JPH10169686A - Resin-made shock absorbing member - Google Patents
Resin-made shock absorbing memberInfo
- Publication number
- JPH10169686A JPH10169686A JP8333876A JP33387696A JPH10169686A JP H10169686 A JPH10169686 A JP H10169686A JP 8333876 A JP8333876 A JP 8333876A JP 33387696 A JP33387696 A JP 33387696A JP H10169686 A JPH10169686 A JP H10169686A
- Authority
- JP
- Japan
- Prior art keywords
- resin
- shock absorbing
- absorbing member
- compression
- reaction force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000035939 shock Effects 0.000 title claims abstract description 62
- 239000011347 resin Substances 0.000 claims abstract description 67
- 229920005989 resin Polymers 0.000 claims abstract description 67
- 238000007906 compression Methods 0.000 claims abstract description 37
- 230000006835 compression Effects 0.000 claims abstract description 29
- 238000005452 bending Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 27
- 238000010521 absorption reaction Methods 0.000 claims description 15
- 125000006850 spacer group Chemical group 0.000 claims description 7
- 239000006096 absorbing agent Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 11
- 229920001971 elastomer Polymers 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000005060 rubber Substances 0.000 description 4
- 239000000806 elastomer Substances 0.000 description 3
- 229920006346 thermoplastic polyester elastomer Polymers 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920006124 polyolefin elastomer Polymers 0.000 description 2
- 229920003225 polyurethane elastomer Polymers 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920002397 thermoplastic olefin Polymers 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Building Environments (AREA)
- Vibration Dampers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術】本発明は、衝撃の吸収や緩和を必
要する部分、例えば道路または岸壁の側壁、建物の床や
壁、及び車両の衝撃緩衝部に適用することができる樹脂
製衝撃吸収部材に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin shock-absorbing member which can be applied to a portion requiring shock absorption or mitigation, for example, a road or quay side wall, a building floor or wall, and a vehicle shock absorbing portion. .
【0002】[0002]
【従来の技術】従来、衝撃吸収手段としては、金属バ
ネ、摩擦式緩衝器、油圧式緩衝 器、ゴム成形体等が利
用されており、また、これらのうちいずれかを組み合わ
せて使用する場合もある。上記金属バネは、緩衝性能に
優れるものの衝突エネルギーの吸収能力はほとんどな
い。また、上記摩擦式緩衝器や油圧式緩衝器は、一般に
その構造が複雑であり、バネ定数における変形速度依存
性が極めて大きく、復元性がない。2. Description of the Related Art Conventionally, as a shock absorbing means, a metal spring, a friction type shock absorber, a hydraulic type shock absorber, a rubber molded body, and the like have been used, and when any of these is used in combination. is there. Although the metal spring has excellent shock absorbing performance, it hardly absorbs collision energy. Further, the friction type shock absorber and the hydraulic type shock absorber generally have complicated structures, and the spring constant has a very large deformation speed dependency, and has no restoring property.
【0003】ゴム成型体は、復元性が良いという特徴を
有している反面、材料の弾性率が低いので満足いく衝撃
吸収量を確保するためには、材料の使用量を多くしなけ
ればならず、部材の重量が大きくなり大型化してしまう
という欠点がある。[0003] A rubber molded article has a characteristic of good resilience, but since the elastic modulus of the material is low, the amount of the material used must be increased in order to secure a satisfactory amount of shock absorption. However, there is a disadvantage that the weight of the member increases and the size of the member increases.
【0004】また、樹脂製成形体による衝撃吸収体とし
て熱可塑性エラストマーを使用した中空成形体を軸方向
に圧縮して永久歪みを付与することを特徴とする樹脂成
形体の製造技術が開示されている(特公昭61−127
79号)が、該技術による樹脂成形体は緩衝性能に優れ
るものの衝突エネルギーの吸収能力に乏しいという問題
があった。Further, there has been disclosed a technique for manufacturing a resin molded article characterized in that a hollow molded article using a thermoplastic elastomer as a shock absorber made of a resin molded article is axially compressed to impart a permanent set. Yes
No. 79), however, there is a problem that the resin molded article according to this technique has excellent cushioning performance, but has poor ability to absorb collision energy.
【0005】[0005]
【発明が解決しようとする課題】本発明は以上のような
従来の衝撃吸収手段の課題を考慮してなされたものであ
り、その目的は小型・軽量でかつ簡単な構造で、反力に
比較して大きなエネルギー吸収量を有し、エネルギー吸
収能力に優れた樹脂衝撃吸収部材を提供しようとするも
のである。SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned problems of the conventional shock absorbing means, and has as its object a small and light-weight and simple structure which can be compared with the reaction force. Therefore, it is intended to provide a resin shock absorbing member having a large energy absorption amount and excellent energy absorbing ability.
【0006】[0006]
【課題を解決するための手段】即ち本発明は、衝撃作用
方向に対して山部になる面と谷部になる面とを複数有す
る樹脂製成形体が山部同士、谷部同士が同じ方向になる
ようにして複数個積み重ね合わされた構造の積層構造を
有し、該積層構造体の座屈変形と該構造体樹脂の弾性特
性によって衝撃エネルギーを吸収せしめるようにした衝
撃吸収部材であり、かつ圧縮時における反力・圧縮率曲
線が下記の(a)及び(b)を満足するように構成され
たものであることを特徴とする樹脂製衝撃吸収部材。 (a)降伏強度が1000T/m2以上であること。 (b)単位体積当りの圧縮エネルギー吸収量が50T ・
m/m3以上であること。 さらに、樹脂製成形体が、高さ方向に台形の山部と谷部
を有する波板状で、かつ所定幅の帯状片が平面方向に山
部同士、谷部同士が千鳥状に複数列連結された構造を有
する成形体である前記の樹脂製衝撃吸収部材および前記
の積層構造体の重ね合わせ部の隙間に、曲げ弾性率が5
00〜6000kg/cm2 の樹脂製スペーサーを挿入した
前記の樹脂製衝撃吸収部材である。この樹脂製衝撃吸収
部材は、圧縮過程において全圧縮領域で生じる反力の変
位量が常に正であるものとすることにより、衝撃緩和効
果を一層優れたものとすることができる。That is, according to the present invention, a resin molded body having a plurality of surfaces which become peaks and valleys with respect to the direction of impact is formed in a direction in which ridges and valleys have the same direction. A shock absorbing member having a laminated structure of a structure in which a plurality of layers are stacked so as to absorb impact energy by buckling deformation of the laminated structure and elastic properties of the resin of the structure; and A resin shock absorbing member characterized in that a reaction force / compression rate curve during compression satisfies the following (a) and (b). (A) The yield strength is 1000 T / m 2 or more. (B) Compressed energy absorption per unit volume is 50T
m / m 3 or more. Further, the resin molded body is a corrugated plate having a trapezoidal peak and a valley in a height direction, and a strip having a predetermined width is connected in a plurality of rows in a planar direction with peaks and valleys being staggered. The bending elastic modulus is 5 in the gap between the overlapping portion of the resin shock absorbing member and the laminated structure, which is a molded body having the structure described above.
The above-mentioned resin shock absorbing member having a resin spacer of 100 to 6000 kg / cm 2 inserted therein. In the resin shock absorbing member, the displacement amount of the reaction force generated in the entire compression region during the compression process is always positive, so that the shock absorbing effect can be further improved.
【0007】本発明における樹脂製成形体は、衝撃作用
方向から見て山部同士、または谷部同士が同じ方向にな
るように複数列連接され、かつその連接接触部である斜
面部中間部位同士で一体化されていてもよい。In the present invention, the resin molded article is connected in a plurality of rows so that peaks or valleys are in the same direction when viewed from the direction of impact, and the slope intermediate portions, which are the contact portions, are connected. May be integrated.
【0008】また、樹脂製成形体は帯状補強枠を備えて
いてもよい。[0008] The resin molded article may have a belt-shaped reinforcing frame.
【0009】本発明の樹脂製構造体を形成する樹脂は、
曲げ弾性率が500〜6000kg/cm2の樹脂によって形
成された積層構造を有する部材であり、曲げ弾性率が5
00〜5000kg/cm2の樹脂としては、熱可塑性のポリ
エステルエラストマー、ポリオレフィンエラストマー、
ポリウレタンエラストマー、ポリアミドエラストマー、
あるいはそれらのブレンド物や注型ポリウレタン等の硬
化性樹脂などが例示される。これらの中でも特に好まし
いのは、耐候性や耐水性に優れた熱可塑性のポリエステ
ルエラストマーやポリオレフィンエラストマーである
が、曲げ弾性率が上記規定範囲に納まるものであればそ
の種類は一切制限されない。The resin forming the resin structure of the present invention comprises:
A member having a laminated structure formed of a resin having a flexural modulus of 500 to 6000 kg / cm 2 and a flexural modulus of 5
As a resin of 00 to 5000 kg / cm 2 , thermoplastic polyester elastomer, polyolefin elastomer,
Polyurethane elastomer, polyamide elastomer,
Alternatively, a blend thereof, a curable resin such as cast polyurethane, and the like are exemplified. Of these, particularly preferred are thermoplastic polyester elastomers and polyolefin elastomers having excellent weather resistance and water resistance, but the types thereof are not particularly limited as long as the flexural modulus falls within the above specified range.
