JPH10171020A - Illumination device - Google Patents
Illumination deviceInfo
- Publication number
- JPH10171020A JPH10171020A JP8357424A JP35742496A JPH10171020A JP H10171020 A JPH10171020 A JP H10171020A JP 8357424 A JP8357424 A JP 8357424A JP 35742496 A JP35742496 A JP 35742496A JP H10171020 A JPH10171020 A JP H10171020A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- light source
- image forming
- imaging device
- principal ray
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 14
- 230000003287 optical effect Effects 0.000 claims abstract description 67
- 238000003384 imaging method Methods 0.000 claims description 27
- 230000004907 flux Effects 0.000 abstract description 11
- 229910001507 metal halide Inorganic materials 0.000 abstract description 3
- 150000005309 metal halides Chemical class 0.000 abstract description 3
- 229910052724 xenon Inorganic materials 0.000 abstract description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 abstract description 2
- 230000001678 irradiating effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Landscapes
- Projection Apparatus (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、投写型ディスプレー装
置の照明部で代表されるような,高効率でしかも開き角
の小さな光束を必要とする照明部の一部として用いられ
る照明装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an illuminating device used as a part of an illuminating portion which requires a light beam having a high efficiency and a small opening angle, such as a illuminating portion of a projection type display device.
【0002】[0002]
【従来の技術】本出願人の一人は,PCT/JP96/
01767において,投写型ディスプレー装置の一つの
形態を提案した。その中で,投写型ディスプレー装置の
基本的構成要素の一つである照明部について,光源から
の光束の取り込み角・照度分布・方向の各制御間の関連
性と光学素子を用いてそれらの制御を実現するための具
体的な手段についての提案を行った。2. Description of the Related Art One of the present applicants is PCT / JP96 /
In 01767, one form of a projection display device was proposed. Among them, for the illumination part, which is one of the basic components of the projection display device, the relationship between the control of the angle of luminous flux from the light source, the illuminance distribution, and the direction, and their control using optical elements A proposal for specific means for realizing the above was made.
【0003】その中の代表的な実施例を図3に示す。光
源1aはメタルハライドランプのような放電灯から構成
される。光源の仮想中心(例えば2つの電極間の機械的
中心等)から発せられる主光線は,取り込み角制御と分
布制御を兼ねる第1の反射鏡1cで反射され,方向制御
レンズ1dに入射する。次に,方向制御レンズ1dを通
過した光束は,形状変換部分群を構成する2枚のインテ
グレータ1e,1f及びコンデンサーレンズ1gを経て
目的とする画像形成部2を照射する。画像形成部2は,
2a,2cの様なコンデンサーレンズと透過型のTN液
晶の様な光スイッチング素子としての役割を果たす受動
型画像形成装置2bより構成される。画像形成部2の働
きで,選択的に反射または透過した光束は,結像部3の
働きによりスクリーン上に拡大投影される。画像形成部
2の具体的な構成やその素子の種類(透過型や反射型を
含む)及び結像部3の具体的な構成の内容は本発明にと
って本質的なことではないため,ここでは説明を省略す
る。FIG. 3 shows a typical embodiment among them. The light source 1a is composed of a discharge lamp such as a metal halide lamp. A principal ray emitted from a virtual center of the light source (for example, a mechanical center between two electrodes) is reflected by a first reflecting mirror 1c that performs both the control of the taking-in angle and the distribution, and enters the direction control lens 1d. Next, the light beam that has passed through the direction control lens 1d irradiates the target image forming unit 2 via two integrators 1e and 1f and a condenser lens 1g that constitute a shape conversion subgroup. The image forming unit 2
It is composed of a condenser lens such as 2a and 2c, and a passive image forming apparatus 2b that functions as an optical switching element such as a transmissive TN liquid crystal. The light beam selectively reflected or transmitted by the operation of the image forming unit 2 is enlarged and projected on the screen by the operation of the image forming unit 3. The specific configuration of the image forming unit 2, the types of its elements (including transmission type and reflection type), and the specific configuration of the image forming unit 3 are not essential to the present invention, and will be described here. Is omitted.
