JPH10159637A - Fuel injection controller for internal combustion engine and method for controlling fuel injection - Google Patents
Fuel injection controller for internal combustion engine and method for controlling fuel injectionInfo
- Publication number
- JPH10159637A JPH10159637A JP8318922A JP31892296A JPH10159637A JP H10159637 A JPH10159637 A JP H10159637A JP 8318922 A JP8318922 A JP 8318922A JP 31892296 A JP31892296 A JP 31892296A JP H10159637 A JPH10159637 A JP H10159637A
- Authority
- JP
- Japan
- Prior art keywords
- cylinder
- oxygen concentration
- fuel injection
- injection amount
- internal combustion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ディーゼルエンジ
ン等の内燃機関から排出される排気中の酸素濃度を検出
して各気筒の燃料噴射量のばらつきを補正する機能を備
えた内燃機関の燃料噴射制御装置及び燃料噴射制御方法
に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection system for an internal combustion engine having a function of detecting an oxygen concentration in exhaust gas discharged from an internal combustion engine such as a diesel engine and correcting variations in fuel injection amount of each cylinder. The present invention relates to a control device and a fuel injection control method.
【0002】[0002]
【従来の技術】ディーゼルエンジン等の内燃機関の燃料
噴射装置は、製造時の個体差(ばらつき)や経時劣化に
より燃料噴射量指令値と実際の燃料噴射量との間にずれ
が生じ、このずれがアイドル回転数を不安定にしたり、
エンジン振動を増加させたりする原因となっていた。ま
た、排気還流装置(EGR装置)付きの内燃機関では、
各気筒の燃料噴射量のずれがスモークの増加を招く原因
にもなっていた。2. Description of the Related Art In a fuel injection device for an internal combustion engine such as a diesel engine, a deviation occurs between a fuel injection amount command value and an actual fuel injection amount due to individual differences (variation) during manufacture and deterioration over time. Makes the idle speed unstable,
It caused the engine vibration to increase. In an internal combustion engine with an exhaust gas recirculation device (EGR device),
The deviation of the fuel injection amount of each cylinder has also caused an increase in smoke.
【0003】この対策として、ガソリンエンジンでは、
特開昭57−126527号公報に示すように、各気筒
から排出される排気中の酸素濃度を、排気管に設置した
酸素濃度センサで検出し、この酸素濃度センサの出力信
号から各気筒のリッチ/リーンを判定して、各気筒の燃
料噴射量が均一になるように各気筒の燃料噴射弁の開弁
時間(燃料噴射量)を補正するようにしたものがある。[0003] As a countermeasure for this, in gasoline engines,
As disclosed in Japanese Patent Application Laid-Open No. 57-126527, the oxygen concentration in the exhaust gas discharged from each cylinder is detected by an oxygen concentration sensor installed in an exhaust pipe, and the rich signal of each cylinder is detected from the output signal of the oxygen concentration sensor. / Lean is determined, and the valve opening time (fuel injection amount) of the fuel injection valve of each cylinder is corrected so that the fuel injection amount of each cylinder becomes uniform.
【0004】[0004]
【発明が解決しようとする課題】一般に、ガソリンエン
ジンは、排気ガスを三元触媒で浄化するために、酸素濃
度センサの出力信号に基づいて空燃比を理論空燃比に維
持するようにフィードバック制御するため、排気中の酸
素濃度がほぼ0%となるように各気筒の燃料噴射量が制
御される。それ故に、現在実用化されている酸素濃度セ
ンサは、0%に近い酸素濃度を精度良く検出できるよう
になっており、図4に示すように、酸素濃度が高くなる
ほど、検出誤差が大きくなるセンサ特性になっている。Generally, in a gasoline engine, in order to purify exhaust gas with a three-way catalyst, feedback control is performed based on an output signal of an oxygen concentration sensor so as to maintain an air-fuel ratio at a stoichiometric air-fuel ratio. Therefore, the fuel injection amount of each cylinder is controlled so that the oxygen concentration in the exhaust gas becomes almost 0%. Therefore, currently available oxygen concentration sensors can accurately detect an oxygen concentration close to 0%, and as shown in FIG. 4, a sensor whose detection error increases as the oxygen concentration increases. It is a characteristic.
【0005】一方、ディーゼルエンジンは、過剰酸素下
で燃料が燃焼するため、排気中の酸素濃度が高いという
特徴がある。しかも、EGR装置やターボ過給機付きの
ディーゼルエンジンでは、EGR装置やターボ過給機の
作動状態によって排気中の酸素濃度が大きく変動してし
まうため、排気中の酸素濃度の変動の原因が、燃料噴射
量のばらつきによるものか、EGR装置やターボ過給機
の作動によるものか判別できない。これらの事情から、
ディーゼルエンジンでは、排気管に酸素濃度センサを設
置しても、その酸素濃度センサの出力信号から、各気筒
の燃料噴射量のばらつきを精度良く判定することはでき
ず、酸素濃度センサを用いた気筒毎の燃料噴射量の補正
は不可能であった。[0005] On the other hand, a diesel engine is characterized in that the fuel is burned under excess oxygen, so that the oxygen concentration in the exhaust gas is high. In addition, in a diesel engine equipped with an EGR device or a turbocharger, the oxygen concentration in the exhaust fluctuates greatly depending on the operating state of the EGR device or the turbocharger. It cannot be determined whether the difference is due to the variation in the fuel injection amount or the operation of the EGR device or the turbocharger. From these circumstances,
In a diesel engine, even if an oxygen concentration sensor is installed in the exhaust pipe, it is not possible to accurately determine the variation in the fuel injection amount of each cylinder from the output signal of the oxygen concentration sensor. It was not possible to correct the fuel injection amount for each.
【0006】また、前述した特開昭57−126527
号公報では、酸素濃度センサで検出される酸素濃度がい
ずれの気筒から排出された排気の酸素濃度であるかを判
別するために、各気筒から排出された排気ガスが酸素濃
度センサまで達して酸素濃度センサの出力信号が変化す
るまでに要する遅れ時間△tを、吸入空気量とエンジン
回転数とから一義的に決定し、酸素濃度センサで検出し
た酸素濃度の気筒が遅れ時間Δt前に排出された気筒で
あると推定して、各気筒の燃料噴射量を補正するように
している。The above-mentioned Japanese Patent Application Laid-Open No. 57-126527 is also known.
In order to determine which cylinder the oxygen concentration detected by the oxygen concentration sensor is the oxygen concentration of the exhaust gas discharged from, the exhaust gas discharged from each cylinder reaches the oxygen concentration The delay time Δt required until the output signal of the concentration sensor changes is uniquely determined from the intake air amount and the engine speed, and the cylinder having the oxygen concentration detected by the oxygen concentration sensor is discharged before the delay time Δt. Thus, the cylinders are estimated to have been lost, and the fuel injection amount of each cylinder is corrected.
【0007】しかし、この遅れ時間Δtは、各気筒の排
気マニホールドの長さの相違や排気干渉により変動する
のみならず、EGR装置やターボ過給機の作動状態によ
っても大きく変動する。従って、上記公報のように、遅
れ時間△tを、吸入空気量とエンジン回転数とから一義
的に決定したのでは、気筒判別を間違える可能性があ
り、燃料噴射量の補正の信頼性を確保することができな
い。However, the delay time Δt not only fluctuates due to a difference in the length of the exhaust manifold of each cylinder and exhaust interference, but also fluctuates greatly depending on the operating state of the EGR device and the turbocharger. Therefore, if the delay time Δt is uniquely determined from the intake air amount and the engine speed as described in the above publication, there is a possibility that the cylinder discrimination may be erroneous, and the reliability of the correction of the fuel injection amount is secured. Can not do it.
【0008】本発明はこのような事情を考慮してなされ
たものであり、第1の目的は、ディーゼルエンジン等、
排気中の酸素濃度が高い内燃機関でも、酸素濃度検出手
段の検出値に基づいて各気筒の燃料噴射量を気筒毎に精
度良く補正できるようにすることであり、また、第2の
目的は、酸素濃度検出手段の検出値に基づいて気筒判別
を精度良く行い、燃料噴射量補正の信頼性を向上させる
ことである。The present invention has been made in view of such circumstances, and a first object is to provide a diesel engine and the like.
Even in an internal combustion engine having a high oxygen concentration in exhaust gas, the fuel injection amount of each cylinder can be accurately corrected for each cylinder based on the detection value of the oxygen concentration detection means. It is an object of the present invention to accurately perform cylinder discrimination based on a detection value of an oxygen concentration detection unit and improve the reliability of fuel injection amount correction.
【0009】[0009]
【課題を解決するための手段】上記第1の目的を達成す
るために、本発明の請求項1,7によれば、内燃機関の
各気筒から排出される排気中の酸素濃度を酸素濃度検出
手段で検出し、内燃機関が高負荷低回転の時に前記酸素
濃度検出手段の検出値に基づいて前記各気筒の燃料噴射
量を気筒毎に補正する。In order to achieve the first object, according to the first and seventh aspects of the present invention, the oxygen concentration in exhaust gas discharged from each cylinder of an internal combustion engine is detected. The fuel injection amount of each cylinder is corrected for each cylinder based on the detection value of the oxygen concentration detecting means when the internal combustion engine is at a high load and a low speed.
【0010】ここで、高負荷低回転の時に各気筒の燃料
噴射量を補正する理由を説明する。高負荷時には、燃料
噴射量が多いため、排気中の酸素濃度が低くなり、酸素
濃度検出手段の検出特性において、比較的検出誤差の少
ない領域で排気中の酸素濃度を検出できる。しかも、高
負荷時には、EGR装置(排気還流手段)が作動せず、
排気中の酸素濃度がEGRによる影響を全く受けない。Here, the reason why the fuel injection amount of each cylinder is corrected at the time of high load and low rotation will be described. At a high load, the fuel injection amount is large, so that the oxygen concentration in the exhaust gas becomes low, and the oxygen concentration in the exhaust gas can be detected in a region where the detection error of the oxygen concentration detecting means is relatively small. In addition, at a high load, the EGR device (exhaust gas recirculation means) does not operate,
The oxygen concentration in the exhaust is not affected by the EGR at all.
【0011】また、低回転時には、酸素濃度検出手段の
検出応答性から見て各気筒の燃料噴射の時間間隔が十分
に長くなるため、各気筒の燃料噴射と酸素濃度検出手段
の検出値との対応関係を判別しやすい。しかも、低回転
時には、ターボ過給機(吸気過給手段)が作動せず、排
気中の酸素濃度がターボ過給機による影響を全く受けな
い。In addition, when the engine speed is low, the time interval between the fuel injection of each cylinder becomes sufficiently long in view of the detection response of the oxygen concentration detecting means, so that the difference between the fuel injection of each cylinder and the detection value of the oxygen concentration detecting means is obtained. It is easy to determine the correspondence. In addition, at the time of low rotation, the turbocharger (intake supercharger) does not operate, and the oxygen concentration in the exhaust is not affected by the turbocharger at all.
【0012】従って、本発明のように、高負荷低回転の
時に酸素濃度検出手段の検出値に基づいて各気筒の燃料
噴射量を気筒毎に補正すれば、次のような効果を得るこ
とができる。Therefore, when the fuel injection amount of each cylinder is corrected for each cylinder based on the detection value of the oxygen concentration detecting means at the time of high load and low rotation as in the present invention, the following effects can be obtained. it can.
【0013】EGRやターボ過給機の影響を全く受け
ない。 排気中の酸素濃度が比較的低いため、酸素濃度検出手
段の検出特性の比較的良い領域で酸素濃度を検出でき、
酸素濃度の検出精度を向上できる。 各気筒の燃料噴射の時間間隔が長いため、各気筒の燃
料噴射と酸素濃度検出手段の検出値との対応関係を判別
しやすい。There is no influence from the EGR or the turbocharger. Since the oxygen concentration in the exhaust gas is relatively low, the oxygen concentration can be detected in a region where the detection characteristics of the oxygen concentration detecting means are relatively good,
Oxygen concentration detection accuracy can be improved. Since the time interval of the fuel injection of each cylinder is long, it is easy to determine the correspondence between the fuel injection of each cylinder and the detection value of the oxygen concentration detecting means.
【0014】これら〜の効果により、各気筒の燃料
噴射量に対応する酸素濃度を気筒毎に精度良く検出する
ことができて、製造時の個体差(ばらつき)や経時劣化
等による各気筒の燃料噴射量のばらつきを気筒毎に精度
良く補正することができる。With these effects, the oxygen concentration corresponding to the fuel injection amount of each cylinder can be accurately detected for each cylinder, and the fuel concentration of each cylinder due to individual differences (variation) during manufacturing and deterioration over time can be detected. Variations in the injection amount can be accurately corrected for each cylinder.
【0015】但し、本発明の適用範囲は、EGR装置と
ターボ過給機の双方を備えたシステムに限定されず、い
ずれか一方のみを持つシステムや、双方を持たないシス
テムにも適用可能である。However, the scope of application of the present invention is not limited to a system equipped with both an EGR device and a turbocharger, and is also applicable to a system having only one of them or a system having neither of them. .
【0016】EGR装置とターボ過給機の双方を備えた
システムに本発明を適用する場合には、請求項2のよう
に、EGR装置(排気還流手段)とターボ過給機(吸気
過給手段)の双方が作動していない時に酸素濃度検出手
段の検出値に基づいて各気筒の燃料噴射量を気筒毎に補
正すれば良い。これにより、EGRやターボ過給機の影
響を受けずに、各気筒の燃料噴射量に対応する酸素濃度
を気筒毎に精度良く検出することができて、各気筒の燃
料噴射量のばらつきを気筒毎に精度良く補正することが
できる。When the present invention is applied to a system having both an EGR device and a turbocharger, the EGR device (exhaust recirculation means) and the turbocharger (intake supercharger) When both of them are not operating, the fuel injection amount of each cylinder may be corrected for each cylinder based on the detection value of the oxygen concentration detecting means. Thus, the oxygen concentration corresponding to the fuel injection amount of each cylinder can be accurately detected for each cylinder without being affected by the EGR or the turbocharger, and the variation of the fuel injection amount of each cylinder can be detected. Correction can be made accurately every time.
【0017】一方、請求項3は、内燃機関の運転状態が
変動する時(つまり過渡時)に各気筒の燃料噴射量を補
正する技術であり、酸素濃度検出手段の検出値に基づい
て1サイクル(720℃A)毎の酸素濃度平均値(以下
「酸素濃度サイクル平均値」という)を算出すると共
に、複数サイクル間の前記酸素濃度サイクル平均値の変
化量から気筒毎の目標酸素濃度を算出する。これによ
り、気筒毎の目標酸素濃度を精度良く算出することがで
きる。そして、酸素濃度検出手段により検出した気筒毎
の酸素濃度と気筒毎の目標酸素濃度との偏差が小さくな
る方向に各気筒の燃料噴射量を気筒毎に補正する。これ
により、過渡時でも、各気筒の酸素濃度を気筒毎に目標
酸素濃度に制御することができ、各気筒の燃料噴射量の
ばらつきを気筒毎に精度良く補正することができる。On the other hand, a third aspect is a technique for correcting the fuel injection amount of each cylinder when the operating state of the internal combustion engine fluctuates (that is, in a transient state). One cycle is based on the detection value of the oxygen concentration detecting means. In addition to calculating an oxygen concentration average value (hereinafter referred to as “oxygen concentration cycle average value”) for each (720 ° C. A), a target oxygen concentration for each cylinder is calculated from a variation amount of the oxygen concentration cycle average value during a plurality of cycles. . Thereby, the target oxygen concentration for each cylinder can be calculated with high accuracy. Then, the fuel injection amount of each cylinder is corrected for each cylinder in a direction in which the deviation between the oxygen concentration for each cylinder detected by the oxygen concentration detection means and the target oxygen concentration for each cylinder decreases. Thus, even during a transition, the oxygen concentration of each cylinder can be controlled to the target oxygen concentration for each cylinder, and the variation in the fuel injection amount of each cylinder can be accurately corrected for each cylinder.
【0018】ところで、各気筒の燃料噴射量の補正量が
大きい場合、その補正を一気に行うと、トルク変動やエ
ンジン振動が生じてドライバビリティを低下させるおそ
れがある。In the case where the correction amount of the fuel injection amount of each cylinder is large, if the correction is performed at a stretch, torque fluctuation and engine vibration may occur and drivability may be reduced.
【0019】この対策として、請求項4のように、各気
筒の燃料噴射量の補正を複数のサイクルにわたって徐々
に行うようにしても良い。このようにすれば、補正1回
当りの燃料噴射量の補正量を少なくすることができ、燃
料噴射量の補正によるトルク変動やエンジン振動を抑え
ることができて、ドライバビリティを向上することがで
きる。As a countermeasure, the fuel injection amount of each cylinder may be gradually corrected over a plurality of cycles. With this configuration, the correction amount of the fuel injection amount per correction can be reduced, torque fluctuation and engine vibration due to correction of the fuel injection amount can be suppressed, and drivability can be improved. .
【0020】更に、請求項5のように、補正の前後で全
気筒の燃料噴射量の合計値を変化させないように各気筒
の燃料噴射量を気筒毎に補正すると良い。このようにす
れば、補正の前後でトルクが変動することを防止でき、
ドライバビリティを向上することができる。Further, it is preferable that the fuel injection amount of each cylinder is corrected for each cylinder so that the total value of the fuel injection amounts of all cylinders does not change before and after the correction. This can prevent the torque from fluctuating before and after the correction,
Drivability can be improved.
【0021】また、前述した第2の目的を達成するため
に、請求項6では、酸素濃度検出手段で検出される酸素
濃度がいずれの気筒から排出された排気の酸素濃度であ
るかを判別するために、特定の気筒の燃料噴射量を一時
的に増加又は減少させ、その増減量と前記酸素濃度検出
手段の検出値との関係から前記特定の気筒を気筒判別手
段により判別する。つまり、特定の気筒の燃料噴射量を
一時的に増加又は減少させると、当該特定の気筒から排
出される排気中の酸素濃度が他の気筒から排出される排
気中の酸素濃度と比較して変化するため、この酸素濃度
の変化を検出することで、特定の気筒を精度良く判別す
ることができ、この特定の気筒を基準にして他の気筒も
点火順序から精度良く判別することができる。In order to achieve the above-mentioned second object, according to the present invention, it is determined in which cylinder the oxygen concentration detected by the oxygen concentration detecting means is the oxygen concentration of the exhaust gas discharged from which cylinder. For this purpose, the fuel injection amount of the specific cylinder is temporarily increased or decreased, and the specific cylinder is determined by the cylinder determining means from the relationship between the increase and decrease and the detection value of the oxygen concentration detecting means. That is, when the fuel injection amount of a specific cylinder is temporarily increased or decreased, the oxygen concentration in the exhaust gas discharged from the specific cylinder changes in comparison with the oxygen concentration in the exhaust gas discharged from the other cylinders. Therefore, by detecting the change in the oxygen concentration, a specific cylinder can be determined with high accuracy, and the other cylinders can be accurately determined from the ignition order with reference to the specific cylinder.
【0022】[0022]
[実施形態(1)]以下、本発明の実施形態(1)を図
1乃至図5に基づいて説明する。まず、図1に基づいて
エンジン制御システム全体の概略構成を説明する。内燃
機関であるディーゼルエンジン11の吸気管12には、
吸気過給手段であるターボ過給機13の吸気タービン1
4が設置されている。このターボ過給機13の吸気ター
ビン14と連結された排気タービン15がディーゼルエ
ンジン11の排気管16内に設置され、この排気タービ
ン15を排気ガスの運動エネルギによって回転駆動する
ことで、吸気タービン14を回転させて過給圧を発生さ
せる。排気タービン15の下流側の排気管16内には、
排気中の酸素濃度を検出する酸素濃度検出手段として限
界電流式の酸素濃度センサ17が設置されている。[Embodiment (1)] An embodiment (1) of the present invention will be described below with reference to FIGS. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An intake pipe 12 of a diesel engine 11 that is an internal combustion engine includes:
Intake turbine 1 of turbocharger 13 as intake supercharging means
4 are installed. An exhaust turbine 15 connected to an intake turbine 14 of the turbocharger 13 is installed in an exhaust pipe 16 of the diesel engine 11, and the exhaust turbine 15 is rotationally driven by the kinetic energy of the exhaust gas so that the intake turbine 14 Is rotated to generate supercharging pressure. In the exhaust pipe 16 on the downstream side of the exhaust turbine 15,
A limiting current type oxygen concentration sensor 17 is provided as oxygen concentration detection means for detecting the oxygen concentration in the exhaust gas.
【0023】排気タービン15の上流側の排気管16と
吸気タービン14の下流側の吸気管12との間にはEG
R配管18が接続され、このEGR配管18の出口側に
電子制御式のEGR弁19が設置され、このEGR弁1
9の弁開度を調整することで、EGR配管18を通過す
るEGR流量が制御される。これらEGR配管18とE
GR弁19とから排気還流手段である排気還流装置(E
GR装置)20が構成されている。ディーゼルエンジン
11の各気筒のシリンダヘッドにはそれぞれ燃料噴射弁
21が取り付けられている。An EG is provided between an exhaust pipe 16 on the upstream side of the exhaust turbine 15 and the intake pipe 12 on the downstream side of the intake turbine 14.
The R pipe 18 is connected, and an EGR valve 19 of an electronic control type is installed at the outlet side of the EGR pipe 18.
By adjusting the valve opening of No. 9, the EGR flow rate passing through the EGR pipe 18 is controlled. These EGR pipes 18 and E
An exhaust gas recirculation device (E
GR device 20 is configured. A fuel injection valve 21 is attached to a cylinder head of each cylinder of the diesel engine 11.
【0024】ターボ過給機13によって過給される空気
は、吸気マニホールド22を介してディーゼルエンジン
11の各気筒に吸入される。各気筒内で圧縮された高温
空気中に燃料噴射弁21から燃料を噴射して自己着火さ
せ、各気筒の排気ガスが排気マニホールド23を通して
1本の排気管16に合流し、大気中に排出される。The air supercharged by the turbocharger 13 is drawn into each cylinder of the diesel engine 11 through the intake manifold 22. Fuel is injected from the fuel injection valve 21 into the high-temperature air compressed in each cylinder and self-ignites, and the exhaust gas of each cylinder merges into one exhaust pipe 16 through the exhaust manifold 23 and is discharged into the atmosphere. You.
【0025】ディーゼルエンジン11の運転状態は、エ
ンジン回転数センサ24、アクセルセンサ25、酸素濃
度センサ17等によって検出され、これらの出力信号が
エンジン制御用の制御回路26に読み込まれる。この制
御回路26は、マイクロコンピュータを主体として構成
され、エンジン回転数センサ24で検出したエンジン回
転数とアクセルセンサ25で検出したアクセル開度とに
基づいて、後述する図2、図3のプログラム等によって
各気筒の燃料噴射量を算出し(この機能が特許請求の範
囲でいう噴射量演算手段に相当)、この燃料噴射量に応
じた噴射信号を各気筒の燃料噴射弁21に出力して燃料
噴射制御を実行すると共に、酸素濃度センサ17で検出
した排気中の酸素濃度が目標酸素濃度と一致するように
EGR装置20のEGR流量(EGR弁19の弁開度)
を制御して、NOx排出量を低減する。The operating state of the diesel engine 11 is detected by an engine speed sensor 24, an accelerator sensor 25, an oxygen concentration sensor 17, and the like, and these output signals are read into a control circuit 26 for engine control. The control circuit 26 is mainly composed of a microcomputer, and based on the engine speed detected by the engine speed sensor 24 and the accelerator opening detected by the accelerator sensor 25, a program shown in FIGS. The fuel injection amount of each cylinder is calculated according to the following formula (this function corresponds to an injection amount calculating means in the claims), and an injection signal corresponding to the fuel injection amount is output to the fuel injection valve 21 of each cylinder to produce fuel. In addition to executing the injection control, the EGR flow rate of the EGR device 20 (valve opening of the EGR valve 19) so that the oxygen concentration in the exhaust gas detected by the oxygen concentration sensor 17 matches the target oxygen concentration.
To reduce NOx emissions.
【0026】制御回路26に内蔵されたROM(記憶媒
体)には、図2の気筒別噴射量補正プログラム、図3の
燃料噴射補正量修正プログラム等、エンジン制御用の各
種のプログラムが記憶されている。Various programs for engine control, such as the cylinder-by-cylinder injection amount correction program shown in FIG. 2 and the fuel injection correction amount correction program shown in FIG. 3, are stored in a ROM (storage medium) incorporated in the control circuit 26. I have.
【0027】図2の気筒別噴射量補正プログラムは、制
御回路26にて所定クランク角毎に繰り返し実行され、
特許請求の範囲でいう気筒別噴射量補正手段としての役
割を果たす。この気筒別噴射量補正プログラムが起動さ
れると、まずステップ101で、エンジン回転数センサ
24とアクセルセンサ25の出力信号に基づいて、現在
のエンジン運転状態が高負荷低回転領域であるか否かを
判定する。ここで、高負荷低回転領域とは、ターボ過給
機13とEGR装置20の双方が作動しない運転領域に
対応する。The cylinder-by-cylinder injection amount correction program of FIG. 2 is repeatedly executed by the control circuit 26 at every predetermined crank angle.
It serves as a cylinder-by-cylinder injection amount correction means described in the claims. When the cylinder-by-cylinder injection amount correction program is started, first, in step 101, based on the output signals of the engine speed sensor 24 and the accelerator sensor 25, it is determined whether or not the current engine operating state is in the high-load low-speed region. Is determined. Here, the high-load low-rotation region corresponds to an operation region in which both the turbocharger 13 and the EGR device 20 do not operate.
【0028】高負荷低回転領域でない場合には、以降の
気筒判別・噴射量補正処理を行うことなく、本プログラ
ムを終了し、高負荷低回転領域である場合に、ステップ
102以降の気筒判別・噴射量補正処理を行う。このよ
うにする理由は次の〜である。If the engine is not in the high-load low-speed range, the program is terminated without performing the subsequent cylinder determination and injection amount correction processing. An injection amount correction process is performed. The reason for this is as follows.
【0029】図4に示す酸素濃度センサ17の検出特
性から高負荷時の方が排気中の酸素濃度を精度良く検出
できる。すなわち、酸素濃度センサ17の検出特性は、
酸素濃度が高くなるほど、検出誤差が大きくなる特性が
ある。高負荷時には、燃料噴射量が多いため、排気中の
酸素濃度が低くなり、比較的検出誤差の少ない領域で排
気中の酸素濃度を検出できる。From the detection characteristics of the oxygen concentration sensor 17 shown in FIG. 4, the oxygen concentration in the exhaust gas can be detected with higher accuracy when the load is high. That is, the detection characteristics of the oxygen concentration sensor 17 are as follows:
There is a characteristic that the detection error increases as the oxygen concentration increases. At a high load, the fuel injection amount is large, so that the oxygen concentration in the exhaust gas becomes low, and the oxygen concentration in the exhaust gas can be detected in a region where the detection error is relatively small.