【0010】本発明の積層構造体における重ね合わせ部
の隙間に、樹脂製スペーサーを挿入することが好まし
い。このスペーサーとして曲げ弾性率が500〜600
0kg/cm2である樹脂を使用し、挿入するスペーサーの形
状や数量を変更することにより、必要に応じて樹脂製衝
撃吸収部材の反力の立ち上がりを早くしたり、降伏反力
を大きくしたりできるため、小型・軽量な樹脂製衝撃吸
収部材を構築することができ、高圧縮時に破壊するのを
防止することも可能になる。It is preferable to insert a resin spacer into the gap between the overlapping portions in the laminated structure of the present invention. The spacer has a flexural modulus of 500 to 600.
By using a resin of 0 kg / cm 2 and changing the shape and quantity of the spacer to be inserted, the rise of the reaction force of the resin shock absorbing member can be accelerated and the yield reaction force can be increased as necessary. Therefore, it is possible to construct a small and lightweight resin shock absorbing member, and it is possible to prevent breakage at high compression.
【0011】さらに、スペーサーの材質としては、反撥
弾性(JIS K6301)が50%以上、圧縮永久歪
(JIS K6301、70℃)が60%以下の樹脂が
好ましい。これらの樹脂としては熱可塑性ポリエステル
エラストマー、ポリアミドエラストマー、ポリウレタン
エラストマー、ポリオレフィンエラストマー、シリコン
エラストマーなどが挙げられる。Further, as a material of the spacer, a resin having a rebound resilience (JIS K6301) of 50% or more and a compression set (JIS K6301 at 70 ° C.) of 60% or less is preferable. These resins include thermoplastic polyester elastomers, polyamide elastomers, polyurethane elastomers, polyolefin elastomers, silicone elastomers and the like.
【0012】樹脂製衝撃吸収部材や樹脂製成形体を連結
する手段としては、連結部分に接着剤を塗布して固定す
る方法、接続部分を熱融着させて固定する方法、金属製
リベットやプラスチック製リベットを用いて固定する方
法、ボルト・ナットを用いて固定する方法、連結部分に
予め連結用孔と嵌合突起、セルフスナップ用の凹凸など
を設けておき、樹脂製衝撃吸収部材及び樹脂製衝撃吸収
片を積層方向にワンタッチで組み合わせる方法、さらに
ベルトを用いて固定する方法等があげられる。Means for connecting the resin shock absorbing member and the resin molded body include a method of applying an adhesive to the connecting portion and fixing the same, a method of fixing the connecting portion by heat fusion, a metal rivet and a plastic. A method of fixing using rivets made of resin, a method of fixing using bolts and nuts, a connecting hole and a fitting projection, a concave and convex for self-snap are provided in the connecting portion in advance, and a resin shock absorbing member and a resin There are a method of combining the shock absorbing pieces with one touch in the laminating direction, and a method of fixing using a belt.
【0013】また、帯状補強枠を備えていない樹脂製衝
撃吸収部材を用いても上記と同様に衝撃吸収ブロックを
構築する事ができる。Further, a shock absorbing block can be constructed in the same manner as described above by using a resin shock absorbing member having no belt-shaped reinforcing frame.
【0014】また、本発明の樹脂製衝撃吸収部材を実用
化するにあたっては、適用場所に応じて必要とされる衝
撃吸収力の程度に応じて設置個数を任意に設定できる
が、本発明の目的を達成するのには、この樹脂製衝撃吸
収部材を高さ方向に圧縮したときの反力−圧縮率曲線に
よって確認される降伏強度が1000T/m2以上でかつ衝
撃吸収部材の単位体積当りの圧縮エネルギー吸収量が5
0T ・m/m3以上であることが必要である。When the resin shock absorbing member of the present invention is put into practical use, the number of installation members can be arbitrarily set according to the degree of shock absorbing force required according to the application place. In order to achieve the above, the yield strength confirmed by a reaction force-compression rate curve when the resin shock absorbing member is compressed in the height direction is not less than 1000 T / m 2 and per unit volume of the shock absorbing member. 5 compression energy absorption
It is necessary to be 0T · m / m 3 or more.
【0015】ここで、反力−圧縮率曲線(以下、S−S
カーブと呼ぶことがある)とは、例えば樹脂製衝撃吸収
部材に衝撃作用方向に圧縮させた時の反力(圧縮力/受
圧面積)と圧縮率の相関性を示すグラフであり、圧縮の
初期においては圧縮率に略比例にしてS−Sカーブは急
激に立ち上がり、その後カーブは徐々に緩やかになって
(平坦部)局部的に最大反力を示す降伏点に達し、ここ
で樹脂製衝撃吸収部材は降伏を起こすが、圧縮過程にお
いて全圧縮領域で生じる反力の変位量が常に正であるも
のとすることにより、衝撃緩和効果を一層優れたものと
することができる。その後さらに圧縮を続けると空隙の
減少によってS−Sカーブは再び急激に立ち上がり、圧
縮率の僅かな増大で反力は急激に上昇するようになる。Here, a reaction force-compression ratio curve (hereinafter referred to as SS)
Curve) is a graph showing the correlation between the reaction force (compression force / pressure receiving area) and the compression ratio when the resin shock absorbing member is compressed in the direction of impact, for example. In, the SS curve rises sharply in proportion to the compression ratio, and then gradually becomes gentle (flat portion) to reach the yield point showing the maximum reaction force locally, where the resin shock absorption Although the member yields, the displacement of the reaction force generated in the entire compression region during the compression process is always positive, so that the impact relaxation effect can be further improved. Thereafter, when the compression is further continued, the SS curve rapidly rises again due to the decrease in the gap, and the reaction force suddenly rises with a slight increase in the compression ratio.
【0016】本発明のS−Sカ−ブにおける降伏強度と
は、最初の立ち上がり後の平坦部における最大を示す反
力値を意味し、また単位体積当たりの圧縮エネルギー吸
収量とは圧縮率80%までのS−Sカーブで囲まれる面
積(図2の斜線の領域)で示される圧縮エネルギー吸収
量を衝撃吸収部材の体積で割った値を意味する。The yield strength of the SS curve of the present invention means the maximum reaction force at the flat portion after the first rise, and the compression energy absorption per unit volume is defined as a compression ratio of 80. % Means a value obtained by dividing the amount of compressed energy absorption indicated by the area surrounded by the SS curve (shaded region in FIG. 2) by the volume of the shock absorbing member.
【0017】本発明における降伏強度は衝撃吸収体のS
−Sカーブ全体における最大の反力値とは必ずしも一致
しないが、当該衝撃吸収部材が衝撃力を受けた時に衝撃
物が受ける最大反力 に近い値であり、最大反力 値の
目安と考える。降伏強度が不足する場合は衝撃エネルギ
ー吸収体の機能が実質的に発揮されず、一方降伏強度が
大きすぎる場合は衝撃時に生ずる反力が大きくなって衝
撃を満足に緩和できなくなる。効率良く衝撃エネルギー
を吸収するためにはS−Sカーブの最初の立ち上がりを
できるだけ急激にするとともに、降伏点を過ぎた後の反
力の低下を極力少なくすることが有効となる。The yield strength of the present invention is determined by the impact absorber S
Although it does not always match the maximum reaction force value in the entire -S curve, it is a value close to the maximum reaction force received by the impact object when the shock absorbing member receives the impact force, and is considered as a guideline of the maximum reaction force value. When the yield strength is insufficient, the function of the impact energy absorber is not substantially exerted. On the other hand, when the yield strength is too large, the reaction force generated at the time of impact becomes large and the impact cannot be satisfactorily reduced. In order to efficiently absorb impact energy, it is effective to make the first rise of the SS curve as sharp as possible and to minimize the decrease in the reaction force after passing the yield point.
【0018】こうした観点から本発明に係わる樹脂製衝
撃吸収部材に要求される物性を種々検討した結果、衝撃
力にたいして過度の反力を与えることなく衝撃力を十分
に緩和するには、樹脂製衝撃吸収部材の降伏強度を10
00T/m2以上でかつ圧縮エネルギー吸収量が衝撃吸収部
材の単位体積当たり50T ・m/m3以上にする必要があ
り、本発明の樹脂製衝撃吸収部材によればこうした要求
特性を十分に満たすものである。As a result of various studies on the physical properties required of the resin shock absorbing member according to the present invention from such a viewpoint, it is necessary to sufficiently reduce the impact force without giving an excessive reaction force to the resin impact absorbing member. The yield strength of the absorbent
It is necessary that the absorption of compression energy be not less than 00 T / m 2 and the amount of absorbed compression energy be not less than 50 T · m / m 3 per unit volume of the shock absorbing member. The resin shock absorbing member of the present invention sufficiently satisfies such required characteristics. Things.
【0019】ちなみに従来から知られているゴム成型品
のような衝撃吸収体では、図3のS−Sカーブの立ち上
がりが緩慢であるため、満足のいく衝撃吸収量を確保す
るには、材料の使用量を多くしなければならず、部材の
重量が大きくなり、大型化せざるを得なくなる。By the way, in a conventionally known shock absorber such as a rubber molded product, the rise of the SS curve in FIG. 3 is slow. The amount of use must be increased, the weight of the member increases, and the size must be increased.
【0020】一方、特公昭61−12779号公報で開
示されている熱可塑性エラストマーを使用した中空成形
体を軸方向に圧縮して永久歪みを付与した樹脂成型品で
は実質的に座屈変形しないような成型品であるためゴム
成型品に類似のS−Sカーブを呈し、衝突エネルギーの
吸収能力に乏しい。On the other hand, a hollow molded article using a thermoplastic elastomer disclosed in Japanese Patent Publication No. 61-12779 is axially compressed so that a resin molded article to which permanent deformation is imparted does not substantially undergo buckling deformation. Since it is a molded product, it exhibits an SS curve similar to that of a rubber molded product, and has poor ability to absorb collision energy.
【0021】しかし、樹脂の曲げ弾性率を特定すると共
にその形状・構造を前述の如く定めた本発明の衝撃吸収
体は、図4の概略図に示すように、S−Sカーブの最初
の立上がりが急激であるばかりでなく適度の降伏強度を
示した後、それ以上圧縮率を変えてもしばらくは略一定
の反力を示し、その後に最終の急激な立ち上がりをみ
せ、その結果80%圧縮時の単位体積当りの圧縮エネル
ギー吸収量が50T ・m/m3以上という非常に高い圧縮エ
ネルギー吸収量を有するものとなる。However, according to the shock absorber of the present invention in which the bending elastic modulus of the resin is specified and its shape and structure are determined as described above, as shown in the schematic diagram of FIG. Not only steep, but also a moderate yield strength, and even if the compression ratio is further changed, it shows a substantially constant reaction force for a while, and then shows a final sudden rise, resulting in 80% compression. Has a very high compression energy absorption amount of 50 T · m / m 3 or more per unit volume.
【0022】本発明の衝撃吸収部材は、前述の如く適度
の曲げ弾性を持った樹脂の粘弾性特性とその形状の組み
合わせによっていわばダッシュポットとバネ的なエネル
ギー吸収挙動を付与することにより、衝撃エネルギーを
極めて効率良く吸収することができる。As described above, the impact absorbing member of the present invention provides a dash pot and a spring-like energy absorbing behavior by a combination of the viscoelastic properties of the resin having an appropriate bending elasticity and its shape as described above. Can be absorbed very efficiently.
【0023】本発明に係わる樹脂製成形体及び樹脂製衝
撃吸収部材の製造方法としては、射出成形、押出成形あ
るいはプレス成形等任意の方法を採用することができ
る。また、本発明の樹脂製衝撃吸収部材は、通常の取り
付け方法、例えば当該衝撃吸収部材を構成する平板部に
設けた孔を介して他の構造物に取り付ける方法などが採
用できるが、もとより取り付け方法は一切制限されるも
のではない。As a method for producing the resin molded article and the resin shock absorbing member according to the present invention, any method such as injection molding, extrusion molding or press molding can be adopted. Further, the resin shock absorbing member of the present invention can adopt a normal mounting method, for example, a method of mounting to another structure through a hole provided in a flat plate portion constituting the shock absorbing member. Is not limited at all.
【0024】本発明で使用される樹脂の好ましい種類は
先に例示した通りであるが、これらの樹脂には、用途ま
たは目的に応じて、例えば熱酸化防止剤や紫外線吸収剤
などの各種安定剤、染料やカーボンブラック、タルクや
ガラスビーズのような充填剤、金属繊維、ガラス繊維や
カーボン繊維のような繊維状強化剤、帯電防止剤、可塑
剤、難燃剤、発砲剤、離型剤などの添加剤を配合して改
質することも可能である。The preferred types of the resin used in the present invention are as described above. These resins may be added to various stabilizers such as, for example, a thermal antioxidant and an ultraviolet absorber according to the application or purpose. , Fillers such as dyes and carbon black, talc and glass beads, fibrous reinforcing agents such as metal fibers, glass fibers and carbon fibers, antistatic agents, plasticizers, flame retardants, foaming agents, release agents, etc. It is also possible to modify by adding additives.
【0025】[0025]
【発明の効果】本発明は以上のように構成されており、
曲げ弾性率の特定された樹脂 を使用し、かつその形状
・構造を特定することによって、樹脂の弾性特性と成形
体の座屈変形によって、優れた衝撃吸収特性を有し、か
つ小型・軽量でありながら、高い衝撃エネルギー吸収能
力を示す衝撃吸収部材を提供しうることになった。そし
て該衝撃吸収部材は、その優れた特性を生かしてたとえ
ば道路または岸壁の側壁、建物の床や壁、及び車両の衝
撃緩衝部に広く適用することができる。The present invention is configured as described above.
By using a resin with a specified flexural modulus and by specifying its shape and structure, it has excellent shock absorption properties due to the elastic properties of the resin and the buckling deformation of the molded product, and is compact and lightweight. In spite of this, it has become possible to provide an impact absorbing member exhibiting high impact energy absorbing ability. The shock absorbing member can be widely applied to, for example, a side wall of a road or a quay, a floor or a wall of a building, and a shock absorbing portion of a vehicle by utilizing its excellent characteristics.
【0026】[0026]
【実施例】以下、実施例及び比較例を挙げて本発明をよ
り具体的に説明するが、本発明はもとより下記実施例に
よって制限を受けるものではなく、前述の趣旨に適合し
うる範囲で適当に変更して実施することはいずれも本発
明の技術範囲に含まれる。EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following Examples and is not limited to the following Examples. Any of the modifications is included in the technical scope of the present invention.
【0027】〔実施例1〕東洋紡績(株)製のポリエス
テルエラストマー「ペルプレン P−150B」を使用
し、図1に示す断面形状が台形であり正面から見て6辺
からなるセル構造を有する成形体ブロック(20cm×5
0cm×4cmで平均厚みが2mm)を射出成形法で得て、こ
の成形体を5個、セル構造の上面(山部)が受圧面とな
り下面(谷部)が固定面となり、固定面同士および受圧
面同士が同じ向きになるように重ね合わせて5層の積層
体とした樹脂製衝撃吸収部材を得た(高さ10cm)。
その評価結果を表1に示した。Example 1 Using a polyester elastomer "Perprene P-150B" manufactured by Toyobo Co., Ltd., a cross-sectional shape shown in FIG. 1 was trapezoidal and had a cell structure consisting of six sides as viewed from the front. Body block (20cm × 5
0 cm × 4 cm and an average thickness of 2 mm) were obtained by the injection molding method, and five molded bodies were obtained. The upper surface (peak) of the cell structure became a pressure receiving surface and the lower surface (valley) became a fixed surface. A resin shock absorbing member was obtained by stacking the pressure receiving surfaces so as to be in the same direction to form a five-layer laminate (height: 10 cm).
Table 1 shows the evaluation results.
【0028】〔実施例2〕実施例1と同様にして5層の
積層体を得た。前記と同じ素材のこの積層体の重ね合わ
さった部分の隙間に円筒形(直径8mm×10mmで厚み
1.4mm)のスペーサーを挿入して、本発明の樹脂製衝
撃吸収部材を得た。その評価結果を表1に示した。Example 2 A five-layer laminate was obtained in the same manner as in Example 1. A cylindrical (8 mm × 10 mm, 1.4 mm thick) spacer was inserted into the gap between the overlapped portions of this laminate of the same material as above to obtain the resin shock absorbing member of the present invention. Table 1 shows the evaluation results.
【0029】実施例3 実施例2において、樹脂をペルプレン120Bに代える
以外は同様にして、本発明の樹脂製衝撃吸収部材を得
た。その評価結果を表1に示した。Example 3 A resin shock absorbing member of the present invention was obtained in the same manner as in Example 2 except that the resin was changed to Perprene 120B. Table 1 shows the evaluation results.
【0030】実施例4 実施例2において、樹脂をペルプレン280Bに代える
以外は同様にして、本発明の樹脂製衝撃吸収部材を得
た。その評価結果を表1に示した。 〔比較例〕実施例1で得た樹脂製衝撃吸収ブロックのセ
ル構造の受圧面(上面)と固定面(下面)とを重ね合わ
せるように、樹脂製衝撃吸収ブロックを5層に重ねた樹
脂製衝撃吸収部材を得た(高さ20cm)。評価結果を
表1に示した。Example 4 A resin shock absorbing member of the present invention was obtained in the same manner as in Example 2, except that the resin was changed to Perprene 280B. Table 1 shows the evaluation results. [Comparative Example] A resin shock absorbing block having five layers of resin shock absorbing blocks so that the pressure receiving surface (upper surface) and the fixed surface (lower surface) of the cell structure of the resin shock absorbing block obtained in Example 1 overlap each other. A shock absorbing member was obtained (height 20 cm). Table 1 shows the evaluation results.
【0031】〔評価方法〕 樹脂の曲げ弾性率:一般に用いられているASTM−D
790によって測定した。 衝撃力受け面面積:大変形可能部端の平板接触面積をい
う。 降伏強度:50mm/分で定速に圧縮したときに反力−圧
縮曲線が、圧縮の初期において圧縮率に略比例して立ち
上がり、その後徐々に緩やかになって(平坦部)最大反
力となったときの衝撃力受け面の単位面積当たり強度を
いう。 圧縮エネルギー吸収量:縦軸に反力、横軸に圧縮量をと
った曲線において最大圧縮率80%までの反力−圧縮曲
線に囲まれた面積をいう。 単位体積あたりの圧縮エネルギ−吸収量:圧縮エネルギ
−吸収量を衝撃吸収体の体積で割った値をいう。[Evaluation Method] Flexural modulus of resin: commonly used ASTM-D
790. Impact force receiving surface area: Refers to the flat plate contact area at the end of the large deformable portion. Yield strength: When compressed at a constant speed of 50 mm / min, the reaction force-compression curve rises almost in proportion to the compression ratio at the beginning of compression, and then gradually becomes gentle (flat portion) to become the maximum reaction force. Means the strength per unit area of the impact receiving surface. Compressive energy absorption: The area surrounded by the reaction force-compression curve up to a maximum compression ratio of 80% in a curve in which the vertical axis represents the reaction force and the horizontal axis represents the compression amount. Compression energy absorption per unit volume: A value obtained by dividing the compression energy absorption by the volume of the shock absorber.
【0032】[0032]
【表1】 [Table 1]
【図1】 樹脂製衝撃吸収部材の構成部材である樹脂製
成形体ブロックの1例の外観を示す斜視図である。FIG. 1 is a perspective view showing an external appearance of an example of a resin molded block which is a constituent member of a resin shock absorbing member.
【図2】本発明に係わる衝撃吸収部材の反力−圧縮率曲
線を示す説明図である。FIG. 2 is an explanatory diagram showing a reaction force-compression ratio curve of the shock absorbing member according to the present invention.
【図3】従来の衝撃吸収体の反力圧縮率曲線を示す説明
図である。FIG. 3 is an explanatory diagram showing a reaction force compression ratio curve of a conventional shock absorber.
【図4】本発明に係わる衝撃吸収部材の反力−圧縮率曲
線を示す説明図である。FIG. 4 is an explanatory diagram showing a reaction force-compression ratio curve of the shock absorbing member according to the present invention.
フロントページの続き (72)発明者 松山雄二郎 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内Continued on the front page (72) Inventor Yujiro Matsuyama 2-1-1 Katata, Otsu City, Shiga Prefecture Inside Toyobo Co., Ltd. Research Laboratory
Claims (3)
部になる面とを複数有する樹脂製成形体が山部同士、谷
部同士が同じ方向になるようにして複数個積み重ね合わ
された構造の積層構造を有し、該積層構造体の座屈変形
と該構造体樹脂の弾性特性によって衝撃エネルギーを吸
収せしめるようにした衝撃吸収部材であり、かつ圧縮時
における反力・圧縮率曲線が下記の(a)及び(b)を
満足するように構成されたものであることを特徴とする
樹脂製衝撃吸収部材。 (a)降伏強度が1000T/m2以上であること。 (b)単位体積当りの圧縮エネルギー吸収量が50T ・
m/m3以上であること。1. A plurality of resin molded bodies each having a plurality of surfaces that become peaks and valleys with respect to the direction of impact are stacked so that the ridges and valleys have the same direction. A shock absorbing member having a laminated structure having a laminated structure, wherein the buckling deformation of the laminated structure and the elastic properties of the resin of the structure absorb the impact energy, and a reaction force / compression rate curve at the time of compression Characterized in that they satisfy the following requirements (a) and (b): (A) The yield strength is 1000 T / m 2 or more. (B) Compressed energy absorption per unit volume is 50T
m / m 3 or more.
と谷部を有する波板状で、かつ所定幅の帯状片が平面方
向に山部同士、谷部同士が千鳥状に複数列連結された構
造を有する成形体である請求項1の樹脂製衝撃吸収部
材。2. A resin molded article is a corrugated sheet having a trapezoidal peak and a valley in a height direction, and a strip having a predetermined width is formed in a planar direction with peaks and valleys being staggered. The resin-made shock absorbing member according to claim 1, which is a molded body having a structure in which a plurality of rows are connected.