【0004】この実施例に於いて,注目すべきことは,
第1の反射鏡1cで取り込まれなかった光束の一部を取
り込み,再び光源に戻す役割を果たす補助結像装置とし
ての球面反射鏡1bが設けられていることである。この
球面反射鏡は,光源から直接取り込む光束の開き角を実
質的に狭め,結果として画像形成部2bを照射する光束
の開き角を小さくする働きを有する。その理由の詳細
は,PCT/JP96/01767において具体的な例
を用いて説明した。In this embodiment, it should be noted that
A spherical reflecting mirror 1b is provided as an auxiliary imaging device that serves to capture a part of the light flux not captured by the first reflecting mirror 1c and return it to the light source again. This spherical reflecting mirror has a function of substantially narrowing the opening angle of the light beam directly taken in from the light source, and consequently reducing the opening angle of the light beam irradiated on the image forming unit 2b. The details of the reason have been described in PCT / JP96 / 01767 using specific examples.
【0005】さて,画像形成部2における光束の開き角
を小さくすることは様々の利点を持つ。第1に照明効率
の向上に寄与する。例えば,照明効率を向上する手段と
して採用される,偏光変換,マイクロレンズアレー,イ
ンテグレータ等の技術的手段を効果的に用いるために
は,光束の開き角が小さい方が有利である。第2に,色
の均一性向上に役立つ。これは,光路の途中に設けられ
る色分解系や液晶の角度特性等が光束の角度に敏感であ
るため,やはり光束の開き角が小さい方が好ましい。第
3に結像部が簡略化できることである。例えば,PCT
/JP96/01767において結像部を反射系で構成
する可能性を提案した。この様に,光束の開き角を小さ
く保つことは,上述のような様々の利点をもたらすと同
時に,総合的なコスト逓減にも役立つ。[0005] Reducing the opening angle of the light beam in the image forming section 2 has various advantages. First, it contributes to improvement of lighting efficiency. For example, in order to effectively use technical means such as polarization conversion, a microlens array, and an integrator, which are employed as means for improving illumination efficiency, it is advantageous that the divergence angle of the light beam is small. Second, it helps to improve color uniformity. Since the color separation system provided in the middle of the optical path and the angle characteristics of the liquid crystal are sensitive to the angle of the light beam, it is preferable that the opening angle of the light beam is small. Third, the imaging unit can be simplified. For example, PCT
/ JP96 / 01767 proposed the possibility of forming the imaging unit with a reflective system. As described above, keeping the divergence angle of the light beam small brings not only the above-mentioned various advantages but also the overall cost reduction.
【0006】[0006]
【発明が解決しようとする課題】本発明は,照明装置の
特に光源からの光束を取り込む部分及び補助結像装置を
構成する部分の小型化を図るとともに,高効率でしかも
開き角の小さな照明光束を実現するための具体的手段を
提供するものである。SUMMARY OF THE INVENTION The present invention has been made to reduce the size of a portion of an illuminating device, in particular, a portion for taking in a luminous flux from a light source and a portion constituting an auxiliary imaging device, and to provide a highly efficient illuminating luminous flux having a small opening angle. This provides specific means for achieving the above.
【0007】[0007]
【課題を解決するための手段】請求項1の発明によれ
ば,照明装置は,光源と,光源の仮想中心から発する主
光線を受けて,主光線の反射する方向又は別途設けられ
る仮想面上での主光線の空間的分布を制御する反射光学
素子と,光源を物点かつ像点として作用する補助結像装
置とから構成され,反射光学素子を射出する主光線の進
行方向とは光源に関して反対側に補助結像装置を設け
る。According to the first aspect of the present invention, a lighting device receives a light source and a principal ray emitted from a virtual center of the light source, and reflects the principal ray in a direction in which the principal ray is reflected or on a separately provided virtual surface. A reflective optical element for controlling the spatial distribution of the chief ray at the optical system, and an auxiliary imaging device acting as the object point and the image point using the light source. An auxiliary imaging device is provided on the opposite side.
【0008】請求項2の発明によれば,照明装置を構成
する補助結像装置が,球面反射鏡より構成されるととも
に,反射光学素子から射出する主光線とは反対側から反
射光学素子を包み込むように配置される。According to the second aspect of the present invention, the auxiliary imaging device constituting the illuminating device is constituted by a spherical reflecting mirror and encloses the reflecting optical element from the side opposite to the principal ray emitted from the reflecting optical element. Are arranged as follows.
【0009】請求項3の発明によれば,照明装置を構成
する補助結像装置が,球面反射鏡より構成されるととも
に,反射光学素子と一体の反射鏡である。According to the third aspect of the present invention, the auxiliary imaging device constituting the illuminating device is constituted by a spherical reflecting mirror and is a reflecting mirror integrated with the reflecting optical element.
【0010】請求項4の発明によれば,照明装置を構成
する反射光学素子の基準軸を含む断面内の基準軸を境界
とするそれぞれの領域において,反射光学素子が,反射
光学素子により反射される主光線が交差しない様な反射
面形状を有する。According to the fourth aspect of the present invention, in each area bounded by the reference axis in the cross section including the reference axis of the reflection optical element constituting the illumination device, the reflection optical element is reflected by the reflection optical element. Have a reflecting surface shape such that the principal rays do not intersect.
【0011】[0011]
【作用】光源からの光束を照明部に取り込む反射光学素
子と補助結像装置を併せて設ける場合,取り込んだ光束
の反射方向に補助結像装置を設けることにより,光束の
ケラレの問題が発生する。そのケラレを防ぐため,反射
光学素子または補助結像装置が大型化する。光束の進行
方向とは逆方向に補助結像装置を設けた場合には,ケラ
レが発生せず,構成の自由度が向上する。When a reflecting optical element for taking in a light beam from a light source into an illumination unit and an auxiliary imaging device are provided together, the problem of vignetting of the light beam occurs by providing the auxiliary imaging device in the reflection direction of the taken-in light beam. . In order to prevent the vignetting, the size of the reflective optical element or the auxiliary imaging device is increased. When the auxiliary imaging device is provided in the direction opposite to the traveling direction of the light beam, vignetting does not occur, and the degree of freedom of the configuration is improved.
【0012】補助結像装置により,反射光学素子を包み
込む構成とする事で,補助結像装置の配置の自由度が増
すと同時に,機械的な保持の自由度も増加する。By arranging the auxiliary optical device so as to enclose the reflective optical element, the degree of freedom in the arrangement of the auxiliary image forming device and the degree of mechanical holding are increased.
【0013】光束量に比較的余裕のある場合には,反射
光学素子と補助結像装置を一体で構成することにより,
部品点数の削減や組込工数の削減を図ることができる。When the amount of light flux has a relatively large margin, the reflecting optical element and the auxiliary imaging device are integrally formed, so that
The number of parts and the number of assembly steps can be reduced.
【0014】反射光学素子で反射した各主光線が交差し
ないことは,反射面の曲率の急激な変化を避けることが
でき,反射面の大きさや前後の光学素子の大きさを最小
限に留めることができる。The fact that the principal rays reflected by the reflecting optical element do not intersect can avoid a sudden change in the curvature of the reflecting surface, and minimize the size of the reflecting surface and the size of the front and rear optical elements. Can be.
【0015】[0015]
【実施例】図面を参照しながら,本発明の基本的考え方
を説明する。図1は,本発明の照明装置の代表的な実施
例を示す断面図である。光軸に沿って置かれたキセノン
ランプやメタルハライドランプ等の比較的小さな光点を
有する光源1aの仮想中心から発せられる主光線は,光
軸に関して回転対称形状を有する反射光学素子1cによ
り反射され図の右側に向かう。光源1aの仮想中心と
は,例えば,放電灯の場合には2つの電極間の機械的な
中心,実際に発光する光束の重心,実際の発光点等適宜
定められる。反射光学素子1cは,目的や構成に応じて
適切な場所に置かれた仮想面上で,主光線が所定の分布
となるような面形状を有する。仮想面の位置は,任意性
を持っているが,後続の光学素子の近傍等設計に都合の
良い場所が選択される。また,PCT/JP96/01
767でも明らかにしたように,仮想面上における主光
線の分布は,光源1aの大きさ,画像形成部の大きさ,
結像部のFナンバー,反射光学素子1cに後続する光学
素子の構成・配置等によって決定されるものであり,反
射光学素子単独で決まるものではない。後続する光学素
子で別途光束の制御が行われる場合には,反射光学素子
1cを放物面のような単純な回転対称2次曲面で構成す
ることも可能である。本実施例における補助結像装置1
bは,仮想中心にその中心を有する球面反射鏡であり,
光源1aから発せられる光束を光源自身に戻し,更に反
射光学素子に再入射させる働きを有する。これは,画像
形成部を照射する光束の開き角を小さく保つ上で重要な
役割を果たす。DESCRIPTION OF THE PREFERRED EMBODIMENTS The basic concept of the present invention will be described with reference to the drawings. FIG. 1 is a sectional view showing a typical embodiment of the lighting device of the present invention. A principal ray emitted from a virtual center of a light source 1a having a relatively small light spot such as a xenon lamp or a metal halide lamp placed along the optical axis is reflected by a reflective optical element 1c having a rotationally symmetric shape with respect to the optical axis. Head to the right. The virtual center of the light source 1a is appropriately determined, for example, in the case of a discharge lamp, a mechanical center between two electrodes, a center of gravity of a light beam actually emitted, an actual light emitting point, and the like. The reflective optical element 1c has a surface shape such that the principal ray has a predetermined distribution on a virtual surface placed at an appropriate place according to the purpose and configuration. Although the position of the virtual plane is arbitrary, a location convenient for design, such as the vicinity of a subsequent optical element, is selected. PCT / JP96 / 01
As is apparent from FIG. 767, the distribution of the principal ray on the virtual plane depends on the size of the light source 1a, the size of the image forming unit,
This is determined by the F-number of the image forming portion, the configuration and arrangement of the optical element following the reflective optical element 1c, and is not determined by the reflective optical element alone. When the control of the light beam is performed separately by the subsequent optical element, the reflection optical element 1c can be configured by a simple rotationally symmetric quadratic surface such as a paraboloid. Auxiliary imaging device 1 in the present embodiment
b is a spherical reflecting mirror having its center at the virtual center,
It has a function of returning the light beam emitted from the light source 1a to the light source itself and further re-entering the reflection optical element. This plays an important role in keeping the divergence angle of the light beam illuminating the image forming unit small.
【0016】さて,図3に示した従来例と大きく異なる
点は,反射光学素子1cで反射される光束の方向とは反
対側に球面反射鏡1bを設けたことである。図3の例で
は,反射光学素子1cで反射された光束が補助結像装置
1bでケラレるのを防ぐため1bを一定以上の大きさに
する必要がある。同じく図4に示した従来例では,補助
結像装置1bの空間を確保するため,反射光学素子1c
の有効反射領域を光軸から一定以上の距離だけ離す必要
がある。The major difference from the conventional example shown in FIG. 3 is that a spherical reflecting mirror 1b is provided on the side opposite to the direction of the light beam reflected by the reflecting optical element 1c. In the example of FIG. 3, it is necessary to make the size of the light beam 1b larger than a certain size in order to prevent the light beam reflected by the reflection optical element 1c from being vignetted by the auxiliary imaging device 1b. Similarly, in the conventional example shown in FIG. 4, in order to secure a space for the auxiliary imaging device 1b, the reflection optical element 1c is provided.
Must be separated from the optical axis by a certain distance or more.
【0017】それに対し,図1の本発明の実施例では補
助結像装置1bの大きさに制限は無く,自由な大きさに
する事が可能である。本実施例の様に補助結像装置1b
を球面鏡で構成する場合,半球に近い形状が必要な場合
が多く,その製造には困難を伴う。製法的には,研磨・
曲げ加工・成形等様々な方法が考えられるが,その中か
ら適宜最適な方法を選択する必要がある。一般に,高い
照明効率が要求される場合,球面鏡の形状精度や表面粗
さの影響が比較的大きい。その中で,球面鏡の大きさに
制約がないことは,製造方法に適した大きさにする事が
できるため有利である。更に,ランプの温度管理上も最
適な空間の大きさの設定ができ,照明系の冷却の最適化
が可能となる。On the other hand, in the embodiment of the present invention shown in FIG. 1, the size of the auxiliary imaging device 1b is not limited, and can be freely set. Auxiliary imaging device 1b as in this embodiment
In the case where is composed of a spherical mirror, a shape close to a hemisphere is often required, and its production is difficult. As for the manufacturing method, polishing,
Various methods such as bending and forming are conceivable, but it is necessary to select the most appropriate method from among them. Generally, when high illumination efficiency is required, the influence of the shape accuracy and surface roughness of the spherical mirror is relatively large. Among them, the fact that the size of the spherical mirror is not limited is advantageous because the size can be made suitable for the manufacturing method. Furthermore, the optimal space size can be set for the temperature control of the lamp, and the cooling of the illumination system can be optimized.