【0030】高負荷時には、EGR弁19が閉鎖され
てEGR流量がゼロとなり、排気中の酸素濃度がEGR
流量による影響を全く受けない。これに対し、低負荷時
にはEGR弁19が作動するため、排気中の酸素濃度が
EGR流量による影響を受けて変動してしまい、排気中
の酸素濃度の変動の原因が、燃料噴射量のばらつきによ
るものか、EGR流量によるものか判別できない。At a high load, the EGR valve 19 is closed, the EGR flow becomes zero, and the oxygen concentration in the exhaust gas becomes
Not affected by flow rate. On the other hand, when the load is low, the EGR valve 19 operates, so that the oxygen concentration in the exhaust fluctuates under the influence of the EGR flow rate, and the variation in the oxygen concentration in the exhaust is caused by the variation in the fuel injection amount. It cannot be determined whether it is due to the EGR flow rate.
【0031】低回転時には、酸素濃度センサ17の検
出応答性から見て各気筒の燃料噴射の時間間隔が十分に
長くなるため、各気筒の燃料噴射と酸素濃度センサ17
の検出値との対応関係を判別しやすく、後述する気筒判
別が容易となる。When the engine speed is low, the time interval between the fuel injection of each cylinder becomes sufficiently long in view of the detection response of the oxygen concentration sensor 17, so that the fuel injection of each cylinder and the oxygen concentration sensor 17
It is easy to determine the correspondence relationship with the detected value, and the cylinder determination described later becomes easy.
【0032】低回転時には、ターボ過給機13が作動
せず(つまり過給圧が大気圧以下となり)、排気中の酸
素濃度がターボ過給機13による影響を全く受けない。
これに対し、高回転時には、ターボ過給機13が作動す
るため、排気中の酸素濃度がターボ過給機13による影
響を受けて変動してしまい、排気中の酸素濃度の変動の
原因が、燃料噴射量のばらつきによるものか、ターボ過
給機13によるものか判別できない。At the time of low rotation, the turbocharger 13 does not operate (that is, the supercharging pressure becomes lower than the atmospheric pressure), and the oxygen concentration in the exhaust is not affected by the turbocharger 13 at all.
On the other hand, at the time of high rotation, since the turbocharger 13 operates, the oxygen concentration in the exhaust fluctuates due to the influence of the turbocharger 13, and the cause of the fluctuation in the oxygen concentration in the exhaust is as follows. It cannot be determined whether it is due to a variation in the fuel injection amount or to the turbocharger 13.
【0033】これら〜の理由により、高負荷低回転
時に各気筒の燃料噴射量を次のようにして補正する。ま
ず、ステップ102で、エンジン運転状態に応じた酸素
濃度の気筒判別しきい値(図5参照)を、制御回路26
のROMに記憶されたデータテーブルから読み込むと共
に、気筒判別用の燃料噴射を開始する。この気筒判別用
の燃料噴射は、エンジン運転状態に応じて決定される基
本噴射量に対して、図5に示すように、特定の気筒(図
5の例では気筒)の燃料噴射量を気筒判別が終了する
まで一時的に増加させる。酸素濃度の気筒判別しきい値
は、燃料噴射量を増加した気筒に対応する酸素濃度よ
り若干高く設定される。これにより、図5に示すよう
に、燃料を多く噴射した気筒から排出される排気中の
酸素濃度が気筒判別用の酸素濃度しきい値よりも低下
し、他の気筒〜の酸素濃度は酸素濃度しきい値より
も高くなる。この関係を利用して次のようにして気筒判
別を行う。For these reasons, the fuel injection amount of each cylinder is corrected as follows at high load and low rotation. First, at step 102, a cylinder discrimination threshold value (see FIG. 5) of the oxygen concentration according to the engine operating state is determined by the control circuit 26.
From the data table stored in the ROM and starts fuel injection for cylinder discrimination. As shown in FIG. 5, the fuel injection for the cylinder discrimination is based on the basic injection amount determined according to the engine operating state, and the fuel injection amount of a specific cylinder (cylinder in the example of FIG. 5) is determined. Temporarily increase until the end. The cylinder determination threshold value of the oxygen concentration is set slightly higher than the oxygen concentration corresponding to the cylinder whose fuel injection amount has been increased. As a result, as shown in FIG. 5, the oxygen concentration in the exhaust gas discharged from the cylinder in which a large amount of fuel is injected falls below the oxygen concentration threshold value for cylinder identification, and the oxygen concentration of the other cylinders decreases. Becomes higher than the threshold. Using this relationship, cylinder determination is performed as follows.
【0034】すなわち、ステップ103で、酸素濃度セ
ンサ17で検出した酸素濃度が気筒判別しきい値より低
下したか否か(つまり特定の気筒の酸素濃度を検出し
たか否か)を判定し、酸素濃度が気筒判別しきい値より
低下するまで待機する。この後、酸素濃度が気筒判別し
きい値より低下した時点で、その酸素濃度が特定の気筒
から排出された排気中の酸素濃度と判断する(特定の
気筒を判別する)。この後、ステップ104で、気筒
に燃料を噴射してから酸素濃度として検出されるまで
の遅れ時間を、ディーゼルエンジン11のクランク角に
換算して、クランク角の遅れΔθとして算出した後、ス
テップ105に進み、気筒判別用の燃料噴射を終了す
る。That is, in step 103, it is determined whether or not the oxygen concentration detected by the oxygen concentration sensor 17 has dropped below the cylinder determination threshold value (ie, whether or not the oxygen concentration of a specific cylinder has been detected). It waits until the concentration falls below the cylinder discrimination threshold. Thereafter, when the oxygen concentration falls below the cylinder determination threshold value, the oxygen concentration is determined to be the oxygen concentration in the exhaust gas discharged from the specific cylinder (specific cylinder is determined). Thereafter, in step 104, the delay time from when fuel is injected into the cylinder to when it is detected as the oxygen concentration is converted into the crank angle of the diesel engine 11 and calculated as the crank angle delay Δθ. The fuel injection for cylinder discrimination ends.
【0035】以上説明したステップ101〜105の処
理が特許請求の範囲でいう気筒判別手段としての役割を
果たす。尚、図5に示すように、各気筒から排出される
排気中の酸素濃度が酸素濃度センサ17に到達して検出
される順序は点火順序と同じになるため、特定の気筒
を基準にして点火順序から他の気筒〜の判別が行わ
れる。The processing of steps 101 to 105 described above plays a role as cylinder discriminating means in the claims. As shown in FIG. 5, since the order in which the oxygen concentration in the exhaust gas discharged from each cylinder reaches the oxygen concentration sensor 17 and is detected is the same as the ignition order, the ignition order is based on a specific cylinder. The other cylinders are discriminated from the order.
【0036】気筒判別終了後、酸素濃度センサ17の検
出値に基づいて各気筒の燃料噴射量を気筒毎に次のよう
にして補正する。まず、ステップ106で、1サイクル
(720℃A)毎の酸素濃度平均値(酸素濃度サイクル
平均値)を目標値として算出し、酸素濃度センサ17で
検出した各気筒の酸素濃度をこの目標値と比較する。こ
の後、ステップ107で、酸素濃度が目標値より高い気
筒では、燃料噴射弁21の開弁時間を長くして燃料を多
く噴射し、逆に酸素濃度が目標値より低い気筒では、燃
料噴射弁21の開弁時間を短くして燃料噴射量を少なく
するように、各気筒の燃料噴射量の補正量ΔQを気筒毎
に決定する。この補正量ΔQの算出方法は、まず、各気
筒の酸素濃度と目標値との差分から各気筒の酸素濃度誤
差を算出し、この酸素濃度誤差に応じて各気筒の燃料噴
射量の補正量ΔQを気筒毎に算出する。After the cylinder discrimination is completed, the fuel injection amount of each cylinder is corrected for each cylinder based on the value detected by the oxygen concentration sensor 17 as follows. First, in step 106, an oxygen concentration average value (oxygen concentration cycle average value) for each cycle (720 ° C. A) is calculated as a target value, and the oxygen concentration of each cylinder detected by the oxygen concentration sensor 17 is calculated as the target value. Compare. Thereafter, in step 107, in a cylinder having an oxygen concentration higher than the target value, the valve opening time of the fuel injection valve 21 is lengthened to inject more fuel, and conversely, in a cylinder having an oxygen concentration lower than the target value, the fuel injection valve The correction amount ΔQ of the fuel injection amount of each cylinder is determined for each cylinder so that the valve opening time of 21 is shortened to reduce the fuel injection amount. In the method of calculating the correction amount ΔQ, first, an oxygen concentration error of each cylinder is calculated from a difference between the oxygen concentration of each cylinder and a target value, and the correction amount ΔQ of the fuel injection amount of each cylinder is calculated in accordance with the oxygen concentration error. Is calculated for each cylinder.
【0037】この後、ステップ108で、補正した燃料
の噴射後、前記ステップ104で求めたクランク角の遅
れΔθに相当する時間の経過後に酸素濃度センサ17で
検出した酸素濃度が目標値に一致したか否かを判定し、
酸素濃度が目標値に一致していれば、本プログラムを終
了し、酸素濃度が目標値からずれていれば、上記ステッ
プ106に戻って、上述した各気筒の燃料噴射量の補正
を繰り返し、全気筒の酸素濃度が目標値に一致した時点
で、本プログラムを終了する。Thereafter, in step 108, after the corrected fuel is injected, the oxygen concentration detected by the oxygen concentration sensor 17 coincides with the target value after a lapse of time corresponding to the crank angle delay Δθ obtained in step 104. Judge whether or not
If the oxygen concentration coincides with the target value, the program ends.If the oxygen concentration deviates from the target value, the process returns to step 106, and the above-described correction of the fuel injection amount of each cylinder is repeated. This program ends when the oxygen concentration in the cylinder matches the target value.
【0038】以上説明した気筒別噴射量補正プログラム
によれば、気筒判別の際に、図5に示すように、特定の
気筒の燃料噴射量を増加させると、当該特定の気筒から
排出される排気中の酸素濃度が他の気筒から排出される
排気中の酸素濃度と比較して低下するため、この酸素濃
度の低下を検出することで、特定の気筒を精度良く判別
することができ、この特定の気筒を基準にして他の気筒
も点火順序から精度良く判別することができる。これに
より、特開昭57−126527号公報とは異なり、各
気筒の排気マニホールド23の長さの相違や酸素濃度セ
ンサ17の取付位置の影響を受けずに、酸素濃度センサ
17の検出値に基づいて気筒判別を精度良く行うことが
できる。According to the cylinder-by-cylinder injection amount correction program described above, when the fuel injection amount of a specific cylinder is increased as shown in FIG. Since the oxygen concentration in the exhaust gas is lower than the oxygen concentration in the exhaust gas discharged from other cylinders, a specific cylinder can be accurately determined by detecting the decrease in the oxygen concentration. The other cylinders can be accurately determined based on the ignition order based on the cylinder number. Thus, unlike Japanese Patent Application Laid-Open No. 57-126527, based on the detection value of the oxygen concentration sensor 17 without being affected by the difference in the length of the exhaust manifold 23 of each cylinder and the mounting position of the oxygen concentration sensor 17. Thus, cylinder discrimination can be performed with high accuracy.
【0039】更に、高負荷低回転の時に酸素濃度センサ
17の検出値に基づいて各気筒の燃料噴射量を気筒毎に
補正するようにしたので、EGR装置20やターボ過給
機13の影響を全く受けない運転領域で、且つ酸素濃度
センサ17の検出特性が良い酸素濃度の低い領域で、し
かも、各気筒の燃料噴射と酸素濃度センサ17の検出値
との対応関係を判別しやすい低回転領域で、各気筒の酸
素濃度を気筒毎に精度良く検出することができ、製造時
の個体差(ばらつき)や経時劣化等による各気筒の燃料
噴射量のばらつきを気筒毎に精度良く補正することがで
きる。Further, since the fuel injection amount of each cylinder is corrected for each cylinder based on the value detected by the oxygen concentration sensor 17 at high load and low rotation, the influence of the EGR device 20 and the turbocharger 13 is not affected. A low-rotation region in which the operation is not received at all and the oxygen concentration sensor 17 has good detection characteristics and the oxygen concentration is low, and it is easy to determine the correspondence between the fuel injection of each cylinder and the detection value of the oxygen concentration sensor 17. Thus, it is possible to accurately detect the oxygen concentration of each cylinder for each cylinder, and to accurately correct the variation of the fuel injection amount of each cylinder due to individual differences (variation) during manufacturing and deterioration over time for each cylinder. it can.
【0040】ところで、ステップ107で燃料噴射量を
補正する場合に、定常運転時に補正の前後で全気筒の燃
料噴射量の合計値が変化すると、トルク変動が生じてド
ライバビリティを低下させてしまう。When the fuel injection amount is corrected in step 107, if the total value of the fuel injection amounts of all the cylinders changes before and after the correction during steady operation, torque fluctuations occur and drivability decreases.
【0041】この対策として、制御回路26は、図3に
示す燃料噴射補正量修正プログラムを実行し、定常運転
時に補正の前後で全気筒の燃料噴射量の合計値を変化さ
せないように、燃料噴射補正量を次の手順で修正する。
まず、ステップ201で、エンジン運転状態が定常状態
であるか否かを判定し、定常状態でなければ、以降の処
理を行うことなく、本プログラムを終了する。つまり、
過渡時には、エンジン運転状態に応じて全気筒の燃料噴
射量の合計値(トルク)が刻々と変化するため、燃料噴
射量が一定に制御される定常運転時にのみ各気筒の燃料
噴射補正量を全気筒の燃料噴射量の合計値が一定となる
ように修正する趣旨である。As a countermeasure, the control circuit 26 executes a fuel injection correction amount correction program shown in FIG. 3, and performs a fuel injection correction so as not to change the total value of the fuel injection amounts of all the cylinders before and after the correction during steady operation. The correction amount is corrected in the following procedure.
First, in step 201, it is determined whether or not the engine operation state is a steady state. If not, the program is terminated without performing the subsequent processing. That is,
At the time of transition, the total value (torque) of the fuel injection amount of all cylinders changes every moment in accordance with the engine operating state. Therefore, the fuel injection correction amount of each cylinder is reduced only during the steady operation in which the fuel injection amount is controlled to be constant. This is to correct the total value of the fuel injection amounts of the cylinders so as to be constant.
【0042】定常状態であれば、ステップ202に進
み、前述した図2のステップ107で補正された全気筒
の燃料噴射量の合計値を算出し、続くステップ203
で、補正の前後で全気筒の燃料噴射量の合計値が同一で
あるか否かを判定し、同一であれば、ステップ208に
移行し、図2のステップ107で求めた各気筒の燃料噴
射補正量を修正せずにそのまま用いる。If it is in the steady state, the process proceeds to step 202, where the total value of the fuel injection amounts of all the cylinders corrected in step 107 of FIG.
Then, it is determined whether or not the total value of the fuel injection amounts of all cylinders before and after the correction is the same, and if they are the same, the process proceeds to step 208 and the fuel injection amount of each cylinder obtained in step 107 of FIG. The correction amount is used without correction.
【0043】これに対し、補正の前後で全気筒の燃料噴
射量の合計値が同一でない場合には、ステップ203か
らステップ204に進み、補正後の全気筒の燃料噴射量
の合計値が補正前のそれよりも多いか否かを判定し、多
い場合には、増量補正した気筒の補正量を減量し(ステ
ップ205)、少ない場合には、減量補正した気筒の補
正量を減量する(ステップ206)。この後、ステップ
207で、補正後の全気筒の燃料噴射量の合計値が補正
前のそれと同一であるか否かを判定し、同一でなけれ
ば、ステップ204に戻り、上述した補正量の修正を繰
り返す。このようにして、補正後の全気筒の燃料噴射量
の合計値が補正前のそれと同一になれば、ステップ20
8に進み、各気筒の燃料噴射補正量を上記ステップ20
5,206で修正された値に決定する。On the other hand, if the total value of the fuel injection amounts of all the cylinders before and after the correction is not the same, the process proceeds from step 203 to step 204, where the total value of the fuel injection amounts of all the cylinders after the correction is It is determined whether or not the number is larger than the above. If the number is larger, the correction amount of the cylinder whose amount has been corrected is reduced (step 205). ). Thereafter, in step 207, it is determined whether or not the total value of the fuel injection amounts of all the cylinders after the correction is the same as that before correction, and if not, the process returns to step 204 to correct the correction amount described above. repeat. In this way, if the total value of the fuel injection amounts of all cylinders after correction becomes the same as that before correction, step 20 is executed.
In step 20, the fuel injection correction amount for each cylinder is
At 5,206, the corrected value is determined.
【0044】以上の処理を行うことで、定常運転時に補
正の前後で全気筒の燃料噴射量の合計値を一定に保つこ
とができ、補正の前後でトルクが変動することを防止で
き、ドライバビリティを向上することができる。By performing the above processing, the total value of the fuel injection amounts of all the cylinders can be kept constant before and after the correction during the steady operation, and the torque can be prevented from fluctuating before and after the correction. Can be improved.
【0045】同様の趣旨で、気筒判別の際にも、全気筒
の燃料噴射量の合計値が同一になるように制御すること
が好ましい。つまり、気筒判別の際に、特定の気筒の
燃料噴射量を増加させるため、他の気筒〜の燃料噴
射量が通常時と同じであると全気筒の燃料噴射量の合計
値が増加して、トルクが瞬間的に増加してしまう。For the same purpose, it is preferable to control the cylinders so that the total value of the fuel injection amounts of all the cylinders is the same during the cylinder discrimination. That is, at the time of cylinder discrimination, in order to increase the fuel injection amount of a specific cylinder, the total value of the fuel injection amounts of all cylinders increases if the fuel injection amounts of the other cylinders are the same as during normal operation. The torque increases instantaneously.
【0046】この対策として、気筒判別の際に、特定の
気筒の燃料噴射量を所定量Fだけ増加させる場合に
は、他の気筒〜の燃料噴射量をF/3(4気筒エン
ジンの場合)だけ減量することで、全気筒の燃料噴射量
の合計値を一定に保つ(一般にN気筒エンジンでは他の
気筒をF/(全気筒数N−1)だけ減量すれば良い)。
これにより、気筒判別の際に、特定の気筒の燃料噴射
量を増加させても、トルクを一定に保つことができ、ド
ライバビリティを向上することができる。As a countermeasure, when the fuel injection amount of a specific cylinder is increased by a predetermined amount F at the time of cylinder discrimination, the fuel injection amount of the other cylinders is increased to F / 3 (in the case of a four-cylinder engine). In this case, the total value of the fuel injection amounts of all the cylinders is kept constant (generally, in an N-cylinder engine, the other cylinders may be reduced by F / (the number of all cylinders N-1)).
