JPH10162766A - Focused ion beam processing observation equipment - Google Patents
Focused ion beam processing observation equipmentInfo
- Publication number
- JPH10162766A JPH10162766A JP8315916A JP31591696A JPH10162766A JP H10162766 A JPH10162766 A JP H10162766A JP 8315916 A JP8315916 A JP 8315916A JP 31591696 A JP31591696 A JP 31591696A JP H10162766 A JPH10162766 A JP H10162766A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- ion beam
- dimensional image
- focused ion
- dimensional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
(57)【要約】
【課題】試料の三次元構造を高分解能で観察可能な集束
イオンビーム加工観察装置を提供する。
【解決手段】試料の二次元像から集束イオンビームのビ
ーム分布の影響を低減するデコンボリューション処理を
施した後に、三次元像を形成する。
(57) [Summary] [Object] To provide a focused ion beam processing observation apparatus capable of observing a three-dimensional structure of a sample with high resolution. A three-dimensional image is formed after performing a deconvolution process for reducing an influence of a beam distribution of a focused ion beam from a two-dimensional image of a sample.
Description
【0001】[0001]
【発明の属する技術分野】本発明は集束イオンビームを
用いた加工観察装置、およびこれを用いた半導体装置等
の不良解析装置に関する。[0001] 1. Field of the Invention [0002] The present invention relates to a processing observation apparatus using a focused ion beam and a failure analysis apparatus for a semiconductor device or the like using the processing observation apparatus.
【0002】[0002]
【従来の技術】従来、試料の三次元構造を観察可能な集
束イオンビーム加工観察装置として、例えば特開平7−2
72667 号が知られている。この装置では、集束イオンビ
ームで試料上の同一領域を走査して加工する間に得られ
た二次元像を複数蓄積して、これらを再構成して試料の
三次元像を形成する方法をとっている。この方法は、集
束イオンビームで削り取る試料の全ての部分から発生す
る2次粒子信号を必ず検出しているので、不良箇所など
を見落すことがなく三次元像の再現性に優れている。2. Description of the Related Art Conventionally, as a focused ion beam processing observation apparatus capable of observing a three-dimensional structure of a sample, for example, Japanese Patent Application Laid-Open No.
No. 72667 is known. In this apparatus, a method is used in which a plurality of two-dimensional images obtained during scanning and processing the same region on a sample with a focused ion beam are accumulated, and these are reconstructed to form a three-dimensional image of the sample. ing. Since this method always detects secondary particle signals generated from all portions of the sample scraped off by the focused ion beam, it does not overlook defective portions and the like and is excellent in reproducibility of a three-dimensional image.
【0003】[0003]
【発明が解決しようとする課題】上記従来技術では、分
解能を高めようとすると三次元構造のトポロジカル(位
相幾何学的)な再現性が悪くなる現象が考慮されていな
かった。すなわち、試料上のパターンに対してより細い
集束イオンビームを用いると、試料中の各種材料のスパ
ッタ率の違いによって加工面の平坦性が局所的に極端に
劣化する現象がある。In the above-mentioned prior art, no consideration has been given to a phenomenon in which the topological (topological) reproducibility of a three-dimensional structure is deteriorated in order to increase the resolution. That is, when a narrower focused ion beam is used for a pattern on a sample, there is a phenomenon that the flatness of a processed surface is extremely deteriorated locally due to a difference in sputtering rate of various materials in the sample.
【0004】本発明の課題は、試料の三次元構造を高分
解能で観察可能な集束イオンビーム加工観察装置を提供
することにある。[0004] It is an object of the present invention to provide a focused ion beam processing and observation apparatus capable of observing a three-dimensional structure of a sample with high resolution.
【0005】[0005]
【課題を解決するための手段】上記の課題は、集束イオ
ンビーム加工観察装置において、試料の二次元像におい
て集束イオンビームのビーム強度分布によって生じた像
ボケを低減するデコンボリューション処理を施した後
に、これらを再構成して三次元像を形成する機能を設け
ることにより達成される。また、試料の加工中に堆積性
のガスを試料に吹き付けることによって、より良く課題
が達成される。An object of the present invention is to provide a focused ion beam processing / observing apparatus which performs a deconvolution process for reducing image blur caused by a beam intensity distribution of a focused ion beam in a two-dimensional image of a sample. This is achieved by providing a function of reconstructing these to form a three-dimensional image. In addition, the problem is better achieved by blowing a deposition gas onto the sample during the processing of the sample.