【0018】一方,反射光学素子1cは,光源1aとの
干渉のみを考慮すれば良いため,必要最小限の大きさに
することが可能である。一般的に照明部の大きさを決め
る一つの要因となっているのが,光源から光束を取り込
む光学素子の径であるため,実施例の様な配置を取るこ
とで,画像形成部と同じ程度の大きさまで径を縮小する
ことが可能となる。反射光学素子1cの形状は,後続の
光学素子との関連に於いて,反射後の光束が収束,平
行,発散のいずれの形態を取ることも原理的に可能であ
る。しかしながら,回転楕円面のような2次曲面を考え
れば明らかなように,反射後の主光線を収束するために
は,反射面を徐々に閉じた形状にすることが必要となる
ため,製造上不利である。従って,反射鏡1cの光軸を
含む断面内において,光軸を境界と考えた時,そのいず
れの領域においても反射後の主光線が交差しない方が望
ましい。具体的には,図3の従来例に図1の本発明の実
施例を適用する場合,最低でも図3の球面鏡1b,及び
反射鏡1c及びそれに対応したレンズ1dの面形状の変
更が必要となる。この場合,図1で反射鏡1cの大きさ
をレンズ1dの外径と同程度の大きさにするためには,
反射鏡1cの先端部で反射する主光線が光軸とほぼ平行
となる方が形状的に望ましい。On the other hand, since the reflection optical element 1c only needs to consider the interference with the light source 1a, it can be made as small as possible. In general, one factor that determines the size of the illumination unit is the diameter of the optical element that takes in the light flux from the light source. It is possible to reduce the diameter to the size of. The shape of the reflective optical element 1c can in principle be such that the light beam after reflection takes any of converging, parallel and diverging forms in relation to the subsequent optical element. However, as apparent from the consideration of a quadratic surface such as a spheroid, in order to converge the principal ray after reflection, it is necessary to make the reflecting surface gradually closed, so that it is difficult to manufacture. Disadvantageous. Therefore, in the section including the optical axis of the reflecting mirror 1c, when the optical axis is considered as a boundary, it is desirable that the reflected principal rays do not intersect in any of the regions. Specifically, when the embodiment of the present invention shown in FIG. 1 is applied to the conventional example shown in FIG. 3, it is necessary to change at least the surface shape of the spherical mirror 1b, the reflecting mirror 1c and the lens 1d corresponding thereto in FIG. Become. In this case, in order to make the size of the reflecting mirror 1c approximately the same as the outer diameter of the lens 1d in FIG.
It is desirable in terms of shape that the principal ray reflected at the tip of the reflecting mirror 1c be substantially parallel to the optical axis.
【0019】次に,反射光学素子1cと補助結像装置1
bは図2に示すような一体構造とする事も可能である。
この場合,一体構造の光学素子に対し,光源1aを導入
し,最適位置に調整後固定する。これは,要求される光
束量に比較的余裕がある場合に採用できる方法である。Next, the reflection optical element 1c and the auxiliary imaging device 1
b may be an integral structure as shown in FIG.
In this case, the light source 1a is introduced into the optical element having an integral structure, and is adjusted to an optimum position and fixed. This is a method that can be adopted when the required luminous flux amount has a relatively large margin.
【0020】一般的に言って,光束量に関しては高い目
標値が設定されるため,各光学素子の面形状,表面粗
さ,位置公差等には比較的高い精度が要求される。この
様な場合,光源と補助結像装置及び光源と反射光学素子
間での独立した調整が必要となる。図1の様な構成の場
合,その調整には幾つかの異なる手順が考えられる。例
えば,次の様な手順はその一例である。光源1aと球面
反射鏡1bの調整を行い,光源1aと球面反射鏡1bを
固定する。次に,調整の終わった光源1aと球面反射鏡
1bに反射光学素子1cを導入し,位置調整を行い固定
する。この様な手順の中で,反射光学素子1cと球面反
射鏡1bとの固定にあたっては,直接接着剤で固着する
方法と中間部材を用いて間接的に固定する方法がある
が,図1の様に,反射光学素子1cと球面反射鏡1bと
がその有効反射領域以外で重なり部分を持つ方が便利で
ある。すなわち,上記の様な手順で調整後,その重なり
部分をディスペンサー等を用いて直接接着固定すること
も,中間部材を用いて固定することも可能である。ま
た,場合により,反射鏡1bの先端部を固定し易い形状
に作り込むことも可能である。Generally speaking, since a high target value is set for the amount of luminous flux, relatively high precision is required for the surface shape, surface roughness, position tolerance, and the like of each optical element. In such a case, independent adjustment between the light source and the auxiliary imaging device and between the light source and the reflective optical element is required. In the case of the configuration as shown in FIG. 1, several different procedures can be considered for the adjustment. For example, the following procedure is one example. The light source 1a and the spherical reflecting mirror 1b are adjusted, and the light source 1a and the spherical reflecting mirror 1b are fixed. Next, the reflecting optical element 1c is introduced into the adjusted light source 1a and spherical reflecting mirror 1b, and the position is adjusted and fixed. In such a procedure, when fixing the reflecting optical element 1c and the spherical reflecting mirror 1b, there are a method of directly fixing with an adhesive and a method of indirectly fixing with an intermediate member, as shown in FIG. In addition, it is more convenient for the reflecting optical element 1c and the spherical reflecting mirror 1b to have overlapping portions other than the effective reflection area. That is, after the adjustment is performed in the above-described procedure, the overlapping portion can be directly adhered and fixed using a dispenser or the like, or can be fixed using an intermediate member. In some cases, the tip of the reflecting mirror 1b can be formed in a shape that can be easily fixed.
【0021】[0021]
【発明の効果】請求項1の発明によれば,光源からの光
束を取り込む反射光学素子及び補助結像装置の大きさを
小さくでき,照明部の小型化が可能となる。また,補助
結像装置の大きさは,比較的自由に設定できるため,ラ
ンプの冷却の最適化や,製造上最適な大きさを選択する
ことができる。請求項2の発明によれば,各光学素子の
保持や固定の際有利である。請求項3の発明によれば,
調整工程や光学素子を省略することが可能で,安価に構
成することが可能となる。請求項4の発明によれば,反
射光学素子が容易に製造でき,しかも小型化が可能とな
る。According to the first aspect of the present invention, the size of the reflection optical element for taking in the light beam from the light source and the auxiliary imaging device can be reduced, and the size of the illumination unit can be reduced. In addition, since the size of the auxiliary imaging device can be set relatively freely, it is possible to optimize the cooling of the lamp and to select the optimum size for manufacturing. According to the invention of claim 2, it is advantageous when holding or fixing each optical element. According to the invention of claim 3,
The adjustment step and the optical element can be omitted, and the configuration can be made at low cost. According to the fourth aspect of the present invention, the reflective optical element can be easily manufactured, and can be downsized.
【図1】本発明の第1の実施例の断面図である。FIG. 1 is a sectional view of a first embodiment of the present invention.
【図2】補助結像装置と反射光学素子を一体化した場合
の断面図である。FIG. 2 is a cross-sectional view when an auxiliary imaging device and a reflective optical element are integrated.
【図3】PCT/JP96/01767図7記載の従来
の照明部の構成を表す断面図である。FIG. 3 is a cross-sectional view illustrating a configuration of a conventional lighting unit shown in FIG. 7 of PCT / JP96 / 01767.
【図4】PCT/JP96/01767図17記載の従
来の照明部の構成を表す断面図である。FIG. 4 is a cross-sectional view illustrating a configuration of a conventional lighting unit shown in FIG. 17 of PCT / JP96 / 01767.
1 照明部 1a 光源 1b 1c 1d 1e 1f 1g 照明部の光学素
子 2 画像形成部 2a 2c 画像形成部の光学素子 2b 画像形成装置 3 結像部 3a 3b 3d 3e 結像部の光学素子 3c 開口絞りDESCRIPTION OF SYMBOLS 1 Illumination part 1a Light source 1b 1c 1d 1e 1f 1g Optical element of illumination part 2 Image forming part 2a 2c Optical element of image forming part 2b Image forming apparatus 3 Image forming part 3a 3b 3d 3e Optical element of image forming part 3c Aperture stop
Claims (4)
線を受けて,主光線の反射する方向又は別途設けられる
仮想面上での主光線の空間的分布を制御する反射光学素
子と,光源を物点かつ像点として作用する補助結像装置
とから構成される照明装置に於いて,反射光学素子を射
出する主光線の進行方向とは光源に関して反対側に補助
結像装置を設けることを特徴とする照明装置。1. A light source, a reflection optical element for receiving a chief ray emitted from a virtual center of the light source and controlling a direction in which the chief ray is reflected or a spatial distribution of the chief ray on a separately provided virtual surface; And an auxiliary imaging device acting as an object point and an image point, wherein the auxiliary imaging device is provided on the side opposite to the light source with respect to the traveling direction of the principal ray emitted from the reflective optical element. Lighting device characterized by the following.
成されるとともに,前記反射光学素子から射出する主光
線とは反対側から反射光学素子を包み込むように配置さ
れることを特徴とする請求項1に記載の照明装置。2. The image forming apparatus according to claim 1, wherein the auxiliary imaging device comprises a spherical reflecting mirror and is arranged so as to surround the reflecting optical element from a side opposite to a principal ray emitted from the reflecting optical element. The lighting device according to claim 1.
成されるとともに,前記反射光学素子と一体の反射鏡で
あることを特徴とする請求項1に記載の照明装置。3. The illumination device according to claim 1, wherein the auxiliary imaging device is formed of a spherical reflecting mirror and is a reflecting mirror integrated with the reflecting optical element.
の基準軸を境界とするそれぞれの領域において,反射光
学素子が,反射光学素子により反射される主光線が交差
しない様な反射面形状を有することを特徴とする請求項
1に記載の照明装置。4. In each area bounded by a reference axis in a cross section including the reference axis of the reflective optical element, the reflective optical element has a reflecting surface shape such that principal rays reflected by the reflective optical element do not intersect. The lighting device according to claim 1, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8357424A JPH10171020A (en) | 1996-12-09 | 1996-12-09 | Illumination device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8357424A JPH10171020A (en) | 1996-12-09 | 1996-12-09 | Illumination device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10171020A true JPH10171020A (en) | 1998-06-26 |
Family
ID=18454056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8357424A Pending JPH10171020A (en) | 1996-12-09 | 1996-12-09 | Illumination device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10171020A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002088842A1 (en) * | 2001-04-27 | 2002-11-07 | Seiko Epson Corporation | Illuminating optical system and projector |
WO2005008329A1 (en) * | 2003-07-16 | 2005-01-27 | Matsushita Electric Industrial Co., Ltd. | Light source device, lighting device, and projection type display device |
-
1996
- 1996-12-09 JP JP8357424A patent/JPH10171020A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002088842A1 (en) * | 2001-04-27 | 2002-11-07 | Seiko Epson Corporation | Illuminating optical system and projector |
US6796662B2 (en) | 2001-04-27 | 2004-09-28 | Seiko Epson Corporation | Illumination optical system and projector |
WO2005008329A1 (en) * | 2003-07-16 | 2005-01-27 | Matsushita Electric Industrial Co., Ltd. | Light source device, lighting device, and projection type display device |
JPWO2005008329A1 (en) * | 2003-07-16 | 2006-09-07 | 松下電器産業株式会社 | Light source device, illumination device, and projection display device |
US7736028B2 (en) | 2003-07-16 | 2010-06-15 | Panasonic Corporation | Light source apparatus, lighting apparatus and projection display apparatus |
JP4705852B2 (en) * | 2003-07-16 | 2011-06-22 | パナソニック株式会社 | Light source device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4063538B2 (en) | Rear projection display | |
JP2008209934A (en) | Polarization exchange element, polarization illumination device, display device using the same, and projection display device | |
JP2003241136A (en) | Lighting device and projection display device | |
JP3972680B2 (en) | Lighting optical unit, liquid crystal projector | |
JP2007265755A (en) | Lighting system and projector | |
US5309340A (en) | Lighting apparatus | |
JP2002277820A (en) | Illuminating optical system and projection-type color image display device | |
US7252410B2 (en) | Projector | |
US20090122291A1 (en) | Projection optical system and image projector | |
JP2010091846A (en) | Projection display device | |
JP2005043856A (en) | Optical system of projection display device and projection method thereof | |
JPH10171020A (en) | Illumination device | |
JP2003121783A (en) | Image forming apparatus | |
US20040125600A1 (en) | Projection display device | |
JP2002189192A (en) | Illuminator and liquid crystal projector | |
JP2006113085A (en) | Light source device | |
JP2008102536A (en) | Rear surface projection type display device | |
JPH11125795A (en) | Lighting device | |
JP3301321B2 (en) | Illumination optical system device and projection display device | |
US20040196545A1 (en) | Catoptric optical system | |
JPH0540223A (en) | Lighting device | |
JP2000122178A (en) | Illuminator | |
US7097309B2 (en) | Lighting system and compact projection system | |
JPH0651401A (en) | Light source device for projector | |
JP2008145666A (en) | Illumination apparatus and image projection apparatus using the same |