Supply heat quantity measurement method, supply heat quantity measurement device, and gas production facility |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34302096A JP3717254B2 (en) | 1996-12-24 | 1996-12-24 | Supply heat quantity measurement method, supply heat quantity measurement device, and gas production facility |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10185887A true JPH10185887A (en) | 1998-07-14 |
JP3717254B2 JP3717254B2 (en) | 2005-11-16 |
Family
ID=18358325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34302096A Expired - Fee Related JP3717254B2 (en) | 1996-12-24 | 1996-12-24 | Supply heat quantity measurement method, supply heat quantity measurement device, and gas production facility |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3717254B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011502250A (en) * | 2007-10-31 | 2011-01-20 | アヌビス, ベーヴェーベーアー | Method and apparatus for determining calorific value and relative density of hydrocarbon fuels |
JP2013210344A (en) * | 2012-03-30 | 2013-10-10 | Osaka Gas Co Ltd | Gas meter |
JP2013210345A (en) * | 2012-03-30 | 2013-10-10 | Osaka Gas Co Ltd | Gas meter |
WO2017013897A1 (en) * | 2015-07-22 | 2017-01-26 | 理研計器株式会社 | Methane number calculation method and methane number measurement device |
CN118961873A (en) * | 2024-10-16 | 2024-11-15 | 淄博宇海电子陶瓷有限公司 | A device and method for monitoring calorific value of hydrogen-blended natural gas based on piezoelectric transducer |
-
1996
- 1996-12-24 JP JP34302096A patent/JP3717254B2/en not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011502250A (en) * | 2007-10-31 | 2011-01-20 | アヌビス, ベーヴェーベーアー | Method and apparatus for determining calorific value and relative density of hydrocarbon fuels |
JP2013210344A (en) * | 2012-03-30 | 2013-10-10 | Osaka Gas Co Ltd | Gas meter |
JP2013210345A (en) * | 2012-03-30 | 2013-10-10 | Osaka Gas Co Ltd | Gas meter |
WO2017013897A1 (en) * | 2015-07-22 | 2017-01-26 | 理研計器株式会社 | Methane number calculation method and methane number measurement device |
KR20180031623A (en) * | 2015-07-22 | 2018-03-28 | 리켄 게이키 가부시키가이샤 | Methane number calculation method and methane number measurement device |
JPWO2017013897A1 (en) * | 2015-07-22 | 2018-04-26 | 理研計器株式会社 | Methane number calculation method and methane number measuring device |
US10132746B2 (en) | 2015-07-22 | 2018-11-20 | Riken Keiki Co. Ltd. | Methane number calculation method and methane number measurement device |
CN118961873A (en) * | 2024-10-16 | 2024-11-15 | 淄博宇海电子陶瓷有限公司 | A device and method for monitoring calorific value of hydrogen-blended natural gas based on piezoelectric transducer |
Also Published As
Publication number | Publication date |
---|---|
JP3717254B2 (en) | 2005-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105606786B (en) | Method and measuring device for determining a specific quantity of a gas quality | |
EP2042850B1 (en) | Method for determining carbon content of a hydrocarbon-containing mixture | |
US6612186B1 (en) | Mass fraction metering device | |
US8346491B2 (en) | Sonar-based flow meter operable to provide product identification | |
AU2002310231B2 (en) | Steam to carbon ratio control in steam reforming of hydrocarbons | |
US5040415A (en) | Nonintrusive flow sensing system | |
US11474092B2 (en) | Method for determining properties of a hydrocarbon-containing gas mixture and device for the same | |
US7201071B2 (en) | Wide range continuous diluter | |
WO1993013414A1 (en) | Method and device for monitoring of a gas flow, in particular of a natural-gas flow | |
JP3611416B2 (en) | Calorific value measuring method and calorific value measuring device | |
JP2000338093A (en) | Method and apparatus for measuring nitrogen gas content in methane gas | |
CN110312933A (en) | Method for assessing the combustion characteristics of the gas containing molecular hydrogen | |
Dayev et al. | Invariant system for measuring the flow rate of wet gas on Coriolis flowmeters | |
US20020096208A1 (en) | Method for determination of mass flow and density of a process stream | |
JP3717254B2 (en) | Supply heat quantity measurement method, supply heat quantity measurement device, and gas production facility | |
US11879866B2 (en) | Measuring concentrations of mixed gases at an endpoint | |
US7316151B2 (en) | Apparatus and method for accurate, real-time measurement of pipeline gas | |
JP2000039425A (en) | Gas physical property-measuring device and method | |
JP3717253B2 (en) | Calorific value control method, calorific value control device and gas production facility | |
JP2000039426A (en) | Gas physical property measurement method and device | |
JP2004191103A (en) | Pressure regulator and flow measurement method | |
Heinig et al. | Measuring hydrogen and hydrogen enriched natural gas flows with ultrasonic flow meters–experiences and perspectives | |
Krasnov et al. | Predicting the Decrease in the Metrological Reliability of Ultrasonic Flow Meters in Conditions of Wax Deposition | |
Krasnov et al. | Automatic evaluation of the gas flow rate from wells using a header-flowline gas gathering system | |
Cazin et al. | Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050414 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050811 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050830 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080909 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110909 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140909 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |