[go: up one dir, main page]

JPH10158848A - Formation of semiconductor thin film and aperture therefor - Google Patents

Formation of semiconductor thin film and aperture therefor

Info

Publication number
JPH10158848A
JPH10158848A JP8338863A JP33886396A JPH10158848A JP H10158848 A JPH10158848 A JP H10158848A JP 8338863 A JP8338863 A JP 8338863A JP 33886396 A JP33886396 A JP 33886396A JP H10158848 A JPH10158848 A JP H10158848A
Authority
JP
Japan
Prior art keywords
belt
semiconductor thin
shaped member
thin film
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8338863A
Other languages
Japanese (ja)
Inventor
Hitomi Sano
ひとみ 佐野
Yasushi Fujioka
靖 藤岡
Masahiro Kanai
正博 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP8338863A priority Critical patent/JPH10158848A/en
Publication of JPH10158848A publication Critical patent/JPH10158848A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for formation of semiconductor thin films for formation of a large quantity of photoelectromotive elements which have high photoelectric conversion efficiency, having high quality and excellent uniformity, having higher reproducibility and have decreased defects over a large area on a continuously moving beltlike member and an apparatus therefor. SOLUTION: This method for formation of the semiconductor thin films consists in passing the belt-like member through plural film forming chambers connected by gas gates 306 having gas introducing ports 310 for introducing scavenging gases to slit-like separating passages while continuously moving the belt-like member in a longitudinal direction, successively laminating the semiconductor thin films on the belt-like member 307 in the respective film forming chambers and continuously taking up the belt-like member laminated with the semiconductor thin film in a taking-up stage. In such a case, at the time of taking-up the belt-like member in the taking-up stage, the taking-up is executed by controlling the temp. of the belt-like member; for example, a steering roller for guiding the belt-like member to the belt-like member taking-up means is made controllable in its temp.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体薄膜の形成
方法および装置に係り、特に、太陽電池等の光起電力素
子を連続的に作成する方法および装置に関するものであ
り、より具体的には、例えば、アモルファスシリコンや
アモルファスシリコン合金を用いた太陽電池等の光起電
力素子を大量生産する方法および装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for forming a semiconductor thin film, and more particularly to a method and an apparatus for continuously producing a photovoltaic element such as a solar cell. For example, the present invention relates to a method and an apparatus for mass-producing a photovoltaic element such as a solar cell using amorphous silicon or an amorphous silicon alloy.

【0002】[0002]

【従来の技術】近年、環境汚染の問題が深刻化してきて
いるが、太陽光を利用する太陽電池による発電方式は、
原子力発電に伴う放射能汚染や火力発電に伴う地球温暖
化等の問題を起こす事がなく、また、太陽光は地球上い
たるところに降り注いでいる為エネルギー源の偏在が少
なく、更には、複雑な大型の設備を必要とせず比較的高
い発電効率が得られる等、今後の電力需要の増大に対し
ても、地球破壊を引き起こすことなく対応できるクリー
ンな発電方式として注目を集め、実用化にむけて様々な
研究開発がなされている。
2. Description of the Related Art In recent years, the problem of environmental pollution has become serious.
It does not cause problems such as radioactive contamination due to nuclear power generation and global warming due to thermal power generation.In addition, since sunlight falls all over the earth, there is little uneven distribution of energy sources, and moreover, complex Attention has been paid to clean power generation methods that can respond to future increases in power demand without causing earth destruction, such as relatively high power generation efficiency without the need for large-scale facilities. Various research and developments have been made.

【0003】ところで、太陽電池を用いる発電方式につ
いて、それを電力需要を賄うものとして確立させる為に
は、使用する太陽電池が、光電変換効率が十分に高く、
特性安定性が優れたものであり、かつ大量生産しうるも
のである事が基本的に要求される。基板上に光起電力素
子等に用いる半導体機能性堆積膜を連続的に形成する方
法として、各種半導体層を形成するための独立した成膜
室を設け、これらの各成膜室はゲートバルブを介したロ
ードロック方式にて連結され、基板を各成膜室へ順次移
動して各種半導体層を形成する方法が知られている。
By the way, in order to establish a power generation system using a solar cell to meet the power demand, the solar cell used has a sufficiently high photoelectric conversion efficiency.
It is basically required that they have excellent characteristic stability and that they can be mass-produced. As a method for continuously forming a semiconductor functional deposition film used for a photovoltaic element or the like on a substrate, independent film forming chambers for forming various semiconductor layers are provided, and each of these film forming chambers includes a gate valve. A method of forming various semiconductor layers by sequentially moving a substrate to each film forming chamber and connecting them by a load lock method via an intervening load lock method is known.