【0006】試料を加工するときに、試料上の材料の空
間的変化に対してより太い集束イオンビームを用いる
と、試料加工面がより平坦に保たれる。そこで、この加
工で得られた試料の二次元像から、集束イオンビームの
ビーム強度分布により生じた像ボケを低減するデコンボ
リューション処理を行った後に、これらの二次元像を再
構成して三次元像を形成することにより、三次元像にお
ける構造の再現性と分解能を同時に高めることができ
る。ここで、集束イオンビームのビーム強度分布は予め
測定しておく。[0006] When processing a sample, using a focused ion beam that is thicker with respect to the spatial change of the material on the sample keeps the sample processing surface flatter. Therefore, after performing a deconvolution process to reduce image blur caused by the beam intensity distribution of the focused ion beam from the two-dimensional image of the sample obtained by this processing, these two-dimensional images are reconstructed to three-dimensional By forming an image, the reproducibility and resolution of the structure in the three-dimensional image can be increased at the same time. Here, the beam intensity distribution of the focused ion beam is measured in advance.
【0007】また、集束イオンビームで試料をスパッタ
加工するときに、スパッタ加工速度を減速させる程度に
堆積性のガスを微量照射すると、試料のスパッタ加工さ
れ易い部分で堆積物が多く形成され、これが保護膜の働
きをするので、試料の平坦性がより向上する。これによ
って、三次元像における構造の再現性が高められる。Further, when a sample is sputtered with a focused ion beam and a small amount of deposition gas is irradiated to such an extent that the sputtering speed is reduced, a large amount of deposits are formed in the portion of the sample which is easily sputtered. Since it functions as a protective film, the flatness of the sample is further improved. Thereby, the reproducibility of the structure in the three-dimensional image is improved.
【0008】[0008]
【発明の実施の形態】以下、本発明を用いてLSI内部
の形状不良を観察する実施例を説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment for observing a shape defect inside an LSI using the present invention will be described below.
【0009】実施例1 図1は本発明の集束イオンビーム加工観察装置の構成図
である。装置本体1は、主にイオン源2,可変絞り4,
静電レンズ5,偏向器6,試料ステージ7、および二次
粒子検出器9で構成される。ここで、これらを収納して
いる真空容器は省略してある。ここで、イオン源2はG
aの液体金属イオン源であり、イオンビーム3の加速電
圧は30kVである。また、二次粒子検出器9は蛍光板
とフォトマルチプライヤーで構成され、二次電子を検出
する。装置本体1は、偏向制御系10と二次粒子信号制
御系11を介して制御回路20に接続されている。ここ
で、イオン源2,可変絞り4,静電レンズ5、および試
料ステージ7等の制御系は省略してある。制御回路20
には、ディスプレイ21,複数の二次元像メモリ22,
レンダリング演算器23、および三次元像メモリ24が
接続されている。Embodiment 1 FIG. 1 is a configuration diagram of a focused ion beam processing and observation apparatus according to the present invention. The apparatus body 1 mainly includes an ion source 2, a variable aperture 4,
It comprises an electrostatic lens 5, a deflector 6, a sample stage 7, and a secondary particle detector 9. Here, the vacuum container storing these is omitted. Here, the ion source 2 is G
a, the acceleration voltage of the ion beam 3 is 30 kV. The secondary particle detector 9 includes a fluorescent screen and a photomultiplier, and detects secondary electrons. The apparatus main body 1 is connected to a control circuit 20 via a deflection control system 10 and a secondary particle signal control system 11. Here, control systems such as the ion source 2, the variable aperture 4, the electrostatic lens 5, and the sample stage 7 are omitted. Control circuit 20
Includes a display 21, a plurality of two-dimensional image memories 22,
The rendering calculator 23 and the three-dimensional image memory 24 are connected.
【0010】本実施例では、この制御回路20に、さら
にビーム分布メモリ25,デコンボリューション演算器
26、および複数の二次元像メモリ27が接続されてい
ることが特徴的である。The present embodiment is characterized in that a beam distribution memory 25, a deconvolution calculator 26, and a plurality of two-dimensional image memories 27 are further connected to the control circuit 20.
【0011】次にこの装置の動作を説明する。イオン源
2が放出したイオンビーム3を、可変絞り4でそのビー
ム量を制御して、静電レンズ5で集束して、試料8上に
照射する。試料8にイオンビーム3が照射されるとその
部分がスパッタされると共に試料の材質や形状に応じた
二次電子や二次イオンが発生する。ここでは、二次粒子
検出器9が二次電子を検出して電気信号(二次電子信
号)に変える。偏向制御系10内のスキャン回路の発生
する走査偏向信号によって、偏向器6はイオンビーム3
を偏向して試料8上を走査させる。走査偏向信号と連動
して、二次粒子検出系11内のバッファメモリに蓄えら
れた二次電子信号は、制御回路20によってディスプレ
イ21に送られ、二次電子信号を輝度信号とするSIM
像(走査イオン顕微鏡像)を表示する。Next, the operation of this device will be described. The beam amount of the ion beam 3 emitted from the ion source 2 is controlled by a variable aperture 4, focused by an electrostatic lens 5, and irradiated onto a sample 8. When the sample 8 is irradiated with the ion beam 3, the portion is sputtered and secondary electrons and secondary ions are generated according to the material and shape of the sample. Here, the secondary particle detector 9 detects secondary electrons and converts them into an electric signal (secondary electron signal). Deflector 6 causes ion beam 3 to be deflected by a scanning deflection signal generated by a scanning circuit in deflection control system 10.
Is deflected to scan over the sample 8. The secondary electron signal stored in the buffer memory in the secondary particle detection system 11 in conjunction with the scanning deflection signal is sent to the display 21 by the control circuit 20, and the SIM that uses the secondary electron signal as a luminance signal
An image (scanning ion microscope image) is displayed.
【0012】通常、試料8の不良解析をしようとする部
分を観察するには、以下のような操作を行う。図2に示
すように、ディスプレイ21に表示された試料8のSI
M像210を観察しながら加工場所が走査範囲に入るよ
うに試料ステージ7を移動させる。加工場所を含むSI
M像が得られたら、ディスプレイ21上に示された、例
えばカーソル(枠)211で囲んだ部分によって加工領
域を設定する。さらに、可変絞り4の大きさや、加工の
深さなどの制御パラメータを制御回路20に設定した
後、イオンビーム3を走査して試料上8の加工を始め
る。図2に示すように、ディスプレイ21には加工中の
試料8のSIM像が表示されるとともに、そのSIM像
は、試料の二次元像として、二次元像メモリ22に蓄え
られる。Usually, the following operation is performed to observe a portion of the sample 8 where a failure analysis is to be performed. As shown in FIG. 2, the SI of the sample 8 displayed on the display 21
While observing the M image 210, the sample stage 7 is moved so that the processing place enters the scanning range. SI including processing location
When the M image is obtained, a processing area is set by a portion shown on the display 21 and surrounded by a cursor (frame) 211, for example. Further, after setting control parameters such as the size of the variable aperture 4 and the processing depth in the control circuit 20, the ion beam 3 is scanned to start processing on the sample 8. As shown in FIG. 2, a SIM image of the sample 8 being processed is displayed on the display 21, and the SIM image is stored in the two-dimensional image memory 22 as a two-dimensional image of the sample.
【0013】試料8の加工終了後、その三次元像を得る
ために、従来は次のようにしていた。すなわち、二次元
像メモリ22に蓄えた複数の試料イメージをレンダリン
グ演算器23によって再構成して三次元像を形成し、こ
れを三次元像メモリ24に蓄えた後、ディスプレイ21
に表示する。ここで、レンダリング演算器23は、試料
イメージの各ピクセルを、例えば輝度によっていくつか
に分類し、それぞれを輝度分類によって分離して立体的
に表現する機能を持つ。分類の方法は、任意に変えるこ
とができる。また、レンダリング演算器23は、試料の
任意の断面像を形成できる。[0013] In order to obtain a three-dimensional image of the sample 8 after processing is completed, the following has been done conventionally. That is, a plurality of sample images stored in the two-dimensional image memory 22 are reconstructed by the rendering calculator 23 to form a three-dimensional image, and the three-dimensional image is stored in the three-dimensional image memory 24.
To be displayed. Here, the rendering computing unit 23 has a function of classifying each pixel of the sample image into several pixels according to, for example, luminance, and separating each of the pixels by luminance classification to represent the pixels three-dimensionally. The method of classification can be arbitrarily changed. Further, the rendering calculator 23 can form an arbitrary cross-sectional image of the sample.
【0014】本実施例で特徴的なことは、従来とは異な
り、二次元像メモリ22に蓄えた試料イメージは、一
旦、デコンボリューション演算器26に送って処理した
後に別の二次元像メモリ27に蓄える。そして、この二
次元像メモリ27に蓄えた複数の試料イメージをレンダ
リング演算器23によって再構成して三次元像を形成す
る。これを三次元像メモリ24に蓄えた後、ディスプレ
イ21に表示する。The feature of this embodiment is that, unlike the conventional case, the sample image stored in the two-dimensional image memory 22 is once sent to a deconvolution calculator 26 for processing and then processed by another two-dimensional image memory 27. To store. Then, the plurality of sample images stored in the two-dimensional image memory 27 are reconstructed by the rendering calculator 23 to form a three-dimensional image. After storing this in the three-dimensional image memory 24, it is displayed on the display 21.
【0015】デコンボリューション演算器26はビーム
分布メモリ25に蓄えた集束イオンビームのビーム分布
を用いて、二次元像メモリ22に蓄えた試料イメージの
像ボケを低減する処理を行う。これによって、試料上の
パターンに比べて太いビームを使っても高い分解能の像
が得られるばかりでなく、加工面の平坦性が保たれるの
で、三次元像の中に本来の三次元構造がうまく再現され
る。すなわち、三次元的に高い分解能が得られる。The deconvolution calculator 26 uses the beam distribution of the focused ion beam stored in the beam distribution memory 25 to perform processing for reducing image blur of the sample image stored in the two-dimensional image memory 22. As a result, even if a beam thicker than the pattern on the sample is used, not only a high-resolution image can be obtained, but also the flatness of the processed surface is maintained, so that the original three-dimensional structure is included in the three-dimensional image. It is reproduced well. That is, three-dimensionally high resolution can be obtained.
【0016】本実施例では幅0.2μm のビームを使っ
て試料を加工した所、局所的な凹凸は0.1μm 以下に
抑えられた。さらに本方法では、デコンボリューション
演算器によって4倍分解能を向上させることができ、実
質的に0.05μm の試料像の分解能が得られた。In this embodiment, when the sample was processed using a beam having a width of 0.2 μm, local irregularities were suppressed to 0.1 μm or less. Further, in the present method, the quadrupling resolution could be improved by the deconvolution calculator, and a resolution of a sample image of 0.05 μm was substantially obtained.
【0017】図2に示すようにディスプレイ21内に得
られたLSI試料の三次元像213が表示されている。
ここでは、poly−Siの電極部のみを表示しており、一
部に欠落が生じているのが観察された。As shown in FIG. 2, a three-dimensional image 213 of the LSI sample obtained in the display 21 is displayed.
Here, only the electrode portion of poly-Si is shown, and it was observed that a portion was missing.
【0018】ここで、従来の方法でパターンルール0.
2μm のLSIを試料として三次元像を形成した。分
解能を高めるために0.05nm の幅のビームを使った
ところ、試料加工面に局所的凹凸が0.6μm 程度生じ
てしまい、厚さ約3μmの微細構造は、得られた三次元
像内で判別できなくなってしまった。Here, the pattern rule 0.
A three-dimensional image was formed using a 2 μm LSI as a sample. When a beam with a width of 0.05 nm was used to increase the resolution, local irregularities of about 0.6 μm were generated on the sample processing surface, and a microstructure having a thickness of about 3 μm was formed in the obtained three-dimensional image. I can no longer determine.
【0019】以上、本発明によれば、半導体素子等の試
料の内部構造を高分解能で三次元的に観察できるので、
微細な構造異常を発見する確率を向上させる効果があ
る。As described above, according to the present invention, the internal structure of a sample such as a semiconductor element can be three-dimensionally observed with high resolution.
This has the effect of increasing the probability of finding a fine structural abnormality.
【0020】なお、本実施例では、試料の二次元像を形
成するのに二次電子を信号に用いたが、二次イオンを信
号に用いるとSNは劣るが元素分布の三次元構造が高分
解能で得られる効果がある。また、二次電子による試料
像と、二次イオンによる試料像との間でデータを補間す
ることによって、より正確な元素分布の三次元構造が得
られる。In this embodiment, a secondary electron is used for a signal to form a two-dimensional image of a sample. However, when a secondary ion is used for a signal, the SN is inferior but the three-dimensional structure of element distribution is high. There is an effect that can be obtained with the resolution. Further, by interpolating data between a sample image formed by secondary electrons and a sample image formed by secondary ions, a more accurate three-dimensional structure of element distribution can be obtained.
【0021】実施例2 本実施例で用いた集束イオンビーム加工観察装置は、第
1の実施例で用いたものと同じである。Embodiment 2 The focused ion beam processing and observation apparatus used in this embodiment is the same as that used in the first embodiment.
【0022】本実施例で特徴的なことは、図1に示した
ガス源12によって、試料8に堆積性のガス13を照射
しながら試料8を加工することにある。ここで、このガ
ス源12の制御系は省略してあるが、制御回路20と接
続されている。また、ガス13はタングステンカルボニ
ル(W(CO)6)を加熱して生成した。A feature of the present embodiment is that the sample 8 is processed while the sample 8 is irradiated with the deposition gas 13 by the gas source 12 shown in FIG. Here, the control system of the gas source 12 is omitted, but is connected to the control circuit 20. Gas 13 was produced by heating tungsten carbonyl (W (CO) 6 ).
【0023】ここで、試料8の三次元像を得るために、
集束イオンビーム3で試料8をスパッタ加工するときに
上記ガス13を微量照射して、スパッタ加工速度を減速
させると、試料8のスパッタ加工され易い部分で堆積物
が多く形成され、これが保護膜の働きをするので、試料
8の加工面の平坦性が向上する。具体的にはスパッタ加
工速度を約半分にしたところ、局所的な凹凸は、同じ深
さを通常スパッタ加工したときの半分になった。これに
より実施例1のLSI試料を観察すると深さ方向の歪み
は0.05μm となり平面方向と同じ分解能にできた。Here, in order to obtain a three-dimensional image of the sample 8,
When the sample 13 is sputter-processed with the focused ion beam 3 and a small amount of the gas 13 is irradiated to reduce the sputter processing speed, a large amount of deposits are formed in portions of the sample 8 which are easily sputter-processed. Since it works, the flatness of the processed surface of the sample 8 is improved. Specifically, when the sputter processing speed was reduced to about half, the local unevenness was reduced to half when the same depth was normally sputtered. As a result, when the LSI sample of Example 1 was observed, the strain in the depth direction was 0.05 μm, and the resolution was the same as that in the plane direction.
【0024】以上、本発明によれば、半導体素子等の試
料の内部構造を、深さ方向に歪めないで三次元的に観察
できる効果がある。As described above, according to the present invention, there is an effect that the internal structure of a sample such as a semiconductor element can be three-dimensionally observed without being distorted in the depth direction.
【0025】実施例3 図3は本発明の半導体不良解析システムの構成図であ
る。本システムは第1の実施例の集束イオンビーム加工
観察装置30と、これに接続されたデータ表示システム
40とから構成される。データ表示システム40は、制
御回路41と、CADデータバッファ42,データ切り
出し演算器43,レンダリング演算器44,三次元像メ
モリ45、および表示装置46から構成される。Embodiment 3 FIG. 3 is a configuration diagram of a semiconductor failure analysis system according to the present invention. This system comprises the focused ion beam processing and observation apparatus 30 of the first embodiment and a data display system 40 connected thereto. The data display system 40 includes a control circuit 41, a CAD data buffer 42, a data clipping calculator 43, a rendering calculator 44, a three-dimensional image memory 45, and a display device 46.
【0026】このシステムでは、制御回路41によって
集束イオンビーム加工観察装置30から試料の三次元像
を取り込んで表示装置46に表示させるとともに、図示
しないコンピュータから半導体集積回路のCADデータ
をCADデータバッファ42経由で取り込んで、前記試
料の三次元像に対応する設計上の三次元像を形成して、
同一の表示装置46上に並べて、または重ねて表示す
る。ここで、制御回路41は、CADデータの内、表示
に必要な部分のみをデータ切り出し演算器43により切
り出させ、これをレンダリング演算器44により三次元
像に合成して三次元像メモリ45に保存し、これを表示
装置46に送って表示させる。In this system, a control circuit 41 takes in a three-dimensional image of a sample from the focused ion beam processing and observation device 30 and displays it on a display device 46, and also sends CAD data of the semiconductor integrated circuit from a computer (not shown) to a CAD data buffer 42. Captured via to form a three-dimensional design image corresponding to the three-dimensional image of the sample,
They are displayed side by side or overlaid on the same display device 46. Here, the control circuit 41 causes the data cut-out calculator 43 to cut out only the portion necessary for display from the CAD data, synthesizes this into a three-dimensional image by the rendering calculator 44, and stores it in the three-dimensional image memory 45. Then, this is sent to the display device 46 to be displayed.
【0027】したがって、本実施例によれば、試料の実
際の三次元構造を高分解能で観察するとともに、その設
計上の三次元構造と詳細に比較することが可能である。Therefore, according to the present embodiment, it is possible to observe the actual three-dimensional structure of the sample at high resolution and to compare it with the designed three-dimensional structure in detail.
【0028】以上、本実施例によれば、半導体集積回路
の寸法誤差や形状不良を三次元で正確に評価することが
できる効果がある。As described above, according to the present embodiment, there is an effect that a dimensional error or a shape defect of a semiconductor integrated circuit can be accurately evaluated in three dimensions.
【0029】[0029]
【発明の効果】本発明によれば、半導体素子等の試料の
内部構造を高分解能で三次元的に観察できるので、微細
な構造異常を発見する確率を向上させる効果がある。ま
た、これにより半導体集積回路の不良解析を短時間で行
えるので、その歩留まりを早期に向上させる効果があ
る。According to the present invention, it is possible to three-dimensionally observe the internal structure of a sample such as a semiconductor device with high resolution, so that there is an effect of improving the probability of finding a minute structural abnormality. In addition, this enables the failure analysis of the semiconductor integrated circuit to be performed in a short time, so that the yield can be improved at an early stage.
【図1】本発明の一実施例の集束イオンビーム加工観察
装置の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of a focused ion beam processing and observation apparatus according to one embodiment of the present invention.
【図2】本発明の実施例における画像表示の一例を示す
説明図。FIG. 2 is an explanatory diagram illustrating an example of image display according to the embodiment of the present invention.
【図3】本発明の一実施例の半導体不良解析システムの
構成を示すブロック図。FIG. 3 is a block diagram showing a configuration of a semiconductor failure analysis system according to one embodiment of the present invention.
1…集束イオンビーム装置本体、2…イオン源、3…イ
オンビーム、4…絞り、5…静電レンズ、6…静電偏向
器、7…試料ステージ、8…試料、9…二次電子検出
器、10…偏向制御系、11…二次粒子検出系、12…
ガス源、13…堆積性ガス、20…制御回路、21…デ
ィスプレイ、22…二次元像メモリ、23…レンダリン
グ演算器、24…三次元像メモリ、25…ビーム分布メ
モリ、26…デコンボリューション演算器、27…二次
元像メモリ、30…集束イオンビーム加工観察装置、4
0…データ表示システム、41…制御回路、42…CA
Dデータバッファ、43…データ切り出し演算器、44
…レンダリング演算器、45…三次元像メモリ、46…
ディスプレイ。DESCRIPTION OF SYMBOLS 1 ... Focused ion beam apparatus main body, 2 ... Ion source, 3 ... Ion beam, 4 ... Aperture, 5 ... Electrostatic lens, 6 ... Electrostatic deflector, 7 ... Sample stage, 8 ... Sample, 9 ... Secondary electron detection , 10 ... deflection control system, 11 ... secondary particle detection system, 12 ...
Gas source, 13: deposition gas, 20: control circuit, 21: display, 22: two-dimensional image memory, 23: rendering calculator, 24: three-dimensional image memory, 25: beam distribution memory, 26: deconvolution calculator , 27: two-dimensional image memory, 30: focused ion beam processing and observation device, 4
0: data display system, 41: control circuit, 42: CA
D data buffer, 43 ... data cutout computing unit, 44
... Rendering operation unit, 45 ... Three-dimensional image memory, 46 ...
display.
Claims (3)
査して複数の二次元像を取得し蓄積する機構と、上記複
数の二次元像を再構成して上記試料の三次元像を形成す
る機構と、上記試料の三次元像を表示する機構とを有す
る集束イオンビーム加工観察装置において、上記集束イ
オンビームのビーム強度分布により生じる上記複数の二
次元像の像ボケを低減する機能を有することを特徴とす
る集束イオンビーム加工観察装置。1. A mechanism for acquiring and storing a plurality of two-dimensional images by scanning the same area on a sample with a focused ion beam, and forming a three-dimensional image of the sample by reconstructing the plurality of two-dimensional images. A focused ion beam processing / observing apparatus having a mechanism for displaying a three-dimensional image of the sample and a mechanism for displaying a three-dimensional image of the sample, having a function of reducing image blurring of the plurality of two-dimensional images caused by the beam intensity distribution of the focused ion beam. A focused ion beam processing and observation apparatus characterized by the above-mentioned.
査して複数の二次元像を取得し集積する機構と、上記複
数の二次元像を再構成して上記試料の三次元像を形成す
る機構と、上記試料の三次元像を表示する機構とを有す
る集束イオンビーム加工観察装置において、上記集束イ
オンビームで試料上を走査すると同時に堆積性のガスを
試料に照射して上記複数の二次元像を得ることを特徴と
する集束イオンビーム加工観察装置。2. A mechanism for scanning a same area on a sample with a focused ion beam to acquire and accumulate a plurality of two-dimensional images, and reconstructing the plurality of two-dimensional images to form a three-dimensional image of the sample. A focused ion beam processing and observation apparatus having a mechanism for displaying a three-dimensional image of the sample and a mechanism for displaying the three-dimensional image of the sample. A focused ion beam processing and observation apparatus characterized by obtaining a two-dimensional image.
ム加工観察装置で得られた半導体装置の三次元像データ
と、上記半導体装置の設計データを同一のモニター上に
表示する手段を有することを特徴とする半導体不良解析
システム。3. A means for displaying three-dimensional image data of a semiconductor device obtained by the focused ion beam processing and observation apparatus according to claim 1 and design data of the semiconductor device on a same monitor. A semiconductor failure analysis system characterized by the following.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8315916A JPH10162766A (en) | 1996-11-27 | 1996-11-27 | Focused ion beam processing observation equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8315916A JPH10162766A (en) | 1996-11-27 | 1996-11-27 | Focused ion beam processing observation equipment |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10162766A true JPH10162766A (en) | 1998-06-19 |
Family
ID=18071154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8315916A Pending JPH10162766A (en) | 1996-11-27 | 1996-11-27 | Focused ion beam processing observation equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10162766A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125909A (en) * | 2004-10-27 | 2006-05-18 | Hitachi High-Technologies Corp | Defect inspection equipment |
JP2009026621A (en) * | 2007-07-20 | 2009-02-05 | Hitachi High-Technologies Corp | Charged particle beam apparatus and sample processing observation method |
JP2010146829A (en) * | 2008-12-18 | 2010-07-01 | Sii Nanotechnology Inc | Focused ion beam device, sample processing method using the same, and computer program for focused ion beam processing |
WO2011111852A1 (en) * | 2010-03-11 | 2011-09-15 | Canon Kabushiki Kaisha | Image processing method |
JP2012225718A (en) * | 2011-04-19 | 2012-11-15 | Aisin Seiki Co Ltd | Film thickness inspection apparatus and inspection method |
-
1996
- 1996-11-27 JP JP8315916A patent/JPH10162766A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006125909A (en) * | 2004-10-27 | 2006-05-18 | Hitachi High-Technologies Corp | Defect inspection equipment |
JP2009026621A (en) * | 2007-07-20 | 2009-02-05 | Hitachi High-Technologies Corp | Charged particle beam apparatus and sample processing observation method |
JP4691529B2 (en) * | 2007-07-20 | 2011-06-01 | 株式会社日立ハイテクノロジーズ | Charged particle beam apparatus and sample processing observation method |
US8455824B2 (en) | 2007-07-20 | 2013-06-04 | Hitachi High-Technologies Corporation | Charged particle beam apparatus, and sample processing and observation method |
JP2010146829A (en) * | 2008-12-18 | 2010-07-01 | Sii Nanotechnology Inc | Focused ion beam device, sample processing method using the same, and computer program for focused ion beam processing |
US8426830B2 (en) | 2008-12-18 | 2013-04-23 | Sll Nano Technology Inc. | Focused ion beam apparatus, sample processing method using the same, and computer program for focused ion beam processing |
WO2011111852A1 (en) * | 2010-03-11 | 2011-09-15 | Canon Kabushiki Kaisha | Image processing method |
US8644637B2 (en) | 2010-03-11 | 2014-02-04 | Canon Kabushiki Kaisha | Image processing method |
JP2012225718A (en) * | 2011-04-19 | 2012-11-15 | Aisin Seiki Co Ltd | Film thickness inspection apparatus and inspection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8993961B2 (en) | Electric charged particle beam microscope and electric charged particle beam microscopy | |
US8237119B2 (en) | Scanning type charged particle beam microscope and an image processing method using the same | |
WO2017203600A1 (en) | Defect classification device and defect classification method | |
US8436899B2 (en) | Method and apparatus of tilted illumination observation | |
CN110998780B (en) | Inclination angle amount calculation device, sample stage, charged particle beam device and program | |
US8686360B2 (en) | Micro-sample processing method, observation method and apparatus | |
JP4338627B2 (en) | Charged particle beam apparatus and charged particle beam microscopic method | |
EP3702766B1 (en) | Crystal orientation map generation device, charged particle radiation device, crystal orientation map generation method, and program | |
WO2016017561A1 (en) | Charged particle beam device | |
CN108352283B (en) | SEM image acquisition device and SEM image acquisition method | |
US20060108525A1 (en) | Scanning electron microscope and system for inspecting semiconductor device | |
CN113538329A (en) | Method implemented by a data processing device and charged particle beam apparatus for inspecting a sample using such a method | |
JP2001082931A (en) | Method and apparatus for measuring depth of hole | |
JP3112503B2 (en) | Screen processing method using charged beam and charged beam microscope apparatus | |
JPH10162766A (en) | Focused ion beam processing observation equipment | |
JP2001210263A (en) | Scanning electron microscope, dynamic focus control method thereof, and method of grasping surface and cross-sectional shape of semiconductor device | |
JPH08115699A (en) | 3D cross-section processing and observation device | |
US7148479B2 (en) | Defect inspection apparatus, program, and manufacturing method of semiconductor device | |
Goldstein et al. | Special topics in scanning electron microscopy | |
JPH0729539A (en) | Focused ion beam device | |
JP6716026B2 (en) | Charged particle beam device and condition setting method in charged particle beam device | |
JP4262649B2 (en) | Scanning electron microscope apparatus and three-dimensional image display method using the same | |
KR20200115028A (en) | Charged particle beam apparatus and control method thereof | |
JP2945945B2 (en) | Electron beam device and image acquisition method thereof | |
TWI867659B (en) | Method, device, and computer program for correcting image errors when scanning a charged particle beam over a sample |