[go: up one dir, main page]

JPH10160837A - Radar equipment - Google Patents

Radar equipment

Info

Publication number
JPH10160837A
JPH10160837A JP8336430A JP33643096A JPH10160837A JP H10160837 A JPH10160837 A JP H10160837A JP 8336430 A JP8336430 A JP 8336430A JP 33643096 A JP33643096 A JP 33643096A JP H10160837 A JPH10160837 A JP H10160837A
Authority
JP
Japan
Prior art keywords
calibration
transmission
scanning
reflector
radio wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8336430A
Other languages
Japanese (ja)
Other versions
JP3556787B2 (en
Inventor
Kazuhisa Sato
和久 佐藤
Minoru Kojima
穣 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP33643096A priority Critical patent/JP3556787B2/en
Publication of JPH10160837A publication Critical patent/JPH10160837A/en
Application granted granted Critical
Publication of JP3556787B2 publication Critical patent/JP3556787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/406Means for monitoring or calibrating by simulation of echoes using internally generated reference signals, e.g. via delay line, via RF or IF signal injection or via integrated reference reflector or transponder
    • G01S7/4078Means for monitoring or calibrating by simulation of echoes using internally generated reference signals, e.g. via delay line, via RF or IF signal injection or via integrated reference reflector or transponder involving an integrated reference reflector or reference transponder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radar apparatus which can maintain an electric characteristic with reference to a secular change and a change in an operating environment while a rise in production costs is being suppressed. SOLUTION: In a scanning radar apparatus, the irradiation direction of a beam is changed by a mechanical scanning operation or an electric scanning operation. The scanning range of the beam is composed of a detection range required to detect an object and a calibration range required to calibrate the inside of the apparatus. A radio-wave absorber 12 which is used to detect a noise level and to change a bias voltage and a control signal so as to make the noise level minimum and a reflector 13 or a delay reflector which is used to calibrate an amplification gain, a transmission output and a transmission frequency are installed in the calibration range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ミリ波帯の電波やレー
ザ光線などを用いた衝突警報システムなどに利用される
レーダ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radar device used for a collision warning system using a millimeter wave band radio wave or a laser beam.

【0002】[0002]

【従来の技術】追突や衝突防止用警報装置などへの応用
を目指して、ミリ波帯の電波やレーザ光線を用いた車載
用のレーダシステムが開発されてきた。この車載用レー
ダシステムでは、先行車両などの反射物体(「標的」と
称する)との距離だけでなく、車両からみた標的の方向
(以下「方位」と称する)も検出するために、電波や光
線のビームの走査(スキャン)が行われる。このような
ビームの走査は、標的の方位の検出や検出範囲の拡大と
いう目的からだけでなく、車両の旋回状態に応じて標的
の検出範囲を変更する目的からも必要とされる技術であ
る。
2. Description of the Related Art In-vehicle radar systems using radio waves in the millimeter wave band or laser beams have been developed with the aim of applying them to warning devices for rear-end collision and collision prevention. In this on-vehicle radar system, radio waves and light beams are used to detect not only the distance to a reflective object such as a preceding vehicle (hereinafter referred to as a “target”) but also the direction of the target viewed from the vehicle (hereinafter referred to as an “azimuth”). Of the beam is performed. Such beam scanning is a technique required not only for the purpose of detecting the direction of the target and for expanding the detection range, but also for changing the detection range of the target according to the turning state of the vehicle.

【0003】上記ビームの走査方法は、機械式のものと
電子式のものとに大別される。機械式の走査には、レー
ダ装置全体や一次放射器に対向させて配置した反射鏡な
どを回転させるものなどがある。電子式の走査には、複
数のアンテナ素子や一次放射器を配列しておきそれぞれ
から配列の順に電波ビームを放射させるものや、給電す
る電波の位相を変化させて放射ビームの方向を変化させ
るフェイズドアレイなどが知られている。
The beam scanning method is roughly classified into a mechanical type and an electronic type. As the mechanical scanning, there is one that rotates a reflector or the like that is arranged to face the entire radar device or the primary radiator. Electronic scanning involves arranging multiple antenna elements and primary radiators and radiating radio wave beams from each other in the order of arrangement, or phased by changing the phase of the radio wave to be supplied and changing the direction of the radiated beam Arrays and the like are known.

【0004】上記レーダ装置、特に電波を用いた車載用
レーダ装置は大型なため車室内に設置することが困難で
あり、車両前方のバンパーの裏側などの車外に配置され
る場合が多い。このレーダ装置が設置される車外は、空
調のきいた車室内とは全く異なり、季節や地域により大
幅に変動する周囲温度や、車両の走行に伴う振動や衝撃
などの悪環境に置かれるため、装置の送信レベルの低
下、受信感度の低下、内部雑音の増加など種々の特性の
劣化が生じやすい。
[0004] The above-mentioned radar apparatus, particularly an on-vehicle radar apparatus using radio waves, is so large that it is difficult to install it in a vehicle interior, and it is often arranged outside a vehicle such as behind a bumper in front of the vehicle. The outside of the vehicle where this radar device is installed is completely different from the air-conditioned cabin, and it is placed in a bad environment such as the ambient temperature that fluctuates greatly depending on the season and region, and the vibration and shock accompanying the running of the vehicle, Various characteristics such as a decrease in the transmission level of the device, a decrease in the reception sensitivity, and an increase in internal noise are likely to occur.

【0005】[0005]

【発明が解決しよとうする課題】上記従来のレーダ装置
では、車外の悪環境下でも出荷時の特性を維持できるよ
うに、使用部品の温度特性の改善、ヒーターや冷却装置
の付加による筐体内の恒温化、耐震化などの対策が企画
されてきた。しかしながら、このような対策だけでは装
置の製造費用が上昇するという問題がある。従って、本
発明の目的は、製造費用の上昇を抑えつつ電気的特性を
維持することが可能なレーダ装置を提供することにあ
る。
In the above-mentioned conventional radar device, the temperature characteristics of the parts used are improved, and the inside of the housing by adding a heater and a cooling device is maintained so that the characteristics at the time of shipment can be maintained even in a bad environment outside the vehicle. Measures such as constant temperature and earthquake resistance have been planned. However, there is a problem that the manufacturing cost of the apparatus increases only with such measures. Accordingly, it is an object of the present invention to provide a radar device capable of maintaining electrical characteristics while suppressing an increase in manufacturing cost.