As a result, even when the fuel injection amount of a specific cylinder is increased at the time of cylinder determination, the torque can be kept constant, and drivability can be improved.
【0047】尚、気筒判別の際に、特定の気筒の燃料噴
射量を所定量Fだけ減量するようにしても良く、この場
合には、他の気筒の燃料噴射量をF/(全気筒数N−
1)だけ増量して全気筒の燃料噴射量の合計値を一定に
保つようにすれば良い。気筒判別の際に、特定の気筒の
燃料噴射量を減量すると、該特定の気筒から排出される
排気中の酸素濃度が他の気筒から排出される排気中の酸
素濃度と比較して上昇するため、この酸素濃度の上昇を
検出することで、特定の気筒を精度良く判別することが
できる。In the cylinder discrimination, the fuel injection amount of a specific cylinder may be reduced by a predetermined amount F. In this case, the fuel injection amount of another cylinder is reduced by F / (total number of cylinders). N-
The fuel injection amount of all cylinders may be kept constant by increasing the amount by 1). At the time of cylinder discrimination, if the fuel injection amount of a specific cylinder is reduced, the oxygen concentration in the exhaust gas discharged from the specific cylinder increases as compared with the oxygen concentration in the exhaust gas discharged from other cylinders. By detecting the increase in the oxygen concentration, a specific cylinder can be accurately determined.
【0048】[実施形態(2)]前記実施形態(1)の
ように、高負荷域で燃料噴射量の補正を行う場合には、
エンジン運転状態が定常状態であるとは限らず、エンジ
ン回転数の変化や燃料噴射量指令値の増減等が生じる過
渡状態になる場合があり、過渡時には気筒毎の目標酸素
濃度が変化する。[Embodiment (2)] When the fuel injection amount is corrected in a high load region as in the embodiment (1),
The operating state of the engine is not limited to a steady state, but may be in a transient state in which a change in the engine speed, a change in the fuel injection amount command value, or the like occurs. In the transient state, the target oxygen concentration for each cylinder changes.
【0049】この対策として、図6及び図7に示す本発
明の実施形態(2)では、各気筒の目標酸素濃度を算出
して各気筒の燃料噴射補正量ΔQを決定するようにして
いる。以下、この補正処理を行う図6の気筒別噴射量補
正プログラムの内容を説明する。この実施形態(2)で
も、前記図2のステップ101〜105と同じ方法で、
高負荷低回転時に気筒の判別を行う(ステップ301〜
305)。As a countermeasure, in the embodiment (2) of the present invention shown in FIGS. 6 and 7, the target oxygen concentration of each cylinder is calculated to determine the fuel injection correction amount ΔQ of each cylinder. Hereinafter, the details of the cylinder-by-cylinder injection amount correction program of FIG. 6 that performs this correction processing will be described. Also in this embodiment (2), the same method as in steps 101 to 105 in FIG.
At the time of high-load low-speed rotation, the cylinder is determined (steps 301 to 301).
305).
【0050】気筒判別終了後、ステップ306で、酸素
濃度センサ17の検出値に基づいて気筒毎に酸素濃度の
平均値(以下「酸素濃度気筒別平均値」という)を算出
すると共に、1サイクル(720℃A)毎の酸素濃度平
均値(以下「酸素濃度サイクル平均値」という)を算出
する。この後、ステップ307で、今回の酸素濃度サイ
クル平均値を前サイクルの酸素濃度サイクル平均値と比
較し、酸素濃度サイクル平均値の変化量(傾き)を算出
した後、ステップ308で、酸素濃度サイクル平均値の
変化量から各気筒の目標酸素濃度を算出する。ここで、
各気筒の目標酸素濃度は、図7に示すように、各サイク
ル中央の酸素濃度サイクル平均値を結ぶ直線で求められ
る。従って、酸素濃度サイクル平均値が変化する過渡時
には、各気筒の目標酸素濃度は気筒毎に異なる。After the cylinder discrimination is completed, in step 306, an average value of the oxygen concentration for each cylinder is calculated based on the detection value of the oxygen concentration sensor 17 (hereinafter, referred to as "oxygen concentration cylinder-specific average value"), and one cycle ( The average value of oxygen concentration (hereinafter referred to as “oxygen concentration cycle average value”) for each 720 ° A) is calculated. Thereafter, in step 307, the average value of the current oxygen concentration cycle is compared with the average value of the oxygen concentration cycle in the previous cycle, and the amount of change (gradient) of the average value of the oxygen concentration cycle is calculated. The target oxygen concentration of each cylinder is calculated from the amount of change in the average value. here,
As shown in FIG. 7, the target oxygen concentration of each cylinder is determined by a straight line connecting the average value of the oxygen concentration cycle at the center of each cycle. Therefore, at the time of transition when the oxygen concentration cycle average changes, the target oxygen concentration of each cylinder differs for each cylinder.
【0051】この後、ステップ309に進み、前記ステ
ップ306で求めた各気筒の酸素濃度気筒別平均値を各
気筒の目標酸素濃度と比較し、酸素濃度気筒別平均値が
目標酸素濃度より高い気筒では、燃料噴射弁21の開弁
時間を長くして燃料を多く噴射し、逆に酸素濃度気筒別
平均値が目標酸素濃度より低い気筒では、燃料噴射弁2
1の開弁時間を短くして燃料噴射量を少なくするよう
に、各気筒の燃料噴射量の補正量ΔQを気筒毎に決定す
る。この補正量ΔQの算出方法は、まず、各気筒の酸素
濃度気筒別平均値と目標酸素濃度との差分から各気筒の
酸素濃度誤差Δa〜Δd(図7参照)を算出し、この酸
素濃度誤差Δa〜Δdに応じて各気筒の燃料噴射量の補
正量ΔQを気筒毎に算出する。Thereafter, the routine proceeds to step 309, where the average value of the oxygen concentration of each cylinder determined in step 306 is compared with the target oxygen concentration of each cylinder, and the average value of the oxygen concentration of each cylinder is higher than the target oxygen concentration. Then, the valve opening time of the fuel injection valve 21 is lengthened to inject a large amount of fuel.
The correction amount ΔQ of the fuel injection amount of each cylinder is determined for each cylinder so that the valve opening time of 1 is shortened to reduce the fuel injection amount. In the method of calculating the correction amount ΔQ, first, oxygen concentration errors Δa to Δd (see FIG. 7) of each cylinder are calculated from the difference between the oxygen concentration of each cylinder and the target oxygen concentration. The correction amount ΔQ of the fuel injection amount of each cylinder is calculated for each cylinder according to Δa to Δd.
【0052】この後、ステップ310で、補正した燃料
の噴射後、ステップ304で求めたクランク角の遅れΔ
θに相当する時間の経過後に酸素濃度センサ17で検出
した酸素濃度(酸素濃度気筒別平均値)が目標酸素濃度
に一致したか否かを判定し、目標酸素濃度に一致してい
れば、本プログラムを終了し、酸素濃度が目標酸素濃度
からずれていれば、上記ステップ306に戻って、上述
した各気筒の燃料噴射量の補正を繰り返し、全気筒の酸
素濃度が目標酸素濃度に一致した時点で、本プログラム
を終了する。Thereafter, in step 310, after the corrected fuel injection, the crank angle delay Δ
It is determined whether or not the oxygen concentration detected by the oxygen concentration sensor 17 (the average value of the oxygen concentration cylinders) detected by the oxygen concentration sensor 17 after the lapse of time corresponding to θ matches the target oxygen concentration. When the program is completed and the oxygen concentration deviates from the target oxygen concentration, the process returns to step 306 to repeat the above-described correction of the fuel injection amount of each cylinder, and when the oxygen concentration of all cylinders matches the target oxygen concentration. Then, the program ends.
【0053】以上説明した気筒別噴射量補正プログラム
によれば、酸素濃度サイクル平均値の変化量から気筒毎
の目標酸素濃度を算出し、各気筒の酸素濃度を目標酸素
濃度に一致させるように各気筒の燃料噴射量を気筒毎に
補正するようにしたので、エンジン回転数の変化や燃料
噴射量指令値の増減等が生じる過渡時でも、製造時の個
体差(ばらつき)や経時劣化等による各気筒の燃料噴射
量のばらつきを気筒毎に精度良く補正することができ
る。According to the above-described cylinder-by-cylinder injection amount correction program, the target oxygen concentration for each cylinder is calculated from the variation in the oxygen concentration cycle average value, and the target oxygen concentration is adjusted so that the oxygen concentration of each cylinder matches the target oxygen concentration. Since the fuel injection amount of each cylinder is corrected for each cylinder, individual changes (variations) during manufacturing and changes over time due to individual differences (variations) during manufacture, even when the engine speed changes or the fuel injection amount command value increases / decreases. Variations in the fuel injection amount of the cylinder can be accurately corrected for each cylinder.
【0054】[実施形態(3)]図3のステップ208
又は図6のステップ309で算出される各気筒の燃料噴
射補正量ΔQは、一気に補正しても良いが、燃料噴射補
正量ΔQが大きい場合、その補正を一気に行うと、トル
ク変動やエンジン振動が生じてドライバビリティを低下
させるおそれがある。[Embodiment (3)] Step 208 of FIG.
Alternatively, the fuel injection correction amount ΔQ of each cylinder calculated in step 309 of FIG. 6 may be corrected at once, but if the fuel injection correction amount ΔQ is large, if the correction is performed at once, torque fluctuations and engine vibrations may occur. This may result in reduced drivability.
【0055】この対策として、図8に示す本発明の実施
形態(3)では、図3のステップ208又は図6のステ
ップ309で算出される各気筒の燃料噴射補正量(目標
補正量)に対して、最初の1サイクルで目標補正量の例
えば1/2を実補正量として補正し、以後のサイクルで
も同様の補正を行うことで、各気筒の燃料噴射量の補正
を複数のサイクルにわたって徐々に行う。このようにす
れば、1サイクル当りの燃料噴射量の補正量を少なくす
ることができ、燃料噴射量の補正によるトルク変動やエ
ンジン振動を抑えることができて、ドライバビリティを
向上することができる。As a countermeasure, in the embodiment (3) of the present invention shown in FIG. 8, the fuel injection correction amount (target correction amount) of each cylinder calculated in step 208 of FIG. 3 or step 309 of FIG. Then, in the first cycle, for example, 1/2 of the target correction amount is corrected as the actual correction amount, and the same correction is performed in the subsequent cycles, whereby the correction of the fuel injection amount of each cylinder is gradually performed over a plurality of cycles. Do. By doing so, the correction amount of the fuel injection amount per cycle can be reduced, torque fluctuation and engine vibration due to correction of the fuel injection amount can be suppressed, and drivability can be improved.
【0056】この場合、1サイクルで目標補正量の1/
2を実補正量として補正するようにしたが、この補正割
合は、1/3、2/3等、他の割合であっても良い。ま
た、1サイクル当りの最大補正量を設定して、この最大
補正量を越える気筒のみ、燃料噴射量の補正を複数のサ
イクルにわたって徐々に行うようにしても良い。この場
合、例えば、目標補正量が最大補正量を越える気筒は、
最初の1サイクルで最大補正量を補正し、次回以降のサ
イクルで残りの補正を行うようにしても良い。 [その他の実施形態]図1のシステム構成例では、ター
ボ過給機13とEGR装置20の双方を設けているが、
いずれか一方のみを持つシステムや、双方を持たないシ
ステムにも本発明を適用可能である。In this case, 1 cycle of the target correction amount is 1 / cycle.
2 is corrected as the actual correction amount, but the correction ratio may be another ratio such as 1/3, 2/3, or the like. Alternatively, the maximum correction amount per cycle may be set, and the correction of the fuel injection amount may be gradually performed over a plurality of cycles only for the cylinders exceeding the maximum correction amount. In this case, for example, for a cylinder whose target correction amount exceeds the maximum correction amount,
The maximum correction amount may be corrected in the first cycle, and the remaining correction may be performed in the next and subsequent cycles. [Other Embodiments] In the system configuration example of FIG. 1, both the turbocharger 13 and the EGR device 20 are provided.
The present invention is also applicable to a system having only one of them or a system having neither of them.
【0057】その他、本発明を適用可能な内燃機関は、
ディーゼルエンジンに限定されず、筒内噴射(直噴)式
ガソリンエンジン、ガソリンリーンバーンエンジン等に
も適用可能である。Other internal combustion engines to which the present invention can be applied include:
The present invention is not limited to the diesel engine, and is applicable to an in-cylinder injection (direct injection) gasoline engine, a gasoline lean burn engine, and the like.
【図1】本発明の実施形態(1)を示すエンジン制御シ
ステム全体の構成図FIG. 1 is a configuration diagram of an entire engine control system showing an embodiment (1) of the present invention.
【図2】実施形態(1)の気筒別噴射量補正プログラム
の処理の流れを示すフローチャートFIG. 2 is a flowchart showing a processing flow of a cylinder-by-cylinder injection amount correction program according to the embodiment (1).
【図3】実施形態(1)の燃料噴射補正量修正プログラ
ムの処理の流れを示すフローチャートFIG. 3 is a flowchart showing a processing flow of a fuel injection correction amount correction program according to the embodiment (1).
【図4】酸素濃度と酸素濃度センサの検出誤差との関係
を示す特性図FIG. 4 is a characteristic diagram showing a relationship between an oxygen concentration and a detection error of an oxygen concentration sensor.
【図5】各気筒の燃料噴射量と酸素濃度センサで検出さ
れる排気中の酸素濃度との関係を示すタイムチャートFIG. 5 is a time chart showing a relationship between a fuel injection amount of each cylinder and an oxygen concentration in exhaust gas detected by an oxygen concentration sensor.
【図6】本発明の実施形態(2)の気筒別噴射量補正プ
ログラムの処理の流れを示すフローチャートFIG. 6 is a flowchart showing a processing flow of a cylinder-by-cylinder injection amount correction program according to the embodiment (2) of the present invention;
【図7】過渡時の排気中の酸素濃度の変化を示すタイム
チャートFIG. 7 is a time chart showing a change in oxygen concentration in exhaust gas during a transition.
【図8】本発明の実施形態(3)の燃料噴射量補正方法
を説明するタイムチャートFIG. 8 is a time chart for explaining a fuel injection amount correction method according to the embodiment (3) of the present invention.
11…ディーゼルエンジン(内燃機関)、12…吸気
管、13…ターボ過給機(吸気過給手段)、16…排気
管、17…酸素濃度センサ(酸素濃度検出手段)、18
…EGR配管、19…EGR弁、20…EGR装置(排
気還流手段)、21…燃料噴射弁、22…吸気マニホー
ルド、23…排気マニホールド、24…エンジン回転数
センサ、25…アクセルセンサ、26…制御回路(燃料
噴射量演算手段,気筒別噴射量補正手段)。DESCRIPTION OF SYMBOLS 11 ... Diesel engine (internal combustion engine), 12 ... Intake pipe, 13 ... Turbocharger (intake supercharging means), 16 ... Exhaust pipe, 17 ... Oxygen concentration sensor (oxygen concentration detection means), 18
... EGR pipe, 19 ... EGR valve, 20 ... EGR device (exhaust gas recirculation means), 21 ... fuel injection valve, 22 ... intake manifold, 23 ... exhaust manifold, 24 ... engine speed sensor, 25 ... accelerator sensor, 26 ... control Circuit (fuel injection amount calculation means, cylinder-specific injection amount correction means).
Claims (7)
料噴射量を演算する噴射量演算手段と、 前記内燃機関の各気筒から排出される排気中の酸素濃度
を検出する酸素濃度検出手段と、 前記内燃機関が高負荷低回転の時に前記酸素濃度検出手
段の検出値に基づいて前記各気筒の燃料噴射量を気筒毎
に補正する気筒別噴射量補正手段とを備えたことを特徴
とする内燃機関の燃料噴射制御装置。1. An injection amount calculating means for calculating a fuel injection amount of each cylinder according to an operation state of an internal combustion engine, and an oxygen concentration detecting means for detecting an oxygen concentration in exhaust gas discharged from each cylinder of the internal combustion engine. And a cylinder-by-cylinder injection amount correction unit that corrects the fuel injection amount of each cylinder for each cylinder based on the detection value of the oxygen concentration detection unit when the internal combustion engine is at high load and low rotation. For controlling internal combustion engine fuel injection.
流させる排気還流手段と、前記内燃機関の吸気系に過給
圧を作用させる吸気過給手段とを備え、 前記気筒別噴射量補正手段は、前記排気還流手段と前記
吸気過給手段の双方が作動していない時に前記酸素濃度
検出手段の検出値に基づいて前記各気筒の燃料噴射量を
気筒毎に補正することを特徴とする請求項1に記載の内
燃機関の燃料噴射制御装置。2. An injection recirculation means for recirculating a part of exhaust gas to an intake system of the internal combustion engine, and an intake supercharging means for applying a supercharging pressure to an intake system of the internal combustion engine; The correction unit corrects the fuel injection amount of each cylinder for each cylinder based on the detection value of the oxygen concentration detection unit when both the exhaust gas recirculation unit and the intake supercharging unit are not operating. The fuel injection control device for an internal combustion engine according to claim 1, wherein
て1サイクル毎の酸素濃度平均値(以下「酸素濃度サイ
クル平均値」という)を算出する手段と、 複数サイクル間の前記酸素濃度サイクル平均値の変化量
から気筒毎の目標酸素濃度を算出する手段とを備え、 前記気筒別噴射量補正手段は、前記酸素濃度検出手段に
より検出した気筒毎の酸素濃度と前記気筒毎の目標酸素
濃度との偏差が小さくなる方向に前記各気筒の燃料噴射
量を気筒毎に補正することを特徴とする請求項1又は2
に記載の内燃機関の燃料噴射制御装置。A means for calculating an oxygen concentration average value for each cycle (hereinafter referred to as an "oxygen concentration cycle average value") based on a detection value of the oxygen concentration detection means; and an oxygen concentration cycle average value for a plurality of cycles. Means for calculating a target oxygen concentration for each cylinder from the amount of change in the value, the cylinder-by-cylinder injection amount correction means, the oxygen concentration for each cylinder detected by the oxygen concentration detection means and the target oxygen concentration for each cylinder, 3. The fuel injection amount of each of the cylinders is corrected for each cylinder in a direction in which the deviation of the cylinder becomes smaller.
3. The fuel injection control device for an internal combustion engine according to claim 1.
筒の燃料噴射量の補正を複数のサイクルにわたって徐々
に行うことを特徴とする請求項1乃至3のいずれかに記
載の内燃機関の燃料噴射制御装置。4. The internal combustion engine according to claim 1, wherein the cylinder-by-cylinder injection amount correction means gradually corrects the fuel injection amount of each cylinder over a plurality of cycles. Fuel injection control device.
後で全気筒の燃料噴射量の合計値を変化させないように
前記各気筒の燃料噴射量を気筒毎に補正することを特徴
とする請求項1乃至4のいずれかに記載の内燃機関の燃
料噴射制御装置。5. The cylinder-by-cylinder injection amount correction means corrects the fuel injection amount of each cylinder for each cylinder so as not to change the total value of the fuel injection amount of all cylinders before and after the correction. A fuel injection control device for an internal combustion engine according to any one of claims 1 to 4.
料噴射量を演算する噴射量演算手段と、 前記内燃機関の各気筒から排出される排気中の酸素濃度
を検出する酸素濃度検出手段と、 前記酸素濃度検出手段の検出値に基づいて各気筒の燃料
噴射量を補正する気筒別噴射量補正手段と、 前記酸素濃度検出手段で検出される酸素濃度がいずれの
気筒から排出された排気の酸素濃度であるかを判別する
ために、特定の気筒の燃料噴射量を一時的に増加又は減
少させ、その増減量と前記酸素濃度検出手段の検出値と
の関係から前記特定の気筒を判別する気筒判別手段とを
備えていることを特徴とする内燃機関の燃料噴射制御装
置。6. An injection amount calculating means for calculating a fuel injection amount of each cylinder according to an operation state of the internal combustion engine, and an oxygen concentration detecting means for detecting an oxygen concentration in exhaust gas discharged from each cylinder of the internal combustion engine. Cylinder-based injection amount correction means for correcting the fuel injection amount of each cylinder based on the detection value of the oxygen concentration detection means, and exhaust gas whose oxygen concentration detected by the oxygen concentration detection means is exhausted from any cylinder In order to determine whether or not the oxygen concentration is, the fuel injection amount of the specific cylinder is temporarily increased or decreased, and the specific cylinder is determined from the relationship between the increase and decrease amount and the detection value of the oxygen concentration detection means. A fuel injection control device for an internal combustion engine, comprising:
に制御する燃料噴射制御方法において、 前記内燃機関の各気筒から排出される排気中の酸素濃度
を酸素濃度検出手段で検出し、前記内燃機関が高負荷低
回転の時に前記酸素濃度検出手段の検出値に基づいて前
記各気筒の燃料噴射量を気筒毎に補正することを特徴と
する内燃機関の燃料噴射制御方法。7. A fuel injection control method for controlling a fuel injection amount of each cylinder of an internal combustion engine for each cylinder, wherein an oxygen concentration in exhaust gas discharged from each cylinder of the internal combustion engine is detected by oxygen concentration detection means, A fuel injection control method for an internal combustion engine, wherein the fuel injection amount of each cylinder is corrected for each cylinder based on a value detected by the oxygen concentration detection means when the internal combustion engine is at a high load and a low speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8318922A JPH10159637A (en) | 1996-11-29 | 1996-11-29 | Fuel injection controller for internal combustion engine and method for controlling fuel injection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8318922A JPH10159637A (en) | 1996-11-29 | 1996-11-29 | Fuel injection controller for internal combustion engine and method for controlling fuel injection |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10159637A true JPH10159637A (en) | 1998-06-16 |
Family
ID=18104485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8318922A Pending JPH10159637A (en) | 1996-11-29 | 1996-11-29 | Fuel injection controller for internal combustion engine and method for controlling fuel injection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10159637A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003083140A (en) * | 2001-09-13 | 2003-03-19 | Denso Corp | Fuel injection device |
JP2008095699A (en) * | 2001-02-05 | 2008-04-24 | Toyota Motor Corp | Control device for multi-cylinder internal combustion engine |
JP2009030603A (en) * | 2007-07-24 | 2009-02-12 | Robert Bosch Gmbh | Determining method of injected fuel mass |
JP2012107521A (en) * | 2010-11-15 | 2012-06-07 | Toyota Motor Corp | Control device for internal combustion engine |
US9068525B2 (en) | 2011-07-22 | 2015-06-30 | Kabushiki Kaisha Toyota Jidoshokki | Engine control method |
JP2020133533A (en) * | 2019-02-21 | 2020-08-31 | トヨタ自動車株式会社 | Imbalance detection device, imbalance detection system, data analysis device, and internal combustion engine control device |
US10969304B2 (en) | 2019-02-15 | 2021-04-06 | Toyota Jidosha Kabushiki Kaisha | State detection system for internal combustion engine, data analysis device, and vehicle |
US11085388B2 (en) | 2017-09-22 | 2021-08-10 | Transtron Inc. | Injector injection amount control device, injector injection amount control method, and storage medium |
US11255282B2 (en) | 2019-02-15 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | State detection system for internal combustion engine, data analysis device, and vehicle |
-
1996
- 1996-11-29 JP JP8318922A patent/JPH10159637A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008095699A (en) * | 2001-02-05 | 2008-04-24 | Toyota Motor Corp | Control device for multi-cylinder internal combustion engine |
JP2003083140A (en) * | 2001-09-13 | 2003-03-19 | Denso Corp | Fuel injection device |
JP4492012B2 (en) * | 2001-09-13 | 2010-06-30 | 株式会社デンソー | Fuel injection device |
JP2009030603A (en) * | 2007-07-24 | 2009-02-12 | Robert Bosch Gmbh | Determining method of injected fuel mass |
JP2012107521A (en) * | 2010-11-15 | 2012-06-07 | Toyota Motor Corp | Control device for internal combustion engine |
US9068525B2 (en) | 2011-07-22 | 2015-06-30 | Kabushiki Kaisha Toyota Jidoshokki | Engine control method |
US11085388B2 (en) | 2017-09-22 | 2021-08-10 | Transtron Inc. | Injector injection amount control device, injector injection amount control method, and storage medium |
US10969304B2 (en) | 2019-02-15 | 2021-04-06 | Toyota Jidosha Kabushiki Kaisha | State detection system for internal combustion engine, data analysis device, and vehicle |
US11255282B2 (en) | 2019-02-15 | 2022-02-22 | Toyota Jidosha Kabushiki Kaisha | State detection system for internal combustion engine, data analysis device, and vehicle |
JP2020133533A (en) * | 2019-02-21 | 2020-08-31 | トヨタ自動車株式会社 | Imbalance detection device, imbalance detection system, data analysis device, and internal combustion engine control device |
US11225924B2 (en) | 2019-02-21 | 2022-01-18 | Toyota Jidosha Kabushiki Kaisha | Imbalance detection device, imbalance detection system, data analysis device, and controller for internal combustion engine |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8256217B2 (en) | System and method for determining acceleration of an internal combustion engine | |
EP1362174B1 (en) | Diesel engine control system and control method | |
US8267076B2 (en) | Engine control apparatus | |
JP5115629B2 (en) | Control device for internal combustion engine | |
US20070084442A1 (en) | Engine combustion state determining apparatus and method | |
US9027535B2 (en) | Control apparatus for internal combustion engine | |
US8463524B2 (en) | Air quantity control device of internal combustion engine | |
US20100154523A1 (en) | Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine | |
US6640775B2 (en) | Air-fuel ratio control system for internal combustion engine | |
JPH02301669A (en) | Ignition timing controller of engine | |
US20130197786A1 (en) | Control apparatus and control method for multi-cylinder internal combustion engine | |
JP4192759B2 (en) | Injection quantity control device for diesel engine | |
JPWO2002081888A1 (en) | Control device for internal combustion engine | |
JP4605060B2 (en) | Control device for internal combustion engine | |
US20110213544A1 (en) | Fuel injection controller for internal combustion engine | |
JP3314294B2 (en) | Control device for internal combustion engine | |
JPH10159637A (en) | Fuel injection controller for internal combustion engine and method for controlling fuel injection | |
US9458785B2 (en) | EGR controller for internal combustion engine | |
WO2022249395A1 (en) | Internal combustion engine exhaust reflux control method and control device | |
JP4304793B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP3956458B2 (en) | Fuel injection control device for internal combustion engine | |
JP5695878B2 (en) | Combustion control apparatus and method for internal combustion engine | |
JP2008202461A (en) | Fuel injection control device for internal combustion engine | |
US10927775B2 (en) | Engine control device | |
JPS6345444A (en) | Air-fuel ratio controller for internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050222 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050401 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060112 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060221 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060403 |