【0004】量産性を著しく向上させる方法としては、
米国特許第4、400、409号明細書には、ロール・
ツー・ロール(Roll to Roll)方式を採用
した連続プラズマCVD法が開示されている。この方法
によれば、長尺の帯状部材を基板として、複数のグロー
放電領域において必要とされる導電型の半導体層を堆積
形成しつつ、基板をその長手方向に連続的に搬送するこ
とによって、半導体接合を有する素子を連続形成するこ
とができるとされている。
[0004] As a method for remarkably improving mass productivity,
U.S. Pat. No. 4,400,409 discloses rolls.
A continuous plasma CVD method employing a roll-to-roll method is disclosed. According to this method, a long strip-shaped member is used as a substrate, and while a conductive semiconductor layer required in a plurality of glow discharge regions is deposited and formed, the substrate is continuously transported in its longitudinal direction. It is stated that an element having a semiconductor junction can be continuously formed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、数百メ
ートルにもおよぶ帯状基板上に半導体層を形成するには
数時間におよぶ成膜時間を要し、均一で再現性が良い放
電状態を維持制御し半導体層を形成する必要がある。長
尺の帯状部材の始端から終端までの全体にわたって、さ
らに高品位で均一な半導体堆積膜を連続的にかつ収率良
く形成する手法が必要である。特に、温度が高い状態で
は帯状部材と各種ローラーとの運動摩擦の影響でボビン
に前記帯状部材を巻きつける際、均一に巻きつけるのが
困難で有った。運動摩擦の中でもスベリ摩擦やコロガリ
摩擦等が一定にならない為、巻きずれが起こり、ロール
状に巻きつけられたボビンは巻きずれの為、いわゆるた
けのこ状になってしまうことも有った。この状態のまま
帯状部材を次の工程に進めると帯状部材と装置との接触
や成膜中の放電不安定性の為にプラズマの漏れ等がおこ
り、特性のバラツキが出て、不良品となり製品としての
歩留を落とすといった不具合が生じていた。
However, it takes several hours to form a semiconductor layer on a belt-shaped substrate having a length of several hundred meters, and maintains a uniform discharge state with good reproducibility. It is necessary to form a semiconductor layer. There is a need for a method for continuously forming a high-quality and uniform semiconductor deposition film continuously and with high yield over the entire length of the long strip from the beginning to the end. In particular, when the temperature is high, it has been difficult to uniformly wind the band-shaped member around the bobbin due to the kinetic friction between the band-shaped member and various rollers. Among the kinetic frictions, slippage friction, rolling friction and the like are not constant, so that a winding deviation occurs, and a bobbin wound in a roll shape sometimes becomes a so-called bamboo shoot shape due to the winding deviation. If the belt-like member is advanced to the next step in this state, plasma leakage will occur due to contact between the belt-like member and the apparatus or discharge instability during film formation, causing variations in characteristics, resulting in a defective product. Problems such as lowering the yield.

【0006】また、該半導体形成装置の帯状部材の巻き
取り工程で、半導体層堆積後に帯状部材をボビンに巻き
取る時点の温度が高温で、十分冷えない状態でボビンに
巻きつけられていた。このように、帯状部材の温度が高
い場合には、基板が伸び、冷えると縮まる性質が有るこ
とから、時間の経過とともに、ボビンに巻いて有る帯状
基板の巻きが強くなり、堆積した膜に応力がかかり、そ
のことによる歩留りや、特性の低下が起こっていた。帯
状部材の巻きずれが起きたり、半導体薄膜に応力がかか
ると、光起電力素子等の機能素子を大面積にわたって、
均一性良く、再現性良く、歩留良く、生産性を高く実現
することは困難であった。
Further, in the winding step of the band-shaped member of the semiconductor forming apparatus, the temperature at the time of winding the band-shaped member around the bobbin after the deposition of the semiconductor layer is high, and the band-shaped member is not sufficiently cooled. As described above, when the temperature of the band-shaped member is high, the substrate is stretched and contracts when cooled, so that the winding of the band-shaped substrate wound on the bobbin increases with time, and the deposited film has a stress. , And the yield and the characteristics have been lowered. When the band-shaped member is unwound or stress is applied to the semiconductor thin film, a functional element such as a photovoltaic element can be spread over a large area.
It has been difficult to achieve good uniformity, good reproducibility, good yield, and high productivity.

【0007】そこで、本発明は、上記した従来のものに
おける課題を解決し、連続して移動する帯状部材上に、
大面積にわたって、高い光電変換効率を有し、高品質で
優れた均一性を有し、より再現性高く欠陥の少ない光起
電力素子を大量に作成するための半導体薄膜の形成方法
および装置を提供することを目的としている。
Therefore, the present invention solves the above-mentioned problems in the conventional art, and provides a method for forming a continuously moving belt-like member on a belt-like member.
Provided is a method and apparatus for forming a semiconductor thin film for producing a large number of photovoltaic elements having high photoelectric conversion efficiency, high quality, excellent uniformity, higher reproducibility, and less defects over a large area. It is intended to be.

【0008】[0008]