【0006】[0006]

【課題を解決するための手段】上記従来技術の課題を解
決する本発明の一つのレーダ装置は、機械又は電子走査
によって照射方向が変更されるビームの走査範囲が物体
の検出に必要な物体検出用走査範囲と装置内部の較正に
必要な較正用走査範囲とから成り、前記較正用走査範囲
には電波吸収体、反射体又は遅延反射体が設置される。
According to one embodiment of the present invention, there is provided a radar apparatus for detecting an object whose scanning range of a beam whose irradiation direction is changed by mechanical or electronic scanning is necessary for detecting an object. A scanning range for calibration and a scanning range for calibration necessary for calibrating the inside of the apparatus are provided. In the scanning range for calibration, a radio wave absorber, a reflector or a delay reflector is installed.

【0007】本発明の他の一つのレーダ装置は、機械又
は電子走査によって照射方向が変更されるビームの走査
範囲に、間欠的に出現する電波吸収体、反射体又は遅延
反射体が設置される。
In another radar apparatus of the present invention, a radio wave absorber, a reflector or a delay reflector that appears intermittently is set in a scanning range of a beam whose irradiation direction is changed by mechanical or electronic scanning. .

【0008】[0008]

【発明の実施の形態】本発明の好適な実施の形態によれ
ば、機械又は電子走査によって照射方向が変更されるビ
ームの走査範囲に間欠的に出現する電波吸収体、反射体
又は遅延反射体は、電子走査によって変更される各ビー
ムを通過させるスリットが半径方向と円周方向とにずら
されて形成された電波吸収体、反射体又は遅延反射体の
回転板から成っている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS According to a preferred embodiment of the present invention, a radio wave absorber, a reflector or a delay reflector intermittently appearing in a scanning range of a beam whose irradiation direction is changed by mechanical or electronic scanning. Is constituted by a rotating plate of a radio wave absorber, a reflector or a delay reflector in which slits for passing each beam changed by electronic scanning are shifted in a radial direction and a circumferential direction.

【0009】[0009]

【実施例】図1は、本発明の第1の実施例のレーダ装置
の構成を示すブロック図であり、11はレーダ送受信
器、12は電波吸収体、13は反射体である。このレー
ダ送受信器11は、送受共用のアンテナ11aの機械走
査又は電子走査によって照射方向が変更されるミリ波帯
の電波のビームを前方に放射する。このビームの走査範
囲の中央部には物体の探知に必要な探知範囲が設定され
ると共に、この探知範囲の両側には装置内部の較正に必
要な第1,第2の較正範囲が設定されている。
FIG. 1 is a block diagram showing the configuration of a radar apparatus according to a first embodiment of the present invention. Reference numeral 11 denotes a radar transceiver, 12 denotes a radio wave absorber, and 13 denotes a reflector. The radar transceiver 11 emits a millimeter wave band radio wave beam whose irradiation direction is changed by mechanical scanning or electronic scanning of the transmitting / receiving antenna 11a. A detection range necessary for detecting an object is set at the center of the scanning range of the beam, and first and second calibration ranges required for calibration inside the apparatus are set on both sides of the detection range. I have.

【0010】第1の較正範囲には電波吸収体12が配置
されると共に、第2の較正範囲には所定の位置に反射体
13が配置される。反射体13は、金属など大きな反射
率を有する素材の板からなり、レーダ送受信器11から
このレーダ装置が探知可能な最短距離の位置に配置され
る。
A radio wave absorber 12 is arranged in a first calibration range, and a reflector 13 is arranged in a predetermined position in a second calibration range. The reflector 13 is made of a plate made of a material having a large reflectivity such as a metal, and is arranged at a position at a shortest distance from the radar transmitter / receiver 11 that the radar device can detect.

【0011】送受共用のアンテナ11aの機械走査又は
電子走査によって、まず、電波吸収体12が設置された
第1の較正範囲が走査され、次いで、中央部分の探知範
囲が走査され、最後に反射体13が設置された第2の較
正範囲が走査される。引き続き、逆の順序、すなわち第
2の較正範囲、探知範囲、第1の較正範囲の順に各範囲
が走査される。上述のような左右への往復走査が適宜な
周期で反復される。
The first calibration range in which the radio wave absorber 12 is installed is first scanned by mechanical scanning or electronic scanning of the transmitting / receiving antenna 11a, then the detection range in the center is scanned, and finally the reflector is scanned. A second calibration area where 13 is located is scanned. Subsequently, each range is scanned in the reverse order, that is, in the order of the second calibration range, the detection range, and the first calibration range. The reciprocating scanning to the left and right as described above is repeated at an appropriate cycle.

【0012】第1の較正範囲の走査に際しては、送受共
用のアンテナ11aから放射された電波は電波吸収体1
2で吸収されるので、反射波が発生しない。このため、
レーダ送受信器11には反射波が受信されず、その出力
は雑音に他ならない。この雑音としては、一般に、外部
から到来する他の車両のレーダ装置からの干渉波などの
外来雑音成分と、熱雑音や1/f雑音など受信器内部で
発生する内部雑音成分とが混在する。
When scanning the first calibration range, the radio wave radiated from the transmitting / receiving antenna 11a is transmitted to the radio wave absorber 1
2, the reflected wave is not generated. For this reason,
No reflected wave is received by the radar transceiver 11, and its output is nothing but noise. Generally, the noise includes an external noise component such as an interference wave from the radar device of another vehicle arriving from the outside and an internal noise component such as thermal noise and 1 / f noise generated inside the receiver.

【0013】しかしながら、この実施例では外来雑音は
電波吸収体12で遮蔽されるため、内部雑音のみが検出
される。この検出した内部雑音を最小となるように周波
数混合器(ミキサ)や、増幅器などの素子や回路のバイ
アス電圧の調整が行われたりする。探知範囲では、探知
対象の他の車両などによって発生した反射波が送受共用
のアンテナ11aを通して送受信器11の受信器に受信
される。
However, in this embodiment, since external noise is shielded by the radio wave absorber 12, only internal noise is detected. The bias voltage of elements such as a frequency mixer (mixer) and an amplifier or a circuit is adjusted so that the detected internal noise is minimized. In the detection range, a reflected wave generated by another vehicle to be detected or the like is received by the receiver of the transmitter / receiver 11 through the antenna 11a for both transmission and reception.

【0014】第2の較正範囲では、そこに置かれる反射
体13が金属板など大きな反射率の反射体から成るた
め、ここで生じた大きなレベルの反射波が送受共用のア
ンテナ11aを経てレーダ送受信器11の受信器に受信
される。この受信器出力は、このレーダ装置が処理可能
な信号の最大レベルであり、これが予め定めた一定値と
常時一致するように、増幅器の利得、減衰器の減衰量、
各部の入出力インピーダンス、バイアス電圧などの制
御、あるいは、送信信号の周波数の制御などが行われ
る。
In the second calibration range, since the reflector 13 placed on the second calibration range is made of a reflector having a large reflectance such as a metal plate, a large-level reflected wave generated here passes through the transmitting / receiving antenna 11a for radar transmission / reception. Is received by the receiver of the device 11. The output of the receiver is the maximum level of the signal that can be processed by the radar device, and the gain of the amplifier, the amount of attenuation of the attenuator,
Control of input / output impedance and bias voltage of each unit, control of the frequency of a transmission signal, and the like are performed.

【0015】上述のように、第1の実施例によれば、探
知範囲の両側で、雑音の検出と受信反射波の最大レベル
の調整が行われる。この第1の実施例を変形した第2の
実施例は、図1中の第2の較正範囲から反射体13を撤
去すると共に、この第2の較正範囲については電波の送
信を行わず、受信のみを行うように構成されている。
As described above, according to the first embodiment, detection of noise and adjustment of the maximum level of the received reflected wave are performed on both sides of the detection range. A second embodiment, which is a modification of the first embodiment, removes the reflector 13 from the second calibration range in FIG. 1 and does not transmit or receive radio waves in the second calibration range. It is only configured to do.

【0016】この時受信されるのは、前述の内部雑音に
外来雑音が混在した雑音であり、第1の較正範囲で既に
検出済みの内部雑音を参考にしてこの外来雑音の平均レ
ベルや周波数スペクトルが検出され、メモリに保存され
る。このメモリに保存された外来雑音は、次に、探知範
囲から受信される反射波の処理に先立って、この反射波
から減算されることにより、受信信号に混在する外来雑
音の除去が行われる。
What is received at this time is noise in which external noise is mixed with the above-mentioned internal noise, and the average level and frequency spectrum of this external noise are referred to the internal noise already detected in the first calibration range. Are detected and stored in memory. The external noise stored in the memory is then subtracted from the reflected wave prior to processing of the reflected wave received from the detection range, thereby removing the external noise mixed in the received signal.

【0017】図2は、本発明の第3の実施例のレーダ装
置の構成を示すブロック図であり、21はレーダ送受信
器、22はスリットが形成されたスリット付き電波吸収
体、23はモータである。
FIG. 2 is a block diagram showing the configuration of a radar apparatus according to a third embodiment of the present invention. Reference numeral 21 denotes a radar transceiver, 22 denotes a radio wave absorber having slits formed therein, and 23 denotes a motor. is there.

【0018】レーダ送受信器21は、電波の放射方向を
放射ビームの幅方向に少しずつずらして配列した5個の
送受共用の開口面アンテナ21a〜21eを備えてい
る。このレーダ送受信器21の前方には、円板状のスリ
ット付き電波吸収体22が、その中心をモータ23の回
転軸に固定した状態で配置されている。図3の平面図も
参照すると、スリット付き電波吸収体22には、送受共
用のアンテナ21a〜21eのそれぞれから放射される
ビームを選択的にかつ回転に伴う時間差をもたせて通過
させるために、円板の径方向と周方向に配置をずらしな
がら形成した5個のスリット22a〜22eが形成され
ている。
The radar transmitter / receiver 21 includes five transmitting / receiving aperture antennas 21a to 21e arranged so that the radiation direction of the radio wave is slightly shifted in the width direction of the radiation beam. A disk-shaped radio wave absorber 22 with a slit is disposed in front of the radar transceiver 21 with its center fixed to the rotating shaft of a motor 23. Referring also to the plan view of FIG. 3, the slit-equipped radio wave absorber 22 has a circular shape in order to allow the beams radiated from each of the antennas 21 a to 21 e for both transmission and reception to pass selectively and with a time difference due to rotation. Five slits 22a to 22e are formed while being displaced in the radial direction and the circumferential direction of the plate.

【0019】スリット付き電波吸収体22の回転に伴っ
て、送受共用のアンテナ21aから放射された電波がス
リット22aを通して放射され、他の車両などの探知対
象物で反射された反射波が同一のスリット22aを通し
て送受共用のアンテナ21aに受信される。すなわち、
送受共用のアンテナ21aを含む送受信チャネルでは他
の車両などの対象物の探知状態となる。この時、残る4
個のアンテナ21b〜21eから放射された電波ビーム
は電波反射体で吸収され、反射ビームが発生しない。こ
のため、送受共用のアンテナ21b〜21eを含む残り
4個の送受信チャネルは、雑音の検出状態となる。
With the rotation of the radio wave absorber 22 having the slit, the radio wave radiated from the antenna 21a for both transmission and reception is radiated through the slit 22a, and the reflected wave reflected by the detection target such as another vehicle is transmitted to the same slit. The signal is received by the antenna 21a, which is used for both transmission and reception, through the antenna 22a. That is,
In the transmission / reception channel including the transmission / reception shared antenna 21a, an object such as another vehicle is detected. At this time, the remaining 4
The radio wave beams emitted from the antennas 21b to 21e are absorbed by the radio wave reflector, and no reflected beam is generated. Therefore, the remaining four transmission / reception channels including the transmission / reception antennas 21b to 21e enter a noise detection state.

【0020】スリット付き電波吸収体22の回転に伴
い、スリット22aがアンテナ21aから遠ざかり、入
れ代わりに、スリット22bがアンテナ21bの前方に
移動する。これに伴い、このアンテナ21bを含む送受
信チャネルが対象物の探知状態となり、他の4個のアン
テナを含む送受信チャネルが雑音の検出状態となる。こ
のように、5個の送受共用のアンテナ21a〜21eを
含む5個の送受共用チャネルのうちの一つが配列の順に
対象物の探知状態となり、残り4個の送受信チャネルが
雑音の検出状態となる。
With the rotation of the radio wave absorber 22 with the slit, the slit 22a moves away from the antenna 21a, and instead of the slit, the slit 22b moves forward of the antenna 21b. Along with this, the transmission / reception channel including the antenna 21b enters a state of detecting an object, and the transmission / reception channel including the other four antennas enters a noise detection state. As described above, one of the five shared transmission / reception channels including the five shared transmission / reception antennas 21a to 21e is in the object detection state in the order of arrangement, and the remaining four transmission / reception channels are in the noise detection state. .

【0021】各送受信チャネルは、検出された雑音を最
小とするようにバイアス電圧を制御したり、検出済みの
雑音を探知状態下で検出された反射波から減算するため
に、その周波数スペクトルや平均レベルをメモリに保存
したりする。
Each transmission / reception channel has its frequency spectrum or average to control the bias voltage so as to minimize the detected noise or to subtract the detected noise from the reflected wave detected under the detection state. Or store the level in memory.

【0022】以上、電子走査の場合を例にとってこの第
3の実施例を説明したが、機械走査の場合にもこの実施
例を適用できる。
Although the third embodiment has been described above taking the case of electronic scanning as an example, this embodiment can also be applied to the case of mechanical scanning.

【0023】図4は、本発明の第4の実施例のレーダ装
置を構成するスリット付き電波吸収体22’の構成を示
す平面図である。この第4の実施例が前述した第3の実
施例と異なる点は、円板状のスリット付き電波吸収体2
2’の一部が電波吸収体ではなく金属などの反射体22
fで置き換えられている点であり、その他の点は、図2
に示す第3の実施例の構成と同一である。
FIG. 4 is a plan view showing the configuration of a radio wave absorber 22 'with slits constituting a radar apparatus according to a fourth embodiment of the present invention. The fourth embodiment is different from the above-described third embodiment in that a disc-shaped electromagnetic wave absorber 2 having a slit is provided.
A part of 2 ′ is not a radio wave absorber but a reflector 22 made of metal or the like.
f, and the other points are shown in FIG.
Is the same as the configuration of the third embodiment shown in FIG.

【0024】従って、この反射体22fが、レーダ送受
信器21のアンテナ21a〜21eの前方に位置する期
間内は、各アンテナを含む対応の各送受信チャネルにお
いて図1の第1の実施例における第2の較正範囲の走査
期間内と同様に、受信反射波の最大レベルの調整が行わ
れる。なお、電波吸収体がアンテナ21a〜21eの前
方に位置する期間内は、上記第1〜第3の実施例と同様
に、雑音の検出とその保存やバイアス電圧の調整などが
行われる。
Therefore, during the period in which the reflector 22f is located in front of the antennas 21a to 21e of the radar transceiver 21, the corresponding transmission / reception channels including each antenna have the second transmission / reception channel in the first embodiment of FIG. The adjustment of the maximum level of the received reflected wave is performed in the same manner as in the scanning period of the calibration range of. During the period in which the radio wave absorber is located in front of the antennas 21a to 21e, detection and storage of noise, adjustment of bias voltage, and the like are performed as in the first to third embodiments.

【0025】図5は本発明の第5の実施例の構成を示す
ブロック図であり、31はレーダ送受信器、31aは送
受共用のアンテナ、32は反射板、33はモータ、34
は電波吸収体である。反射板32の中央部分は紙面に垂
直な方向に延長されるモータ33の回転軸に固定され、
回転する。
FIG. 5 is a block diagram showing the configuration of a fifth embodiment of the present invention, in which 31 is a radar transceiver, 31a is a shared antenna for transmission and reception, 32 is a reflector, 33 is a motor, 34
Is a radio wave absorber. The central portion of the reflection plate 32 is fixed to a rotation axis of a motor 33 extending in a direction perpendicular to the plane of the paper,
Rotate.

【0026】図5(A)に示すように、レーダ送受信器
31の送受共用のアンテナ31aから放射された電波ビ
ームは、金属などで構成される反射板32で反射されて
外部に放射され、他の車両などの対象物で反射された反
射ビームは、上記放射ビームと逆の経路を辿ってレーダ
送受信器31の受信器に受信される。反射板の角度が変
化することによって放射ビームの機械式走査が行われ
る。
As shown in FIG. 5 (A), a radio wave beam radiated from a transmitting / receiving antenna 31a of the radar transceiver 31 is reflected by a reflector 32 made of metal or the like and radiated to the outside. The reflected beam reflected by the target object such as the vehicle is received by the receiver of the radar transceiver 31 following the reverse path to the radiation beam. The mechanical scanning of the radiation beam is performed by changing the angle of the reflector.

【0027】反射板32の回転に伴って、その回転角度
が走査範囲外の値になると、電波ビームの放射が中断さ
れる。図5(B)に示すように、反射板32が更に回転
して反射板32が送受共用のアンテナ31aに対向する
状態になると、電波ビームの放射が再び開始される。放
射された電波ビームは反射板32で反射され、送受共用
のアンテナ31aを経て送受信器31の受信器に受信さ
れる。この状態では、受信レベルが最大となり、これが
予め定めた一定値と常時一致するように、増幅器の利得
や自動利得制御機構の調整などが行われる。
When the rotation angle of the reflection plate 32 is out of the scanning range with the rotation of the reflection plate 32, the emission of the radio wave beam is interrupted. As shown in FIG. 5B, when the reflection plate 32 further rotates to be in a state where the reflection plate 32 faces the antenna 31a for both transmission and reception, radiation of the radio wave beam is started again. The radiated radio beam is reflected by the reflector 32 and received by the receiver of the transmitter / receiver 31 via the antenna 31a used for both transmission and reception. In this state, the gain of the amplifier, adjustment of the automatic gain control mechanism, and the like are performed so that the reception level becomes the maximum and always matches a predetermined constant value.

【0028】図5(C)に示すように、反射板32が更
に回転して電波吸収体34が送受共用のアンテナ31a
に対向する状態になると、電波ビームの放射が再び開始
される。この状態で、雑音の検出とその保存や、この雑
音を最小とするようなバイアス電圧の調整などが行われ
る。
As shown in FIG. 5C, the reflection plate 32 is further rotated, and the radio wave absorber 34 is connected to the transmitting / receiving antenna 31 a
, The emission of the radio wave beam is started again. In this state, detection and storage of noise, adjustment of bias voltage to minimize the noise, and the like are performed.

【0029】図6は、本発明の第6の実施例の構成を示
すブロック図であり、41は送受信器、42はポリゴン
ミラー、43は電波吸収体43である。図6に示すよう
に、レーダ送受信器41の送受共用のアンテナ41aか
ら放射された電波ビームは、金属などで構成されるポリ
ゴンミラー42の反射面で反射されて外部に放射され、
他の車両などの対象物で反射された反射ビームは、上記
放射ビームと逆の経路を辿ってレーダ送受信器41の受
信器に受信される。ポリゴンミラーの回転に伴い反射面
の角度が変化することによって放射ビームの機械式走査
が行われる。
FIG. 6 is a block diagram showing the configuration of a sixth embodiment of the present invention. Reference numeral 41 denotes a transceiver, 42 denotes a polygon mirror, and 43 denotes a radio wave absorber 43. As shown in FIG. 6, a radio wave beam radiated from the transmitting / receiving antenna 41a of the radar transmitter / receiver 41 is reflected by a reflection surface of a polygon mirror 42 made of metal or the like and radiated to the outside.
The reflected beam reflected by an object such as another vehicle is received by the receiver of the radar transmitter / receiver 41 following the reverse path of the radiation beam. Mechanical scanning of the radiation beam is performed by changing the angle of the reflecting surface with the rotation of the polygon mirror.

【0030】ポリゴンミラー42の回転に伴って、その
回転角度が走査範囲外の値になると、アンテナ41aか
らの電波ビームの放射が中断される。反射面が更に回転
してこれがアンテナ41aに対向する状態になると、電
波ビームの放射が再び開始される。放射された電波ビー
ムは反射面で反射され、送受共用のアンテナ41aを経
て送受信器41の受信器に受信される。この状態では、
受信レベルが最大となり、これが予め定めた一定値と常
時一致するように、増幅器の利得や自動利得制御機構の
調整などが行われる。
When the rotation angle of the polygon mirror 42 is out of the scanning range due to the rotation of the polygon mirror 42, the emission of the radio wave beam from the antenna 41a is interrupted. When the reflection surface is further rotated to be in a state of facing the antenna 41a, the emission of the radio wave beam is started again. The radiated radio wave beam is reflected by the reflection surface, and is received by the receiver of the transmitter / receiver 41 via the antenna 41a for transmission and reception. In this state,
The gain of the amplifier, the adjustment of the automatic gain control mechanism, and the like are performed so that the reception level is maximized and always coincides with a predetermined constant value.

【0031】ポリゴンミラー42が更に回転して、その
一つの反射面上に固定された電波吸収体44が送受共用
のアンテナ31aに対向する状態になると、電波ビーム
の放射が再び開始される。この状態で、雑音の検出とそ
の保存や、この雑音を最小とするようなバイアス電圧の
調整などが行われる。
When the polygon mirror 42 is further rotated and the radio wave absorber 44 fixed on one of its reflection surfaces faces the antenna 31a for both transmission and reception, radiation of the radio wave beam is started again. In this state, detection and storage of noise, adjustment of bias voltage to minimize the noise, and the like are performed.

【0032】図7は、本発明の第7の実施例の構成要素
である遅延反射板52の構成を示す断面図である。この
遅延反射板52は、良好な反射面を有する金属などの反
射板52aと、その反射面側に貼着された4フッ化エチ
レンなどの誘電体板52bとから成る。誘電体板52b
の誘電率が空気よりも増加したぶん反射ビームの伝播時
間が増加する。
FIG. 7 is a sectional view showing the configuration of a delay reflection plate 52 which is a component of the seventh embodiment of the present invention. The delay reflection plate 52 includes a reflection plate 52a such as a metal having a good reflection surface and a dielectric plate 52b such as ethylene tetrafluoride adhered to the reflection surface side. Dielectric plate 52b
The propagation time of the reflected beam increases as the permittivity of the reflected beam increases compared to air.

【0033】この結果、反射板52aの設置位置を実質
的にアンテナに接近させることが可能になり、レーダ装
置全体としての小型化が可能になる。この反射板を、図
1や図4のレーダ装置中の反射体13や22fと置き換
えて使用することにより、レーダ装置全体としての小型
化を実現できる。
As a result, the installation position of the reflector 52a can be made substantially closer to the antenna, and the radar apparatus as a whole can be reduced in size. By using this reflector in place of the reflectors 13 and 22f in the radar apparatus of FIGS. 1 and 4, it is possible to reduce the size of the entire radar apparatus.

【0034】図8は、本発明の第8の実施例のレーダ装
置の構成を示すブロック図であり、61はレーダ送受信
器、61aは機械走査式又は電子走査式の送受共用のア
ンテナ、62は較正用信号の発振器、62aは較正用信
号の送信アンテナである。この実施例によれば、アンテ
ナ61aの探知範囲の外側に、発振器62が発生した一
定レベル、一定周波数の較正用信号を送信する送信アン
テナ62aが設置される。
FIG. 8 is a block diagram showing the configuration of a radar apparatus according to an eighth embodiment of the present invention. Reference numeral 61 denotes a radar transceiver, 61a denotes a mechanical scanning or electronic scanning type common antenna for transmission and reception, and 62 denotes a transmission / reception antenna. The calibration signal oscillator 62a is a calibration signal transmitting antenna. According to this embodiment, a transmitting antenna 62a for transmitting a calibration signal of a constant level and a constant frequency generated by the oscillator 62 is provided outside the detection range of the antenna 61a.

【0035】ビーム走査による探知範囲に対する探知動
作が終了すると、送信アンテナ61aから一定レベル、
一定周波数の較正用信号を送信され、送受共用のアンテ
ナ61aに受信される。この較正用信号は、レーダ送受
信器61内の受信器の利得や周波数帯域の変動などの検
出や、利得やバイアス電圧の自動調整などに利用され
る。
When the detection operation for the detection range by the beam scanning is completed, a predetermined level from the transmission antenna 61a is set.
A calibration signal having a constant frequency is transmitted and received by the antenna 61a that is used for both transmission and reception. The calibration signal is used for detecting a change in the gain or frequency band of the receiver in the radar transceiver 61, and for automatically adjusting the gain or the bias voltage.

【0036】図9は、本発明の第9の実施例のレーダ装
置の構成を示すブロック図であり、71はレーダ送受信
器、71aは機械走査式又は電子走査式の送受共用のア
ンテナ、72aは探索信号の送信アンテナ、72bは探
索信号の分岐線路である。この実施例によれば、アンテ
ナ61aの探知範囲の外側に、分岐線路72bを通して
供給される探索信号を送信する送信アンテナ72aが設
置される。
FIG. 9 is a block diagram showing the configuration of a radar apparatus according to a ninth embodiment of the present invention. Reference numeral 71 denotes a radar transceiver, 71a denotes a mechanical scanning type or electronic scanning type transmitting / receiving antenna, and 72a denotes a transmitting / receiving antenna. The search signal transmission antenna 72b is a search signal branch line. According to this embodiment, a transmission antenna 72a for transmitting a search signal supplied through the branch line 72b is provided outside the detection range of the antenna 61a.

【0037】ビーム走査による探知範囲に対する探知動
作が終了すると、送信アンテナ72aから探索信号が送
信され、送受共用のアンテナ71aに受信される。この
探索信号は、レーダ送受信器71内の送受折り返し特性
の検査や、送受信器の利得や周波数帯域の変動などの検
出や、利得やバイアス電圧の自動調整などに利用され
る。
When the detection operation for the detection range by the beam scanning is completed, a search signal is transmitted from the transmission antenna 72a and received by the antenna 71a for both transmission and reception. This search signal is used for inspection of transmission / reception return characteristics in the radar transceiver 71, detection of fluctuations in the gain and frequency band of the transceiver, automatic adjustment of gain and bias voltage, and the like.

【0038】以上、電波ビームを送受信するレーダ装置
を例示したが、レーザ光線などの光ビームや、超音波な
どの音波を送受信するレーダ装置についても本発明を適
用できる。
Although the radar apparatus for transmitting and receiving a radio wave beam has been described above, the present invention can be applied to a radar apparatus for transmitting and receiving a light beam such as a laser beam or a sound wave such as an ultrasonic wave.

【0039】また、反射体や遅延反射体として平坦な反
射板を使用する構成を例示したが、凹状や凸状の曲面状
の反射体を使用することもできる。また、反射体の素材
としては金属に限らず、樹脂などを使用することもでき
る。
Further, although the configuration using a flat reflector as the reflector or the delay reflector has been exemplified, a reflector having a concave or convex curved surface may be used. Further, the material of the reflector is not limited to metal, but may be resin or the like.

【0040】さらに、較正動作においてバイアス電圧や
制御信号などを変更しても所定の特性が得られない場合
には、故障と診断し、その旨を表示などによりドライバ
ーに通知し、レーダ装置としての動作を停止する機能な
ど適宜な機能が必要に応じて付加される。
Further, if a predetermined characteristic cannot be obtained even if the bias voltage or the control signal is changed in the calibration operation, a failure is diagnosed, and the driver is notified by a display or the like to notify the driver of the failure. Appropriate functions such as a function of stopping the operation are added as needed.

【0041】[0041]

【発明の効果】以上詳細に説明したように、本発明のレ
ーダ装置は、探知動作の合間に較正動作を行わせること
により、温度などの外部環境や素子の径年変化に伴う電
気特性の変動をバイアス電圧の変更などによって補償し
てゆくように構成されている。このため、従来装置の場
合のように、温度変化の少ない高価な部品や、高価な温
度補償回路などを採用したり、空調機器などを利用して
恒温化を図ることにより特性の変動を極力抑制する方法
とは異なり、規格の緩やかな安価な素子や回路が採用で
き、また、恒温化なども不要になり、レーダ装置全体の
製造費用が安価になる。
As described above in detail, the radar apparatus according to the present invention performs the calibration operation between the detection operations, so that the fluctuation of the electric characteristics due to the external environment such as the temperature and the change of the diameter of the element with the aging. Is compensated by changing the bias voltage or the like. For this reason, as in the case of conventional equipment, the use of expensive parts with small temperature changes, expensive temperature compensation circuits, etc., and the use of air conditioners to maintain the temperature to minimize temperature fluctuations are minimized. Unlike the above method, an inexpensive element or circuit having a strict standard can be used, and constant temperature or the like is not required, so that the manufacturing cost of the entire radar apparatus is reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例のレーダ装置の構成を示
すブロック図である。
FIG. 1 is a block diagram illustrating a configuration of a radar apparatus according to a first embodiment of the present invention.

【図2】本発明の第3の実施例のレーダ装置の構成を示
すブロック図である。
FIG. 2 is a block diagram illustrating a configuration of a radar device according to a third embodiment of the present invention.

【図3】上記第3の実施例のレーダ装置のスリット付き
電波吸収体の平面図である。
FIG. 3 is a plan view of a radio wave absorber with a slit of the radar apparatus according to the third embodiment.

【図4】本発明の第4の実施例のレーダ装置のスリット
付き電波吸収体の平面図である。
FIG. 4 is a plan view of a radio wave absorber with a slit of a radar apparatus according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例のレーダ装置の構成を示
すブロック図である。
FIG. 5 is a block diagram illustrating a configuration of a radar apparatus according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例のレーダ装置の構成を示
すブロック図である。
FIG. 6 is a block diagram illustrating a configuration of a radar apparatus according to a sixth embodiment of the present invention.

【図7】本発明の第7の実施例のレーダ装置に使用する
遅延反射板の構成を示す断面図である。
FIG. 7 is a sectional view showing a configuration of a delay reflector used in a radar device according to a seventh embodiment of the present invention.

【図8】本発明の第8の実施例のレーダ装置の構成を示
すブロック図である。
FIG. 8 is a block diagram illustrating a configuration of a radar apparatus according to an eighth embodiment of the present invention.

【図9】本発明の第9の実施例のレーダ装置の構成を示
すブロック図である。
FIG. 9 is a block diagram illustrating a configuration of a radar apparatus according to a ninth embodiment of the present invention.

【符号の説明】 11,21,31,41,61,71 レーダ送受信器 12,22,34,44 電波吸収体 13,22f,32 反射板 44 ポリゴンミラー 52 遅延反射板 62 較正信号の発振器 62a ,72a 較正信号の送信アンテナ 6[Explanation of Signs] 11,21,31,41,61,71 Radar transceiver 12,22,34,44 Radio wave absorber 13,22f, 32 Reflector 44 Polygon mirror 52 Delay reflector 62 Calibration signal oscillator 62a, 72a Calibration signal transmission antenna 6