に、曲げ弾性率が500〜6000kg/cm2 の樹脂製ス
ペーサーを挿入した請求項1の樹脂製衝撃吸収部材。3. The resin shock absorbing member according to claim 1, wherein a resin spacer having a bending elastic modulus of 500 to 6000 kg / cm 2 is inserted into a gap between the overlapping portions of the laminated structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8333876A JPH10169686A (en) | 1996-12-13 | 1996-12-13 | Resin-made shock absorbing member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8333876A JPH10169686A (en) | 1996-12-13 | 1996-12-13 | Resin-made shock absorbing member |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10169686A true JPH10169686A (en) | 1998-06-23 |
Family
ID=18270947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8333876A Pending JPH10169686A (en) | 1996-12-13 | 1996-12-13 | Resin-made shock absorbing member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10169686A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000297835A (en) * | 1999-04-15 | 2000-10-24 | Mitsubishi Motors Corp | Energy absorbing member |
JP2003506598A (en) * | 1999-07-29 | 2003-02-18 | ジェフリー・エイチ・ダイアモンド | Window structures and methods for protecting building glazing during storms |
KR100570328B1 (en) | 2004-11-08 | 2006-04-11 | 김철홍 | Modular shock absorbing structure |
JP2007294794A (en) * | 2006-04-27 | 2007-11-08 | Casio Comput Co Ltd | Pressing piece of pressure device |
CN108317161A (en) * | 2018-01-10 | 2018-07-24 | 西交利物浦大学 | Lattice structure flexible hinge based on curve flexible unit |
JP2018179052A (en) * | 2017-04-06 | 2018-11-15 | 株式会社イノアックコーポレーション | Impact absorbing material |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60229745A (en) * | 1984-04-05 | 1985-11-15 | ヘキスト・アクチエンゲゼルシヤフト | Sheet-shaped sandwich structure |
JPH0280824A (en) * | 1988-07-12 | 1990-03-20 | General Motors Corp <Gm> | Energy absorption device for vehicle door and method of manufacturing same |
JPH05321966A (en) * | 1992-05-20 | 1993-12-07 | Toyobo Co Ltd | Resin shock absorber |
JPH07269622A (en) * | 1994-03-30 | 1995-10-20 | Toyobo Co Ltd | Resin-made shock absorbing member and shock absorbing block using it |
-
1996
- 1996-12-13 JP JP8333876A patent/JPH10169686A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60229745A (en) * | 1984-04-05 | 1985-11-15 | ヘキスト・アクチエンゲゼルシヤフト | Sheet-shaped sandwich structure |
JPH0280824A (en) * | 1988-07-12 | 1990-03-20 | General Motors Corp <Gm> | Energy absorption device for vehicle door and method of manufacturing same |
JPH05321966A (en) * | 1992-05-20 | 1993-12-07 | Toyobo Co Ltd | Resin shock absorber |
JPH07269622A (en) * | 1994-03-30 | 1995-10-20 | Toyobo Co Ltd | Resin-made shock absorbing member and shock absorbing block using it |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000297835A (en) * | 1999-04-15 | 2000-10-24 | Mitsubishi Motors Corp | Energy absorbing member |
JP2003506598A (en) * | 1999-07-29 | 2003-02-18 | ジェフリー・エイチ・ダイアモンド | Window structures and methods for protecting building glazing during storms |
KR100570328B1 (en) | 2004-11-08 | 2006-04-11 | 김철홍 | Modular shock absorbing structure |
JP2007294794A (en) * | 2006-04-27 | 2007-11-08 | Casio Comput Co Ltd | Pressing piece of pressure device |
JP2018179052A (en) * | 2017-04-06 | 2018-11-15 | 株式会社イノアックコーポレーション | Impact absorbing material |
CN108317161A (en) * | 2018-01-10 | 2018-07-24 | 西交利物浦大学 | Lattice structure flexible hinge based on curve flexible unit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5551673A (en) | Resin shock absorber | |
US12017436B2 (en) | Energy-absorbing structure with defined multi-phasic crush properties | |
US10197125B2 (en) | Interdigitated cellular cushioning | |
US8276975B2 (en) | FRP panel for automobile | |
AU2004304701B2 (en) | Body protecting device | |
US20080012364A1 (en) | Vehicle bumper assembly | |
CN1533938A (en) | vehicle bumper structure | |
CN105556164A (en) | Energy management systems and methods for making and using the same | |
US3979110A (en) | Energy absorbers | |
JP3218694B2 (en) | Resin shock absorber | |
JPH10169686A (en) | Resin-made shock absorbing member | |
GB2186240A (en) | Two-stage energy management unit for mounting vehicle bumpers | |
JPH10169687A (en) | Resinmade shock absorber and shock absorbing method using it | |
JPH04297351A (en) | Bumper for automobile | |
JP4305053B2 (en) | Collision energy absorption device for vehicle bumper | |
WO2003047842A1 (en) | Energy absorption unit | |
JPH10169685A (en) | Resinmade shock absorber | |
JPH10169683A (en) | Resinmade shock absorber | |
JPH11351328A (en) | Impact absorber and impact absorption using the same | |
JPH11351306A (en) | Resinous shock absorber and shock absorbing method using the same | |
CN207790430U (en) | Door trim handrail, car door and automobile | |
JP5047642B2 (en) | Floor cushion and floor structure using the same | |
JPH11351301A (en) | Shock absorber and shock absorbing method using the same | |
JPH11351302A (en) | Shock absorber and shock absorbing method using the same | |
JPH05340438A (en) | Impact absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060921 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061120 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061228 |