【課題を解決するための手段】本発明の半導体薄膜の形
成方法は、上記課題を解決するため、帯状部材を長手方
向に連続的に移動させながら、スリット状の分離通路に
掃気ガスを導入するガス導入口を有するガスゲートによ
り接続された複数の成膜室を通過させ、前記各成膜室で
前記帯状部材上に半導体薄膜を順次積層し、該半導体薄
膜を積層した帯状部材を巻き取り工程で連続的に巻き取
る半導体薄膜の形成方法であって、前記巻き取り工程で
帯状部材を巻き取る際に、該帯状部材を温度制御して巻
き取ることを特徴としている。また、本発明の半導体薄
膜の形成方法における温度制御は、帯状部材巻き取り手
段に帯状部材を案内するためのステアリングローラを、
温度制御可能として行うことを特徴としている。
According to the method of forming a semiconductor thin film of the present invention, a scavenging gas is introduced into a slit-like separation passage while continuously moving a belt-like member in a longitudinal direction to solve the above-mentioned problems. In a plurality of film forming chambers connected by a gas gate having a gas inlet, the semiconductor thin films are sequentially stacked on the band-shaped member in each of the film forming chambers, and the band-shaped member in which the semiconductor thin films are stacked is taken up in a winding step. A method for forming a semiconductor thin film to be continuously wound, wherein the winding of the band-shaped member is controlled by controlling the temperature when winding the band-shaped member in the winding step. Further, the temperature control in the method for forming a semiconductor thin film of the present invention includes a steering roller for guiding the belt-like member to the belt-like member winding means,
It is characterized in that the temperature control is performed.

【0009】本発明の半導体薄膜の形成装置は、帯状部
材を長手方向に連続的に移動させながら、スリット状の
分離通路に掃気ガスを導入するガス導入口を有するガス
ゲートにより接続された複数の成膜室を通過させ、前記
各成膜室で前記帯状部材上に半導体薄膜を順次積層し、
該半導体薄膜を積層した帯状部材を巻き取り工程の帯状
部材巻き取り手段で連続的に巻き取る半導体薄膜の形成
装置であって、前記帯状部材巻き取り手段の直前に温度
制御手段を設け、該温度制御手段によって該帯状部材を
温度制御して巻き取ることを特徴としている。また、本
発明の半導体薄膜の形成装置における温度制御手段は、
ステアリングローラに設けられた温度制御機構により構
成されていることを特徴としている。
In the apparatus for forming a semiconductor thin film of the present invention, a plurality of components connected by a gas gate having a gas inlet for introducing a scavenging gas into a slit-shaped separation passage while continuously moving the belt-shaped member in the longitudinal direction. Passing through a film chamber, sequentially laminating a semiconductor thin film on the strip-shaped member in each of the film forming chambers,
An apparatus for forming a semiconductor thin film that continuously winds a band-shaped member on which the semiconductor thin film is laminated by a band-shaped member winding unit in a winding step, wherein a temperature control unit is provided immediately before the band-shaped member winding unit, It is characterized in that the belt-shaped member is controlled in temperature by control means and wound up. Further, the temperature control means in the semiconductor thin film forming apparatus of the present invention,
It is characterized by comprising a temperature control mechanism provided on the steering roller.

【0010】[0010]

【発明の実施の形態】本発明の方法および装置を用いる
ことによって、数百メートルにもおよぶ長尺の帯状部材
の始端から終端までの全体にわたって、高品位で均一な
半導体堆積膜を連続的に極めて高い歩留を維持して形成
可能となり、従来における半導体薄膜成膜後、高温のま
まボビンに巻きつけられるため巻きずれが起こったり、
薄膜に応力がかかったりといった不具合を解消すること
ができる。光起電力素子等の機能性素子を作成する場
合、下地反射層、半導体層、反射防止層等、多層の薄膜
を成膜することとなるが、帯状部材の巻きずれが生じる
と、次の工程に進んだ際に、帯状部材がスリットやチャ
ンバー内を通過中に壁面と接触したり、巻きずれの程度
がひどく、このような場合にクリアランスを超えてしま
うと、帯状部材に引っかかりが生じることもあり、その
ため製品の生産計画が遅れ、全体としての生産に影響が
出る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS By using the method and the apparatus of the present invention, a high-quality and uniform semiconductor deposition film can be continuously formed over the entire hundreds of meters of a long strip from the beginning to the end. It can be formed while maintaining an extremely high yield, and after forming a conventional semiconductor thin film, it can be wound around a bobbin at a high temperature, causing winding deviation,
Problems such as stress applied to the thin film can be eliminated. When producing a functional element such as a photovoltaic element, a multilayer thin film such as a base reflective layer, a semiconductor layer, and an anti-reflection layer is formed. When the belt-like member comes into contact with the wall surface while passing through the slit or the chamber, or the degree of winding deviation is severe, and if the clearance exceeds the clearance in such a case, the belt-like member may be caught. As a result, production planning of products is delayed, which affects overall production.

【0011】また、放電領域と帯状部材位置がずれた場
合、放電漏れや、放電の不安定性を生じ、ひいては、特
性のバラツキや歩留の低下を引き起こすことになる。以
上の問題は、本発明のように、例えば、帯状部材をボビ
ンに巻き取る前にステアリングローラーにて、帯状部材
を冷却する事で解消することができる。つまり、高温の
状態の帯状部材がステアリングローラーを通過する際、
冷却され、室温よりすこし高い程度まで温度が下がり、
帯状部材とステアリングローラーの間でスベリが減少
し、ずれが少なく許容範囲内で順調に巻き取られる。そ
の結果、多工程の半導体薄膜の成膜により、作成される
光起電力素子等の機能素子を大面積に渡って、均一性良
く、再現性良く、歩留が良く、生産性が高く実現する事
が可能となる。
[0011] Further, when the position of the discharge region and the position of the belt-shaped member are displaced, discharge leakage or discharge instability occurs, which leads to variation in characteristics and reduction in yield. The above problem can be solved by cooling the belt-like member with a steering roller before winding the belt-like member around a bobbin, as in the present invention. In other words, when the hot strip passes through the steering roller,
It cools and cools down to a little higher than room temperature,
Sliding between the belt-shaped member and the steering roller is reduced, the deviation is small, and the film is smoothly wound within an allowable range. As a result, the functional element such as a photovoltaic element formed by multi-step semiconductor thin film deposition can be realized over a large area with good uniformity, good reproducibility, good yield, and high productivity. Things become possible.

【0012】前記ステアリングローラーに用いられる温
度制御機構として、例えばペルチェ素子を組み込んでい
るもの、冷媒を前記ステアリングローラー内部を循環さ
せたもの等が挙げられる。いずれにしても帯状部材を温
度制御する為の冷却機構と、ローラーとして回転可能な
構造で有り、巻きずれが許容範囲内で動作可能な構造、
機構であれば良く、したがって具体的な仕様はこれらの
例に何ら限定されるものではない。
As the temperature control mechanism used for the steering roller, for example, a mechanism incorporating a Peltier element, a mechanism in which a refrigerant is circulated inside the steering roller, and the like can be mentioned. In any case, a cooling mechanism for controlling the temperature of the belt-shaped member, and a structure rotatable as a roller, a structure capable of operating within an allowable range of winding deviation,
Any mechanism may be used, and specific specifications are not limited to these examples.

【0013】[0013]

【実施例】以下、本発明の具体的装置例および実施例を
示すが、本発明はこれらによって何ら限定されるもので
はない。 (装置例1)図1に本発明によるところの、帯状部材巻
き取り用真空容器の内部構造の一例を示す概念的模式図
を示す。半導体薄膜が順次積層された帯状部材102は
ガスゲート103をとおり真空容器100内へ導入さ
れ、ステアリングローラー101を介した後、インター
リーフ104と一緒に帯状部材巻き取りボビン105へ
巻き取られる。図2に詳細なステアリングローラーの温
度制御機構が示されている。冷媒導入部202よりステ
アリングローラー201に冷媒を還流させ冷媒導出部2
03を通過してステアリングローラー201内を不図示
の温度制御機構により温度制御する。この時、ステアリ
ング駆動部204はステアリングローラー201ととも
に回転し、冷媒導入部202及び冷媒導出部203はス
テアリング駆動部204とは真空シール等で接するよう
になっており、導入導出固定部205とともに回転はし
ない構造となっている。以上のような機構を用いること
により、ステアリングローラーを冷却し、帯状部材の温
度制御を行う。
EXAMPLES Hereinafter, specific examples of the apparatus and examples of the present invention will be shown, but the present invention is not limited thereto. (Example 1 of Apparatus) FIG. 1 is a conceptual schematic diagram showing an example of the internal structure of a vacuum container for winding a belt-shaped member according to the present invention. The band-shaped member 102 on which the semiconductor thin films are sequentially stacked is introduced into the vacuum container 100 through the gas gate 103, is passed through the steering roller 101, and is wound together with the interleaf 104 on the band-shaped member winding bobbin 105. FIG. 2 shows a detailed steering roller temperature control mechanism. The refrigerant is returned from the refrigerant introduction unit 202 to the steering roller 201, and the refrigerant is discharged to the refrigerant discharge unit 2
03, the inside of the steering roller 201 is temperature-controlled by a temperature control mechanism (not shown). At this time, the steering drive unit 204 rotates together with the steering roller 201, and the refrigerant introduction unit 202 and the refrigerant derivation unit 203 come into contact with the steering drive unit 204 by a vacuum seal or the like, and rotate together with the introduction and derivation fixing unit 205. It does not have a structure. By using the above mechanism, the steering roller is cooled and the temperature of the belt-shaped member is controlled.

【0014】[実施例1]装置例1で示したような巻き
取り方法および装置を使って、図3に示すようなロール
・ツー・ロール(Roll to Roll)方式を採
用した連続プラズマCVD法によりシングル型光起電力
素子を製作した。
[Embodiment 1] A continuous plasma CVD method employing a roll-to-roll method as shown in FIG. A single type photovoltaic device was manufactured.

【0015】以下に具体的な製作例を述べる。A specific example of the production will be described below.

【0016】図3に、本発明の作製方法を用いたシング
ル型光起電力素子の製造装置例の簡略化した模式図を示
す。該製造装置例は、帯状部材307の送り出し及び巻
き取り用の真空容器301及び305、第1の導電型層
作製用真空容器302、i型層作製用真空容器303、
第2の導電型層作製用真空容器304をガスゲート30
6を介して接続した装置から構成されている。該帯状部
材巻き取り用真空容器内における該帯状部材巻き取り方
法は図1に示した方法とした。
FIG. 3 is a simplified schematic diagram of an example of a single type photovoltaic device manufacturing apparatus using the manufacturing method of the present invention. Examples of the manufacturing apparatus include vacuum containers 301 and 305 for feeding and winding the belt-shaped member 307, a first conductive type layer forming vacuum container 302, an i-type layer forming vacuum container 303,
The second conductive type layer forming vacuum container 304 is connected to the gas gate 30.
6 are connected to each other. The method for winding the belt-like member in the vacuum vessel for winding the belt-like member was the method shown in FIG.

【0017】図3に示す製造装置を用い、表1に示す作
製条件で、下部電極上に、第1の導電型層、i型層、第
2の導電型層を以下に示すような作製手順により、シン
グル型光起電力素子を連続的に作製した。(素子−実
1) まず、基板送り出し機構を有する真空容器301に、十
分に脱脂、洗浄を行い、下部電極として、スパッタリン
グ法により、銀薄膜を100nm、ZnO薄膜を1μm
蒸着してあるSUS430BA製帯状部材307(幅1
20mm×長さ200m×厚さ0.13mm)の巻きつ
けられたボビン317をセットし、該帯状部材307を
ガスゲート306、各非単結晶層作製用真空容器を介し
て、帯状部材巻き取り機構を有する真空容器305まで
通し、たるみのない程度に張力調整を行った。
Using the manufacturing apparatus shown in FIG. 3, under the manufacturing conditions shown in Table 1, a first conductive type layer, an i-type layer, and a second conductive type layer are formed on the lower electrode as follows. As a result, a single type photovoltaic element was continuously manufactured. (Element-Real 1) First, a vacuum vessel 301 having a substrate sending-out mechanism is sufficiently degreased and washed, and as a lower electrode, a silver thin film of 100 nm and a ZnO thin film of 1 μm are formed by a sputtering method.
SUS430BA strip 307 (width 1)
A bobbin 317 (20 mm × 200 m × 0.13 mm in thickness) is set, and the band-shaped member 307 is passed through the gas gate 306 and each non-single-crystal-layer-forming vacuum vessel to form a band-shaped member winding mechanism. Through the vacuum container 305, and the tension was adjusted to a level where there was no slack.

【0018】そこで、各真空容器301、302、30
3、304、305を不図示の真空ポンプで1×10-4
Torr以下まで真空引きした。
Therefore, each of the vacuum vessels 301, 302, 30
3, 304 and 305 are 1 × 10 −4 by a vacuum pump (not shown).
Vacuum was drawn to Torr or less.

【0019】次に、ガスゲートにゲートガス導入管31
4よりゲートガスとしてH2を各々700sccm流
し、ランプヒータ309により、帯状部材307を、各
々350℃、350℃、200℃に加熱した。そして、
各々のガス導入管310より、第1の導電型層形成ガス
としてSiH4ガスを40sccm、PH3ガス(2%H
2希釈品)を50sccm、H2ガスを500sccm、
i型層形成ガスとして、SiH4ガスを各100scc
m、H2ガスを各500sccm、第2の導電型層形成
ガスとして、SiH4ガスを10sccm、BF2ガス
(2%H2希釈品)を100sccm、H2ガスを200
0sccm導入した。
Next, a gate gas introducing pipe 31 is connected to the gas gate.
4, H2 was supplied as a gate gas at a flow rate of 700 sccm, and the band member 307 was heated to 350 ° C., 350 ° C., and 200 ° C. by the lamp heater 309, respectively. And
From each gas introduction pipe 310, 40 sccm of SiH4 gas and PH3 gas (2% H2) were used as the first conductivity type layer forming gas.
2 diluted product) 50 sccm, H2 gas 500 sccm,
As an i-type layer forming gas, SiH4 gas is supplied at 100 scc each.
m, H2 gas is 500 sccm each, and as a second conductivity type layer forming gas, SiH4 gas is 10 sccm, BF2 gas (2% H2 diluted product) is 100 sccm, and H2 gas is 200 sccm.
0 sccm was introduced.

【0020】各真空容器301、302、303、30
4、305内の圧力が、各々の圧力計316で、それぞ
れ1.0Torr、1.5Torr、1.8Torr、
1.6Torr、1.0Torrになるように不図示の
コンダクタンスバルブで調整した。その後、各々のカソ
ード電極312に、第1の導電型層形成には500W、
i型層形成には200W、第2の導電型層形成には70
0Wをそれぞれ投入した。
Each of the vacuum vessels 301, 302, 303, 30
4 and 305, the pressure in each pressure gauge 316 is 1.0 Torr, 1.5 Torr, 1.8 Torr, respectively.
It was adjusted by a conductance valve (not shown) so that the pressure became 1.6 Torr and 1.0 Torr. Thereafter, 500 W is applied to each cathode electrode 312 to form the first conductivity type layer.
200 W for forming the i-type layer and 70 W for forming the second conductivity type layer
0 W was supplied.

【0021】次に、帯状部材307を図中の矢印の方向
に搬送させ、帯状部材上に第1の導電型層、i型層、第
2の導電型層を順次積層した。次に、第2の導電型層上
に、透明電極として、ITO(In2O3+SnO2)を
真空蒸着にて80nm蒸着し、さらに集電電極として、
Alを真空蒸着にて2μm蒸着し、光起電力素子を作成
した。(素子−実1) 以上の、光起電力素子の作成条件を表1に示す。また、
素子の概念図を図4に示す。
Next, the belt-shaped member 307 was transported in the direction of the arrow in the figure, and a first conductive type layer, an i-type layer, and a second conductive type layer were sequentially laminated on the band-shaped member. Next, on the second conductivity type layer, ITO (In2O3 + SnO2) was vapor-deposited to a thickness of 80 nm as a transparent electrode by vacuum vapor deposition.
Al was vapor-deposited at 2 μm by vacuum vapor deposition to prepare a photovoltaic element. (Element-Actual 1) Table 1 shows the conditions for forming the photovoltaic element described above. Also,
FIG. 4 shows a conceptual diagram of the element.