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】機械走査又は電子走査によってビームの照
射方向が変更される走査式のレーダ装置において、 前記ビームの走査範囲は、物体の探知に必要な探知範囲
と、装置内部の較正に必要な較正範囲とから成り、 前記較正範囲には電波吸収体、反射体又は遅延反射体が
設置されることを特徴とするレーダ装置。
1. A scanning radar device in which the irradiation direction of a beam is changed by mechanical scanning or electronic scanning. A radar range, wherein a radio wave absorber, a reflector, or a delayed reflector is installed in the calibration range.
【請求項2】 請求項1において、 前記較正範囲に電波吸収体を設置した場合の装置内部の
較正として、雑音レベルの検出と、この雑音レベルを最
小するためのバイアス電圧又は制御信号の変更その他の
動作特性の較正が行われることを特徴とするレーダ装
置。
2. The apparatus according to claim 1, wherein as a calibration inside the apparatus when a radio wave absorber is installed in the calibration range, a noise level is detected, and a bias voltage or a control signal for minimizing the noise level is changed. A calibration of the operating characteristics of the radar device.
【請求項3】 請求項1又は2において、 前記較正範囲に反射体を設置した場合の装置内部の較正
として、増幅利得、送信出力、送信周波数その他の動作
特性の較正が行われることを特徴とするレーダ装置。
3. The apparatus according to claim 1, wherein a calibration of an amplification gain, a transmission output, a transmission frequency, and other operating characteristics is performed as calibration inside the apparatus when a reflector is installed in the calibration range. Radar equipment.
【請求項4】機械走査又は電子走査によってビームの照
射方向が変更される電子走査式のレーダ装置において、 前記ビームの走査範囲に、間欠的に出現する電波吸収
体、反射体又は遅延反射体が設置されることを特徴とす
るレーダ装置。
4. An electronic scanning type radar apparatus in which a beam irradiation direction is changed by mechanical scanning or electronic scanning, wherein an intermittently appearing radio wave absorber, reflector or delay reflector is located in the beam scanning range. A radar device to be installed.
【請求項5】 請求項3において、 前記間欠的に出現する電波吸収体、反射体又は遅延反射
体は、前記走査ビームを通過させるスリットが半径方向
及び円周方向にずらされて形成された電波吸収体、反射
体又は遅延反射体の回転板から成ることを特徴とするレ
ーダ装置。
5. The radio wave absorber according to claim 3, wherein the intermittently appearing radio wave absorber, reflector or delay reflector is formed by shifting a slit for passing the scanning beam in a radial direction and a circumferential direction. A radar device comprising a rotating plate of an absorber, a reflector or a delay reflector.
【請求項6】 請求項4又は5において、 前記回転板が電波吸収体から成る場合の装置内部の較正
として、雑音レベルの検出と、この雑音レベルを最小す
るためのバイアス電圧又は制御信号の変更その他の動作
特性の較正が行われることを特徴とするレーダ装置。
6. The calibration according to claim 4 or 5, wherein when the rotating plate is made of a radio wave absorber, a noise level is detected and a bias voltage or a control signal is changed to minimize the noise level. A radar device wherein calibration of other operating characteristics is performed.
【請求項7】 請求項4乃至6において、 前記回転板が反射体又は遅延反射体から成る場合の装置
内部の較正として、増幅利得、送信出力、送信周波数そ
の他の動作特性の較正が行われることを特徴とするレー
ダ装置。
7. The apparatus according to claim 4, wherein the calibration of the amplification gain, the transmission output, the transmission frequency, and other operating characteristics is performed as calibration inside the apparatus when the rotating plate is formed of a reflector or a delay reflector. A radar device characterized by the following.
【請求項8】送受共用のアンテナから放射されたビーム
を反射板の一方向又は往復の回転によって走査するレー
ダ装置において、 前記反射板の裏面に電波吸収体が固定され、この電波吸
収が前記送受共用のアンテナに対向した状態でビームの
送受信が行われ、内部雑音が検出されることを特徴とす
るレーダ装置。
8. A radar apparatus which scans a beam radiated from a common antenna for transmission and reception by one-way or reciprocating rotation of a reflection plate, wherein a radio wave absorber is fixed to a back surface of the reflection plate. A radar apparatus wherein beam transmission / reception is performed in a state facing a common antenna, and internal noise is detected.
【請求項9】送受共用のアンテナから放射されたビーム
を反射板の一方向又は往復の回転によって走査するレー
ダ装置において、 前記反射板が前記送受共用のアンテナに対向した状態で
ビームの送受信が行われ、増幅利得、送信出力、送信周
波数その他の動作特性の較正が行われることを特徴とす
るレーダ装置。
9. A radar apparatus for scanning a beam radiated from a common antenna for transmission and reception by one-way or reciprocating rotation of a reflection plate, wherein transmission and reception of beams are performed in a state where the reflection plate faces the common antenna for transmission and reception. A radar apparatus wherein calibration of amplification gain, transmission output, transmission frequency and other operating characteristics is performed.
【請求項10】送受共用のアンテナから放射されたビーム
をポリゴンミラーの回転によって走査するレーダ装置に
おいて、 前記ポリゴンミラーの少なくとも一つの面に電波吸収体
が固定され、この電波吸収が前記送受共用のアンテナに
対向した状態でビームの送受信が行われ、内部雑音が検
出されることを特徴とするレーダ装置。
10. A radar apparatus for scanning a beam radiated from a common antenna for transmission and reception by rotating a polygon mirror, wherein a radio wave absorber is fixed to at least one surface of the polygon mirror, and the radio wave absorption is used for the common transmission and reception. A radar apparatus wherein transmission and reception of a beam are performed in a state facing an antenna, and internal noise is detected.
【請求項11】送受共用のアンテナから放射されたビーム
をポリゴンミラーの回転によって走査するレーダ装置に
おいて、 前記ポリゴンミラーの少なくとも一つの面が前記送受共
用のアンテナに対向した状態でビームの送受信が行わ
れ、増幅利得、送信出力、送信周波数その他の動作特性
の較正が行われることを特徴とするレーダ装置。
11. A radar device for scanning a beam radiated from a transmitting / receiving antenna by rotating a polygon mirror, wherein the beam transmission / reception is performed with at least one surface of the polygon mirror facing the transmitting / receiving antenna. A radar apparatus wherein calibration of amplification gain, transmission output, transmission frequency and other operating characteristics is performed.
【請求項12】機械走査又は電子走査によってビームの照
射方向が変更される走査式のレーダ装置において、 前記ビームの走査範囲は、物体の探知に必要な探知範囲
と、装置内部の較正に必要な較正範囲とから成り、 前記較正範囲にはこのレーダ装置に較正用の電波を送信
する手段が配置されたことを特徴とするレーダ装置。
12. A scanning radar apparatus in which a beam irradiation direction is changed by mechanical scanning or electronic scanning, wherein the beam scanning range includes a detection range necessary for detecting an object and a calibration range necessary for calibration inside the device. A radar apparatus comprising: a calibration area; and means for transmitting a radio wave for calibration to the radar apparatus in the calibration area.
【請求項13】 請求項12において、 前記較正用の電波は、前記レーダ装置から分岐された線
路を通して送信されることを特徴とするレーダ装置。
13. The radar apparatus according to claim 12, wherein the radio wave for calibration is transmitted through a line branched from the radar apparatus.
JP33643096A 1996-12-02 1996-12-02 Radar equipment Expired - Fee Related JP3556787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33643096A JP3556787B2 (en) 1996-12-02 1996-12-02 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33643096A JP3556787B2 (en) 1996-12-02 1996-12-02 Radar equipment

Publications (2)

Publication Number Publication Date
JPH10160837A true JPH10160837A (en) 1998-06-19
JP3556787B2 JP3556787B2 (en) 2004-08-25

Family

ID=18299055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33643096A Expired - Fee Related JP3556787B2 (en) 1996-12-02 1996-12-02 Radar equipment

Country Status (1)