【0022】[0022]

【表1】 (比較例1)該帯状部材巻き取り用真空容器内における
該帯状部材巻き取り方法およびステアリングローラーを
図5に示す方法に変えたこと以外は、実施例1と同様の
手順によりシングル型光起電力素子を作製した。(素子
−比1) 実施例1(素子−実1)および比較例1(素子−比1)
で作成した光起電力素子の特性均一性および歩留の評価
を行なった。特性均一性は、実施例1(素子−実1)、
比較例1(素子−比1)で作成した帯状部材上の光起電
力素子を、10mおきに5cm角の面積で切出し、AM
−1.5(100mW/cm2)光照射下に設置し、光
電変換効率を測定して、その光電変換効率のバラツキを
評価した。比較例1(素子−比1)の光起電力素子を基
準にして、バラツキの大きさの逆数を求めた特性評価の
結果を表2に示す。
[Table 1] (Comparative Example 1) A single photovoltaic device was manufactured in the same procedure as in Example 1 except that the method of winding the belt member and the method of changing the steering roller in the vacuum chamber for winding the belt member were changed to the method shown in FIG. An element was manufactured. (Element-Ratio 1) Example 1 (Element-Real 1) and Comparative Example 1 (Element-Ratio 1)
The uniformity of the characteristics and the yield of the photovoltaic element prepared in the above were evaluated. The characteristic uniformity was determined in Example 1 (element-actual 1),
The photovoltaic element on the belt-shaped member prepared in Comparative Example 1 (element-ratio 1) was cut out at an area of 5 cm square every 10 m, and the AM
It was installed under -1.5 (100 mW / cm 2 ) light irradiation, and the photoelectric conversion efficiency was measured to evaluate the variation in the photoelectric conversion efficiency. Table 2 shows the results of the characteristic evaluation in which the reciprocal of the magnitude of the variation was determined based on the photovoltaic element of Comparative Example 1 (element-ratio 1).

【0023】歩留は、実施例1(素子−実1)、比較例
1(素子−比1)で作成した帯状部材上の光起電力素子
を、10mおきに5cm角の面積で切出し、その暗状態
でのシャント抵抗を測定し、抵抗値が1×103オーム
・cm2以上のものを良品としてカウントし、全数中の
比率を百分率で表し、評価した。このようにして求め
た、実施例1(素子−実1)および比較例1(素子−比
1)の光起電力素子の歩留を求めた結果を表2に示す。
The yield was determined by cutting out the photovoltaic elements on the belt-shaped member prepared in Example 1 (element-actual 1) and Comparative Example 1 (element-ratio 1) in an area of 5 cm square every 10 m. The shunt resistance in the dark state was measured, and those having a resistance value of 1 × 10 3 ohm · cm 2 or more were counted as non-defective products, and the ratio of all the products was expressed as a percentage and evaluated. Table 2 shows the results of the yields of the photovoltaic elements of Example 1 (element-actual 1) and Comparative Example 1 (element-ratio 1) thus determined.

【0024】[0024]

【表2】 表2に示すように、比較例1(素子−比1)の光起電力
素子に対して、実施例1(素子−実1)の光起電力素子
は、特性均一性及び歩留のいずれにおいても優れてお
り、本発明の作製方法により作製した光起電力素子が、
優れた特性を有することが判明し、本発明の効果が実証
された。
[Table 2] As shown in Table 2, the photovoltaic element of Example 1 (element-actual 1) was different from the photovoltaic element of comparative example 1 (element-ratio 1) in both of the property uniformity and the yield. Is also excellent, the photovoltaic element produced by the production method of the present invention,
It was found to have excellent properties, demonstrating the effect of the present invention.

【0025】[実施例2]該帯状部材送り出し用真空容
器内における該帯状部材送り出し方法およびインターリ
ーフの巻き取り方法を図6に示す方法に変えたこと以外
は、実施例1と同様の手順によりシングル型光起電力素
子を作製した。(素子−実2) 実施例1と同様の手順にて、光起電力素子の特性均一性
および歩留の評価を行なった。実施例2(素子−実2)
における光起電力素子の特性均一性および歩留を、比較
例1(素子−比1)を基準として比較した結果を表3に
示す。
Example 2 A procedure similar to that of Example 1 was adopted, except that the method of feeding the band member and the method of winding the interleaf in the vacuum container for feeding the band member were changed to the method shown in FIG. A single type photovoltaic element was manufactured. (Element-Actual 2) In the same procedure as in Example 1, evaluation of the uniformity of characteristics and the yield of the photovoltaic element was performed. Example 2 (element-actual 2)
Table 3 shows the results of comparison of the uniformity of the characteristics and the yield of the photovoltaic element in Comparative Example 1 with reference to Comparative Example 1 (element-ratio 1).

【0026】[0026]

【表3】 表3に示すように、比較例1(素子−比1)の光起電力
素子に対して、実施例2(素子−実2)の光起電力素子
は、特性均一性及び歩留のいずれにおいても優れてお
り、本発明の作製方法により作製した光起電力素子が、
優れた特性を有することが判明し、本発明の効果が実証
された。
[Table 3] As shown in Table 3, the photovoltaic element of Example 2 (Element-Real 2) was different from the photovoltaic element of Comparative Example 1 (Element-Comparative 1) in both the uniformity of the characteristics and the yield. Is also excellent, the photovoltaic element produced by the production method of the present invention,
It was found to have excellent properties, demonstrating the effect of the present invention.

【0027】[0027]

【発明の効果】本発明は、以上のように巻き取り工程で
帯状部材を巻き取る際に温度制御して帯状部材を巻き取
ることにより、特に、それを温度制御可能なステアリン
グローラによって行うことにより、ステアリングローラ
と帯状部材との間のスベリを減少させることが可能とな
り、連続して移動する帯状部材上に大面積にわたって、
高い光電変換効率と高品質で優れた均一性を有し、より
再現性が高く、欠陥の少ない光起電力素子の半導体薄膜
を大量に歩留良く作成することができる。
According to the present invention, as described above, the belt-shaped member is wound by controlling the temperature when the belt-shaped member is wound in the winding step, and in particular, by using a temperature-controllable steering roller. It is possible to reduce the slip between the steering roller and the strip, and over a large area on the continuously moving strip,
It has high photoelectric conversion efficiency, high quality, excellent uniformity, high reproducibility, and a large number of semiconductor thin films of photovoltaic elements with few defects with high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の帯状部材の巻き取り装置の一例を示す
概念的模式図である。
FIG. 1 is a conceptual schematic diagram showing an example of a belt-shaped member winding device of the present invention.

【図2】本発明の帯状部材の巻き取り装置の一例を示す
概念的模式図である。
FIG. 2 is a conceptual schematic diagram illustrating an example of a belt-shaped member winding device of the present invention.

【図3】光起電力素子連続製造装置例を示す概念的模式
図である。
FIG. 3 is a conceptual diagram showing an example of a continuous photovoltaic element manufacturing apparatus.

【図4】シングル型光起電力素子の概念的模式図であ
る。
FIG. 4 is a conceptual schematic diagram of a single type photovoltaic element.

【図5】従来の帯状部材の巻き取り装置の一例を示す概
念的模式図である。
FIG. 5 is a conceptual schematic diagram showing an example of a conventional belt-shaped member winding device.

【図6】本発明の帯状部材の巻き取り装置の別の一例を
示す概念的模式図である。
FIG. 6 is a conceptual schematic diagram showing another example of the belt-shaped member winding device of the present invention.

【符号の説明】[Explanation of symbols]

301,302,303,304,305:真空容器 306:ガスゲート 307:帯状部材 309:ランプヒータ 310:ガス導入管 311:排気管 312:カソード電極 314:ゲートガス導入管 315:排気管 316:真空計 317:帯状部材送り出しボビン 318:帯状部材巻き取りボビン 320:ステアリングローラ 321:アイ紙巻き取りボビン 322:アイ紙送り出しボビン 401:SUS基板 402:Ag薄膜 403:ZnO薄膜 404:第1の導電型層 405:i型層 406:第2の導電型層 407:ITO 408:集電電極 501:ステアリングローラー 502:帯状部材 503:ボビン 301, 302, 303, 304, 305: Vacuum container 306: Gas gate 307: Strip member 309: Lamp heater 310: Gas introduction tube 311: Exhaust tube 312: Cathode electrode 314: Gate gas introduction tube 315: Exhaust tube 316: Vacuum gauge 317 : Strip-shaped member feeding bobbin 318: Strip-shaped member winding bobbin 320: Steering roller 321: Eye paper winding bobbin 322: Eye paper feeding bobbin 401: SUS substrate 402: Ag thin film 403: ZnO thin film 404: First conductivity type layer 405: i-type layer 406: second conductivity type layer 407: ITO 408: current collecting electrode 501: steering roller 502: strip member 503: bobbin

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】帯状部材を長手方向に連続的に移動させな
がら、スリット状の分離通路に掃気ガスを導入するガス
導入口を有するガスゲートにより接続された複数の成膜
室を通過させ、前記各成膜室で前記帯状部材上に半導体
薄膜を順次積層し、該半導体薄膜を積層した帯状部材を
巻き取り工程で連続的に巻き取る半導体薄膜の形成方法
であって、前記巻き取り工程で帯状部材を巻き取る際
に、該帯状部材を温度制御して巻き取ることを特徴とす
る半導体薄膜の形成方法。
The present invention is characterized in that, while continuously moving a strip-shaped member in a longitudinal direction, the strip-shaped member is passed through a plurality of film forming chambers connected by a gas gate having a gas inlet for introducing a scavenging gas into a slit-shaped separation passage. A method for forming a semiconductor thin film in which a semiconductor thin film is sequentially laminated on the belt-shaped member in a film forming chamber, and the belt-shaped member on which the semiconductor thin film is laminated is continuously wound in a winding step. A method for forming a semiconductor thin film, comprising: controlling the temperature of the belt-shaped member when winding the film.
【請求項2】前記温度制御は、帯状部材巻き取り手段に
帯状部材を案内するためのステアリングローラを、温度
制御可能として行うことを特徴とする請求項1に記載の
半導体薄膜の形成方法。
2. The method according to claim 1, wherein the temperature control is performed by controlling a temperature of a steering roller for guiding the belt-like member to the belt-like member winding means.
【請求項3】帯状部材を長手方向に連続的に移動させな
がら、スリット状の分離通路に掃気ガスを導入するガス
導入口を有するガスゲートにより接続された複数の成膜
室を通過させ、前記各成膜室で前記帯状部材上に半導体
薄膜を順次積層し、該半導体薄膜を積層した帯状部材を
巻き取り工程の帯状部材巻き取り手段で連続的に巻き取
る半導体薄膜の形成装置であって、前記帯状部材巻き取
り手段の直前に温度制御手段を設け、該温度制御手段に
よって該帯状部材を温度制御して巻き取ることを特徴と
する半導体薄膜の形成装置。
3. While continuously moving the strip-shaped member in the longitudinal direction, the strip-shaped member is passed through a plurality of film forming chambers connected by a gas gate having a gas inlet for introducing a scavenging gas into a slit-shaped separation passage. A semiconductor thin film forming apparatus for sequentially laminating a semiconductor thin film on the band-shaped member in a film forming chamber and continuously winding the band-shaped member laminated with the semiconductor thin film by a band-shaped member winding means in a winding step. An apparatus for forming a semiconductor thin film, wherein a temperature control means is provided immediately before a belt-like member winding means, and the temperature of the belt-like member is controlled and wound by the temperature control means.
【請求項4】前記温度制御手段は、ステアリングローラ
に設けられた温度制御機構により構成されていることを
特徴とする請求項3に記載の半導体薄膜の形成装置。
4. The semiconductor thin film forming apparatus according to claim 3, wherein said temperature control means is constituted by a temperature control mechanism provided on a steering roller.
JP8338863A 1996-12-04 1996-12-04 Formation of semiconductor thin film and aperture therefor Withdrawn JPH10158848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8338863A JPH10158848A (en) 1996-12-04 1996-12-04 Formation of semiconductor thin film and aperture therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8338863A JPH10158848A (en) 1996-12-04 1996-12-04 Formation of semiconductor thin film and aperture therefor

Publications (1)

Publication Number Publication Date
JPH10158848A true JPH10158848A (en) 1998-06-16

Family

ID=18322112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8338863A Withdrawn JPH10158848A (en) 1996-12-04 1996-12-04 Formation of semiconductor thin film and aperture therefor

Country Status (1)

Country Link
JP (1) JPH10158848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602347B1 (en) * 1998-11-11 2003-08-05 Canon Kabushiki Kaisha Apparatus and method for processing a substrate
EP2020392A3 (en) * 2007-08-03 2009-10-07 Fuji Electric Systems Co., Ltd. Apparatus for manufacturing thin-film laminated member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602347B1 (en) * 1998-11-11 2003-08-05 Canon Kabushiki Kaisha Apparatus and method for processing a substrate
US6833155B2 (en) 1998-11-11 2004-12-21 Canon Kabushiki Kaisha Apparatus and method for processing a substrate
EP2020392A3 (en) * 2007-08-03 2009-10-07 Fuji Electric Systems Co., Ltd. Apparatus for manufacturing thin-film laminated member

Similar Documents

Publication Publication Date Title
JP2951146B2 (en) Photovoltaic devices
US6858087B2 (en) Vacuum-processing method using a movable cooling plate during processing
US6107116A (en) Method for producing a photovoltaic element with zno layer having increasing fluorine content in layer thickness direction
US6488995B1 (en) Method of forming microcrystalline silicon film, method of fabricating photovoltaic cell using said method, and photovoltaic device fabricated thereby
US6153013A (en) Deposited-film-forming apparatus
US5769963A (en) Photovoltaic device
US6495392B2 (en) Process for producing a semiconductor device
US6413794B1 (en) Method of forming photovoltaic element
US5897332A (en) Method for manufacturing photoelectric conversion element
JPH08298333A (en) Semiconductor coating film forming equipment, and thin film solar cell and forming method of thin film solar cell
US6447612B1 (en) Film-forming apparatus for forming a deposited film on a substrate, and vacuum-processing apparatus and method for vacuum-processing an object
JP2001288571A (en) Vacuum processing apparatus and vacuum processing method
JPH098340A (en) Photovoltaic power element and fabrication thereof
JPH10158848A (en) Formation of semiconductor thin film and aperture therefor
JP3542480B2 (en) Non-single-crystal semiconductor thin film forming apparatus, non-single-crystal semiconductor thin film forming method, and photovoltaic element manufacturing method
JPH0982652A (en) Formation of semiconductor thin film and forming device
JP3181121B2 (en) Deposition film formation method
JP3255903B2 (en) Method and apparatus for forming deposited film
JP3624025B2 (en) Method for forming photovoltaic element
JP3624120B2 (en) Photovoltaic element manufacturing method and photovoltaic element manufacturing apparatus
JP3017421B2 (en) Photovoltaic element
JP2001329372A (en) Vacuum treatment system
JP2002231985A (en) Photovoltaic element
JP3754816B2 (en) Deposited film forming method, semiconductor element manufacturing method, and photoelectric conversion element manufacturing method
JP3684012B2 (en) Method for producing photovoltaic element

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060714