Country Link
JP (1) JP3556787B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035768A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Radio wave radar device and vehicle equipped with it
JP2004163340A (en) * 2002-11-15 2004-06-10 Mitsubishi Electric Corp Onboard radar system
JP2004170183A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Vehicle-mounted radar system
JP2012026804A (en) * 2010-07-21 2012-02-09 Toyota Motor Corp Radar device
JP2012510625A (en) * 2008-12-02 2012-05-10 ハプナー ゲーエムベーハー Method and device for imaging an object using electromagnetic high frequency radiation
JP2013160545A (en) * 2012-02-02 2013-08-19 Mitsubishi Electric Corp Shape measuring device
JPWO2015068395A1 (en) * 2013-11-08 2017-03-09 国立大学法人東京工業大学 Sensing device and sensing method
WO2018011878A1 (en) * 2016-07-12 2018-01-18 パイオニア株式会社 Information processing device, optical device, control method, program, and storage medium
WO2019004146A1 (en) * 2017-06-27 2019-01-03 パイオニア株式会社 Information processing device, control method, program and recording medium
EP3734749A1 (en) * 2019-05-03 2020-11-04 Commissariat à l'Energie Atomique et aux Energies Alternatives System for transmitting/receiving radio waves

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162883A (en) * 1984-09-04 1986-03-31 Nec Corp Radar monitor
JPH02196988A (en) * 1989-01-26 1990-08-03 Matsushita Electric Works Ltd Ultrasonic detecting device for vehicle
JPH0454479A (en) * 1990-06-22 1992-02-21 Oki Electric Ind Co Ltd Radar receiving performance measuring circuit
JPH0522796A (en) * 1991-06-26 1993-01-29 Matsushita Electric Works Ltd Ultrasonic sensor
JPH06308225A (en) * 1993-04-28 1994-11-04 Honda Motor Co Ltd Automotive radar device
JPH06331742A (en) * 1993-05-26 1994-12-02 Matsushita Electric Works Ltd On-board ultrasonic sensor unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162883A (en) * 1984-09-04 1986-03-31 Nec Corp Radar monitor
JPH02196988A (en) * 1989-01-26 1990-08-03 Matsushita Electric Works Ltd Ultrasonic detecting device for vehicle
JPH0454479A (en) * 1990-06-22 1992-02-21 Oki Electric Ind Co Ltd Radar receiving performance measuring circuit
JPH0522796A (en) * 1991-06-26 1993-01-29 Matsushita Electric Works Ltd Ultrasonic sensor
JPH06308225A (en) * 1993-04-28 1994-11-04 Honda Motor Co Ltd Automotive radar device
JPH06331742A (en) * 1993-05-26 1994-12-02 Matsushita Electric Works Ltd On-board ultrasonic sensor unit

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035768A (en) * 2001-07-24 2003-02-07 Hitachi Ltd Radio wave radar device and vehicle equipped with it
JP2004163340A (en) * 2002-11-15 2004-06-10 Mitsubishi Electric Corp Onboard radar system
JP2004170183A (en) * 2002-11-19 2004-06-17 Mitsubishi Electric Corp Vehicle-mounted radar system
JP2012510625A (en) * 2008-12-02 2012-05-10 ハプナー ゲーエムベーハー Method and device for imaging an object using electromagnetic high frequency radiation
US9063231B2 (en) 2008-12-02 2015-06-23 Hubner Gmbh Method and device for imaging an object using electromagnetic high frequency radiation
JP2012026804A (en) * 2010-07-21 2012-02-09 Toyota Motor Corp Radar device
JP2013160545A (en) * 2012-02-02 2013-08-19 Mitsubishi Electric Corp Shape measuring device
JPWO2015068395A1 (en) * 2013-11-08 2017-03-09 国立大学法人東京工業大学 Sensing device and sensing method
WO2018011878A1 (en) * 2016-07-12 2018-01-18 パイオニア株式会社 Information processing device, optical device, control method, program, and storage medium
JPWO2018011878A1 (en) * 2016-07-12 2019-05-09 パイオニア株式会社 INFORMATION PROCESSING APPARATUS, OPTICAL APPARATUS, CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
EP3486681A4 (en) * 2016-07-12 2020-01-29 Pioneer Corporation INFORMATION PROCESSING DEVICE, OPTICAL DEVICE, CONTROL METHOD, PROGRAM AND STORAGE MEDIUM
US11543500B2 (en) 2016-07-12 2023-01-03 Pioneer Corporation Information processing device, optical apparatus, control method, program and storage medium
WO2019004146A1 (en) * 2017-06-27 2019-01-03 パイオニア株式会社 Information processing device, control method, program and recording medium
JPWO2019004146A1 (en) * 2017-06-27 2020-04-30 パイオニア株式会社 Information processing apparatus, control method, program, and storage medium
EP3647811A4 (en) * 2017-06-27 2021-03-03 Pioneer Corporation INFORMATION PROCESSING DEVICE, CONTROL METHOD, PROGRAM AND RECORDING MEDIUM
EP3734749A1 (en) * 2019-05-03 2020-11-04 Commissariat à l'Energie Atomique et aux Energies Alternatives System for transmitting/receiving radio waves
FR3095701A1 (en) * 2019-05-03 2020-11-06 Commissariat A L'energie Atomique Et Aux Energies Alternatives Radio wave transceiver system
US11614512B2 (en) 2019-05-03 2023-03-28 Commissariat à l'énergie atomique et aux énergies alternatives Radio transceiver precise time delay measurement system

Also Published As

Publication number Publication date
JP3556787B2 (en) 2004-08-25

Similar Documents

Publication Publication Date Title
US8432309B2 (en) Automotive radar system and method for using same
US7408500B2 (en) Automotive radar
US7453411B2 (en) Antenna device and radar apparatus including the same
JP7382395B2 (en) Vehicle body parts with at least one directional antenna
WO2005055366A1 (en) Vehicle-mounted radar
US12313735B2 (en) Radar sensor, motor vehicle, and method for operating a radar sensor
JP2002104070A (en) Vehicle circumference monitoring device
JP3556787B2 (en) Radar equipment
JP2003240838A (en) Periphery monitoring device for vehicle
US6356246B1 (en) Dielectric lens antenna and radio device including the same
EP2919321B1 (en) Array-fed reflector antenna device and method of controlling this device
JP2000228608A (en) Antenna for on-vehicle radar
JP2007093480A (en) Radar installation, radar signal processor, and method for operating radar installation
JP2007049691A (en) Antenna module and radio apparatus
JP5032910B2 (en) Antenna device for pulse radar
US20230288532A1 (en) Antenna for a radar apparatus
JP2015190810A (en) Radar device and radar method
US7271778B1 (en) Antenna device and radar device using the same
JP3357585B2 (en) In-vehicle radar device
WO2006075437A1 (en) Antenna assembly, wireless communication apparatus and radar
JPH06308225A (en) Automotive radar device
JP2019140508A (en) Antenna device
JP2000059141A (en) Antenna device
TWI870033B (en) Antenna Device
JPH1194926A (en) Radar antenna

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees