[go: up one dir, main page]

JPH10155262A - Magnet type brushless motor - Google Patents

Magnet type brushless motor

Info

Publication number
JPH10155262A
JPH10155262A JP9015817A JP1581797A JPH10155262A JP H10155262 A JPH10155262 A JP H10155262A JP 9015817 A JP9015817 A JP 9015817A JP 1581797 A JP1581797 A JP 1581797A JP H10155262 A JPH10155262 A JP H10155262A
Authority
JP
Japan
Prior art keywords
field
field magnet
magnet
magnetic poles
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9015817A
Other languages
Japanese (ja)
Inventor
Masahiro Masuzawa
正宏 増澤
Noriyoshi Hirao
則好 平尾
Takashi Sasaki
崇 佐々木
Masahiro Mita
正裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP9015817A priority Critical patent/JPH10155262A/en
Priority to US08/933,968 priority patent/US5821710A/en
Priority to DE19743314A priority patent/DE19743314A1/en
Publication of JPH10155262A publication Critical patent/JPH10155262A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Brushless Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnet type brushless motor, which can be used at a high rotational speed close to 3 times compared to the conventional one with a high conversion efficiency and a high torque and also can be used as a drive motor for car. SOLUTION: In a motor comprising a stator 1 having a plurality of stator magnetic pole 11 and field winding 12, a rotor 2 having a rotating shaft 21 and a field magnet 3, and a control circuit supplying a current to the field winding 12 by detecting a position for a stator 1 of a magnetic pole of field magnet 3, the field magnet 3 being fixed to a rotating shaft 2 and comprising a first field magnet where the magnetic poles with the different polarities sequentially arranged in the rotating direction and a second field magnet where the magnetic poles with different polarities sequentially arranged in the rotating direction in a rotatable manner relative to the first field magnet, and the phase relative to the first field magnet of the magnetic poles made by synthesizing the first and second field magnets being changed in response to the rotation of the rotor.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は永久磁石を界磁に用
いた電動機(例えば、電気自動車の動力源用等。)とし
て有用な磁石式ブラシレス電動機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnet type brushless motor useful as a motor using a permanent magnet as a field (for example, for a power source of an electric vehicle).

【0002】[0002]

【従来の技術】自動車等の内燃機関では高トルクを発生
する回転領域が非常に狭い。そこで、図6に示すよう
に、何種類ものギア比の異なる歯車で構成されたトラン
スミッションを用いて、低速から高速まで任意の速度で
走れるようにしている。
2. Description of the Related Art In an internal combustion engine of an automobile or the like, a rotation region for generating a high torque is very narrow. Therefore, as shown in FIG. 6, a transmission composed of several types of gears having different gear ratios is used so that the vehicle can run at an arbitrary speed from a low speed to a high speed.

【0003】ところが、永久磁石を用いた従来のブライ
レスDC電動機の回転数とトルクの関係は図7に示すよ
うに、トルクは回転数に逆比例して回転数が大きくなる
に従い直線的に低下する。電動機にかける電圧をV、電
動機の界磁が作る磁界の強さに界磁の有効面積をかけた
総磁束をΦ、電機子の巻線数をZ、抵抗をRとすると、
回転数の最大値(nmax)はV/ΦZ、トルクの最大値
(Tmax)はΦZV/Rとなる。電圧Vが二倍になると
最大トルク、最高回転数はともに二倍に増加する。巻線
数Zを変えることにより最大トルクや最高回転数を変化
させることもできる。また、総磁束Φが大きいほどトル
クは大きくなるが、電機子側での磁気飽和に留意して上
限値を定める必要がある。
However, as shown in FIG. 7, the relationship between the rotational speed and the torque of a conventional Briless DC motor using a permanent magnet is such that the torque decreases linearly with the rotational speed in inverse proportion to the rotational speed. . Assuming that the voltage applied to the motor is V, the total magnetic flux obtained by multiplying the strength of the magnetic field created by the field of the motor by the effective area of the field is Φ, the number of windings of the armature is Z, and the resistance is R,
The maximum value (n max ) of the rotation speed is V / ΦZ, and the maximum value (T max ) of the torque is ΦZV / R. When the voltage V is doubled, the maximum torque and the maximum rotation speed are both doubled. By changing the number of windings Z, the maximum torque and the maximum rotation speed can be changed. The torque increases as the total magnetic flux Φ increases, but it is necessary to determine the upper limit value while paying attention to magnetic saturation on the armature side.

【0004】しかし、従来のブラシレスDC電動機で
は、低速回転域で高いトルクが得られるが、回転数の可
変範囲が狭いために高速回転することが困難であった。
そこで「弱め磁界」という手法により高速回転時には総
磁束Φを下げることによって回転数の最大値(nmax
を上げることが考えられる。低回転数のときは大きな総
磁束Φで図7の実線で示すようなトルクを得て、回転数
が高くなったときには総磁束Φを小さくして図7の破線
で示すような特性を得ることによって、より高い回転数
まで回転させることが考えられる。
However, in the conventional brushless DC motor, a high torque can be obtained in a low-speed rotation range, but it is difficult to rotate at a high speed because the variable range of the rotation speed is narrow.
Therefore, the maximum value (n max ) of the number of rotations is reduced by lowering the total magnetic flux Φ at the time of high-speed rotation by a method called “weak magnetic field”.
May be raised. When the rotational speed is low, the torque shown by the solid line in FIG. 7 is obtained with a large total magnetic flux Φ, and when the rotational speed is high, the total magnetic flux Φ is reduced to obtain the characteristic shown by the broken line in FIG. Thus, it is conceivable to rotate to a higher rotation speed.

【0005】また、回転数とともに総磁束を変えること
が発電機の場合に提案されている。特開平7−2362
59号「永久磁石式発電機」には、回転子に用いている
界磁用永久磁石の複数極からの鎖交磁束によって固定子
に起電力を生ずる永久磁石式発電機で、前記界磁用永久
磁石と近接してその側面で同軸上に回転自在に配置され
前記界磁用永久磁石と同一極数の磁束バイパス用の永久
磁石と、回転子の回転数に応じて変位するガバナ機構
と、このガバナ機構の変位に対応して前記磁束バイパス
用の永久磁石を磁極性の半サイクル分回転させ得るよう
になつており、回転子の停止時には前記バイパス用の永
久磁石の磁極性を界磁用永久磁石の磁極性と同極性に配
置し、高速域では前記ガバナ機構によって前記バイパス
用の永久磁石を界磁用永久磁石と逆極性の位置に回転す
るものが開示されている。このようにして、低速回転時
には界磁用永久磁石の磁極からの鎖交磁束を大として、
高速回転時には界磁用永久磁石からの鎖交磁束を弱くし
て、発電電力を一定にしようとするものである。
It has also been proposed to change the total magnetic flux with the number of revolutions in the case of a generator. JP-A-7-2362
No. 59 "Permanent Magnet Generator" includes a permanent magnet generator which generates an electromotive force in the stator by interlinkage magnetic fluxes from a plurality of poles of the field permanent magnet used in the rotor. A permanent magnet for magnetic flux bypass having the same number of poles as the field permanent magnet and rotatably disposed coaxially on its side in proximity to the permanent magnet, and a governor mechanism displaced according to the rotation speed of the rotor; The permanent magnet for magnetic flux bypass can be rotated by a half cycle of the magnetic polarity in response to the displacement of the governor mechanism, and when the rotor is stopped, the magnetic polarity of the permanent magnet for bypass is changed to the magnetic field for the field. There is disclosed an arrangement in which the permanent magnets are arranged to have the same polarity as the permanent magnets, and the governor mechanism rotates the bypass permanent magnets to a position having a polarity opposite to that of the field permanent magnets in a high-speed region. In this way, at low speed rotation, the linkage flux from the magnetic pole of the field permanent magnet is increased,
During high-speed rotation, the linkage magnetic flux from the field permanent magnet is weakened to keep the generated power constant.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記弱
め界磁制御方式は、トルクと回転数と、時には回転加速
度を常に監視し、それらの数値を元に複雑な計算を行っ
て電流の大きさと位相とを制御しなければならず、高速
なコンピュータを含む複雑で高価な制御回路が必要にな
る。また、従来の磁石式ブラシレスDC電動機におい
て、上記従来の発電機のように界磁用永久磁石の側面で
磁極を短絡させることによって鎖交磁束量を小さくしよ
うとしても十分には小さくできないことが判明した。す
なわち、回転数の最大値nmax=V/ΦZの式から明ら
かなように、nmax(無負荷回転数ともいう。)を2倍
以上にする手段が総磁束Φの単純な低下による場合には
50%以上も低下させる必要があるが、界磁用磁石の側
面を短絡しただけでは多くとも約20〜30%未満低下
するだけであることを本発明者らは確認している。ま
た、上記従来の発電機では、磁束バイパス用の永久磁石
が発電機の回転子と固定子とで構成されている閉じた磁
気回路の外にあるので発電機の出力にはほとんど寄与し
ないのみならず、磁束バイパス用の永久磁石の近傍にモ
ータケースなどの導電性および/または磁性の構造物が
存在する場合にはそのバイパス用の永久磁石の発する磁
束によってモータケースなどの内部に渦電流を発生させ
るか、あるいは磁性体との吸引力により電動機の変換効
率が低下する事が考えられる。さらに、そのバイパス用
永久磁石が追加部品となるため、発電機が大型化し易い
という欠点を有する。
However, the field weakening control method always monitors the torque, the rotational speed, and sometimes the rotational acceleration, and performs a complicated calculation based on those numerical values to determine the magnitude and phase of the current. Must be controlled, requiring complex and expensive control circuits, including high-speed computers. Also, in the conventional magnet type brushless DC motor, it has been found that even if an attempt is made to reduce the amount of interlinkage magnetic flux by shorting the magnetic poles on the side of the field permanent magnet as in the above-described conventional generator, it cannot be sufficiently reduced. did. That is, as is apparent from the equation of the maximum value of the rotation speed n max = V / ΦZ, the means for increasing n max (also called the no-load rotation speed) by a factor of two or more is based on a simple decrease in the total magnetic flux Φ. Need to be reduced by 50% or more, but the present inventors have confirmed that short-circuiting the side surfaces of the field magnet only reduces at most less than about 20 to 30%. Further, in the above-described conventional generator, since the permanent magnet for magnetic flux bypass is outside the closed magnetic circuit formed by the rotor and the stator of the generator, if it hardly contributes to the output of the generator, When there is a conductive and / or magnetic structure such as a motor case near the permanent magnet for magnetic flux bypass, an eddy current is generated inside the motor case by the magnetic flux generated by the permanent magnet for bypass. It is conceivable that the conversion efficiency of the electric motor is reduced due to the attraction force with the magnetic material. Further, since the permanent magnet for bypass is an additional component, there is a drawback that the generator is easily increased in size.

【0007】そこで本発明は、低い回転数の時は従来の
ものと同じように高いトルクが得られるとともに、従来
のものに比較して3倍近い高い回転数まで高いトルクで
変換効率よく使用できる磁石式ブラシレス電動機(例え
ば、自動車の駆動用等。)を提供することを課題とす
る。
Therefore, according to the present invention, when the rotational speed is low, a high torque can be obtained in the same manner as the conventional one, and at the same time, the torque can be used with a high torque up to three times higher than the conventional one with high conversion efficiency. It is an object to provide a magnet type brushless electric motor (for example, for driving an automobile).

【0008】[0008]

【課題を解決する手段】上記課題を解決した本発明の磁
石式ブラシレス電動機は、複数の固定子磁極とこの固定
子磁極に回転磁界を発生するための巻線を有する固定
子、回転軸とこの回転軸に設けられており前記複数の固
定子磁極に対して回転する界磁用磁石を有する回転子、
及び界磁用磁石の磁極の固定子に対する位置を検出して
その位置に応じて前記巻線に電流を供給する制御回路を
有している磁石式ブラシレス電動機において、前記界磁
用磁石は、回転方向に順次異なった極性の磁極が並んで
いる第1の界磁用磁石とこの第1の界磁用磁石に対して
相対回転可能で回転方向に順次異なった極性の磁極が並
んでいる第2の界磁用磁石からなり、前記第1と第2の
界磁用磁石は前記固定子磁極に対向しているとともに、
前記の第1と第2の界磁用磁石の合成した磁極の位相を
第1の界磁用磁石の磁極に対して回転子の回転に伴い変
化させる機構を有することを特徴とするものである。
According to the present invention, there is provided a magnet type brushless electric motor having a plurality of stator magnetic poles, a stator having a winding for generating a rotating magnetic field in the stator magnetic pole, a rotating shaft, and a rotating shaft. A rotor having a field magnet provided on a rotating shaft and rotating with respect to the plurality of stator magnetic poles;
And a magnet type brushless motor having a control circuit for detecting a position of a magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position, wherein the field magnet rotates. A first field magnet in which magnetic poles of different polarities are sequentially arranged in a direction, and a second field magnet in which magnetic poles of different polarities are sequentially arranged in a rotational direction relative to the first field magnet. And the first and second field magnets face the stator magnetic poles, and
It has a mechanism for changing the phase of the combined magnetic pole of the first and second field magnets with respect to the magnetic pole of the first field magnet as the rotor rotates. .

【0009】前記の第1と第2の界磁用磁石の合成した
磁極の位相を第1の界磁用磁石の磁極に対して回転子の
回転に伴い変化させる機構は、回転子の回転数が低いと
きには前記第1と第2の界磁用磁石は同じ極性の磁極が
並び、回転数の高いときには磁極がそこからずれるよう
に構成されることが好ましい。
The mechanism for changing the phase of the combined magnetic poles of the first and second field magnets with respect to the magnetic poles of the first field magnet with rotation of the rotor is as follows. When the rotation speed is low, the first and second field magnets are preferably arranged such that magnetic poles of the same polarity are arranged, and when the rotation speed is high, the magnetic poles are deviated therefrom.

【0010】また、前記の第1と第2の界磁用磁石の合
成した磁極の位相が第1の界磁用磁石の磁極に対して回
転子の回転方向にずれることによって、回転数の変化に
伴い進角が変化することが好ましい。
Further, the phase of the combined magnetic pole of the first and second field magnets is shifted in the direction of rotation of the rotor with respect to the magnetic pole of the first field magnet, thereby causing a change in the rotational speed. It is preferable that the advance angle changes in accordance with.

【0011】前記の第1と第2の界磁用磁石の合成した
磁極の位相を第1の界磁用磁石の磁極に対して回転子の
回転に伴い変化させる機構は、回転子の遠心力を利用し
ていることが好ましい。
The mechanism for changing the phase of the combined magnetic pole of the first and second field magnets with respect to the magnetic pole of the first field magnet with the rotation of the rotor is the centrifugal force of the rotor. It is preferable to use.

【0012】また、本発明は、複数の固定子磁極とこの
固定子磁極に回転磁界を発生するための巻線を有する固
定子、回転軸とこの回転軸に設けられており前記複数の
固定子磁極に対して回転する界磁用磁石を有する回転
子、及び界磁用磁石の磁極の固定子に対する位置を検出
してその位置に応じて前記巻線に電流を供給する制御回
路を有している磁石式ブラシレス電動機において、前記
界磁用磁石は、回転方向に順次異なった極性の磁極が並
んでいる第1の界磁用磁石とこの第1の界磁用磁石に対
して相対回転可能で回転方向に順次異なった極性の磁極
が並んでいる第2の界磁用磁石からなり、前記第1と第
2の界磁用磁石は前記固定子磁極に対向しているととも
に、前記の第1と第2の界磁用磁石の合成した磁極の位
相を第1の界磁用磁石の磁極に対して回転子の回転に伴
い変化させる機構は、回転子の遠心力を利用して、回転
子の回転数が低いときには前記第1と第2の界磁用磁石
は同じ極性の磁極が並び、回転数の高いときには磁極が
そこからずれるように構成されることを特徴とする磁石
式ブラシレス電動機である。
Further, the present invention provides a stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field on the stator magnetic pole, a rotating shaft and the plurality of stators provided on the rotating shaft. A rotor having a field magnet rotating with respect to the magnetic pole, and a control circuit for detecting a position of the magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the magnet type brushless electric motor, the field magnet is rotatable relative to a first field magnet in which magnetic poles of different polarities are sequentially arranged in a rotating direction and the first field magnet. A second field magnet in which magnetic poles of different polarities are sequentially arranged in the rotation direction, wherein the first and second field magnets face the stator pole and The phase of the combined magnetic pole of the first and second field magnets is The mechanism for changing the magnetic pole of the rotor with rotation of the rotor utilizes centrifugal force of the rotor. When the rotation speed of the rotor is low, the first and second field magnets have the same polarity. Are arranged so that the magnetic poles deviate therefrom when the rotation speed is high.

【0013】また、本発明は、複数の固定子磁極とこの
固定子磁極に回転磁界を発生するための巻線を有する固
定子、回転軸とこの回転軸に設けられており前記複数の
固定子磁極に対して回転する界磁用磁石を有する回転
子、及び界磁用磁石の磁極の固定子に対する位置を検出
してその位置に応じて前記巻線に電流を供給する制御回
路を有している磁石式ブラシレス電動機において、前記
界磁用磁石は、回転方向に順次異なった極性の磁極が並
んでいる第1の界磁用磁石とこの第1の界磁用磁石に対
して相対回転可能で回転方向に順次異なった極性の磁極
が並んでいる第2の界磁用磁石からなり、前記第1と第
2の界磁用磁石は前記固定子磁極に対向しているととも
に、前記の第1と第2の界磁用磁石の合成した磁極の位
相を第1の界磁用磁石の磁極に対して回転子の回転に伴
い変化させる機構は、回転子の遠心力を利用して、回転
子の回転数が低いときには前記第1と第2の界磁用磁石
は同じ極性の磁極が並び、回転数の高いときには磁極が
そこからずれるように構成され、前記の第1と第2の界
磁用磁石の合成した磁極の位相が第1の界磁用磁石の磁
極に対して回転子の回転方向にずれることによって、回
転数の変化に伴い進角が変化することを特徴とする磁石
式ブラシレス電動機である。
Further, the present invention provides a stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field in the stator magnetic poles, a rotating shaft and a plurality of stators provided on the rotating shaft. A rotor having a field magnet rotating with respect to the magnetic pole, and a control circuit for detecting a position of the magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the magnet type brushless electric motor, the field magnet is rotatable relative to a first field magnet in which magnetic poles of different polarities are sequentially arranged in a rotating direction and the first field magnet. A second field magnet in which magnetic poles of different polarities are sequentially arranged in the rotation direction, wherein the first and second field magnets face the stator pole and The phase of the combined magnetic pole of the first and second field magnets is The mechanism for changing the magnetic pole of the rotor with rotation of the rotor utilizes centrifugal force of the rotor. When the rotation speed of the rotor is low, the first and second field magnets have the same polarity. Are arranged so that the magnetic poles deviate therefrom when the rotation speed is high, and the phase of the combined magnetic pole of the first and second field magnets rotates with respect to the magnetic pole of the first field magnet. A magnet type brushless electric motor characterized in that an advance angle changes with a change in the number of rotations by shifting in the rotation direction of the child.

【0014】また、本発明は、複数の固定子磁極とこの
固定子磁極に回転磁界を発生するための巻線を有する固
定子、回転軸とこの回転軸に設けられており前記複数の
固定子磁極に対して回転する界磁用磁石を有する回転
子、及び界磁用磁石の磁極の固定子に対する位置を検出
してその位置に応じて前記巻線に電流を供給する制御回
路を有している磁石式ブラシレス電動機において、前記
界磁用磁石は、回転方向に順次異なった極性の磁極が並
んでいる第1の界磁用磁石とこの第1の界磁用磁石に対
して相対回転可能で回転方向に順次異なった極性の磁極
が並んでいる第2の界磁用磁石からなり、前記第1と第
2の界磁用磁石は前記固定子磁極に対向しているととも
に、前記の第1と第2の界磁用磁石の合成した磁極の位
相を第1の界磁用磁石の磁極に対して回転子の回転に伴
い変化させる機構は回転軸に固定された固定部材の穴に
沿って弾性部材で連結されたガバナの可動側軸が回転子
の回転順方向または逆方向へ移動するとともにその可動
側軸から第2の界磁用磁石に相対回転力が付与されるこ
とで構成されることを特徴とする磁石式ブラシレス電動
機である。
Further, the present invention provides a stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field on the stator magnetic pole, a rotating shaft and a plurality of stators provided on the rotating shaft. A rotor having a field magnet rotating with respect to the magnetic pole, and a control circuit for detecting a position of the magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the magnet type brushless electric motor, the field magnet is rotatable relative to a first field magnet in which magnetic poles of different polarities are sequentially arranged in a rotating direction and the first field magnet. A second field magnet in which magnetic poles of different polarities are sequentially arranged in the rotation direction, wherein the first and second field magnets face the stator pole and The phase of the combined magnetic pole of the first and second field magnets is The mechanism that changes with the rotation of the rotor with respect to the magnetic pole of the rotor is such that the movable side shaft of the governor connected by an elastic member along the hole of the fixed member fixed to the rotation shaft moves in the forward or reverse direction of the rotor rotation A magnet type brushless electric motor characterized in that the magnet type brushless electric motor is configured by moving and applying a relative rotational force to a second field magnet from a movable side shaft thereof.

【0015】[0015]

【発明の実施の態様】以下に本発明を詳説する。図1に
本発明の一態様である磁石式ブラシレスDC電動機の主
要部を分解したものの斜視図を示す。図1(A)におい
て、固定子1には複数(この図では12極)の固定子磁
極11に回転磁界を発生するための界磁用巻線12が巻
かれている。回転子2は、回転軸21と、界磁用磁石3
と、この界磁用磁石3の磁極位置を示すために回転軸2
1に固定されているとともにその外周面の回転方向に界
磁用磁石3と同様の中心角を有した磁極パターンを形成
したセンサ磁石22(例えば、フェライト系のプラスチ
ック磁石等。)を有している。界磁用磁石3は回転軸2
1まわりに強磁性の回転子コア7を介して固定された第
1の界磁用磁石31及びこの第1の界磁用磁石31に相
対回転できるようにされて強磁性の回転子コア8上に固
設された第2の界磁用磁石32とからなっている。第
1、第2の界磁用磁石31,32はともに外周面の回転
方向に交互に等間隔で異なった8極の磁極4を形成した
同一寸法のリング状Nd−Fe−B磁石(例えば、日立
金属(株)製の異方性焼結磁石:HS40AH等。)で
ある。界磁用磁石3の任意磁極の固定子1に対する位置
をセンサ磁石22で示し、その磁極位置に応じて界磁用
巻線12に通電する電流を切り換える制御回路(図示せ
ず)が付設されていて、固定子磁極11に所定の回転磁
界を発生させるようになっている。図示の通り、第1、
第2の界磁用磁石31,32はともに狭いエアギャップ
6を隔てて固定子磁極11に対向配置されて本発明の磁
石式ブラシレス電動機50を構成している。この構成に
より、第1、第2の界磁用磁石31,32から発した磁
束はともに固定子磁極11に効率良く導かれて界磁用巻
線12と鎖交するので、周囲の構造物に通る洩れ磁束が
小さく抑えられて周囲の構造物で渦電流損等の損失を発
生する問題を回避することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. FIG. 1 is a perspective view of an exploded main part of a magnet type brushless DC motor according to one embodiment of the present invention. In FIG. 1A, a field winding 12 for generating a rotating magnetic field around a plurality of (12 poles in this figure) stator magnetic poles 11 is wound around the stator 1. The rotor 2 includes a rotating shaft 21 and the field magnet 3.
To indicate the position of the magnetic pole of the field magnet 3,
1 and a sensor magnet 22 (for example, a ferrite-based plastic magnet or the like) that forms a magnetic pole pattern having the same central angle as the field magnet 3 in the rotation direction of the outer peripheral surface thereof. I have. The field magnet 3 is the rotating shaft 2
The first field magnet 31 fixed around the ferromagnetic rotor core 7 via the ferromagnetic rotor core 7 and the first field magnet 31 so as to be rotatable relative to the first field magnet 31 And a second field magnet 32 fixedly mounted on the second magnetic field. The first and second field magnets 31 and 32 are both ring-shaped Nd-Fe-B magnets of the same dimensions (e.g., eight different magnetic poles 4 formed alternately at equal intervals in the rotation direction of the outer peripheral surface). Anisotropic sintered magnet manufactured by Hitachi Metals, Ltd .: HS40AH, etc.). A position of an arbitrary magnetic pole of the field magnet 3 with respect to the stator 1 is indicated by a sensor magnet 22, and a control circuit (not shown) for switching a current supplied to the field winding 12 according to the position of the magnetic pole is provided. Thus, a predetermined rotating magnetic field is generated in the stator magnetic pole 11. As shown, the first,
The second field magnets 31 and 32 are arranged opposite to the stator magnetic poles 11 with a narrow air gap 6 therebetween to constitute a magnet type brushless motor 50 of the present invention. With this configuration, the magnetic fluxes emitted from the first and second field magnets 31 and 32 are both efficiently guided to the stator magnetic poles 11 and interlink with the field windings 12, so that the surrounding magnetic structures are not affected. It is possible to avoid the problem that the leakage magnetic flux passing therethrough is suppressed to a small value and a loss such as an eddy current loss occurs in a surrounding structure.

【0016】図1(B)に、第2の界磁用磁石32を第
1の界磁用磁石31に対して相対的に回転子2の回転方
向に回転させることによって両者の磁極位置をずらした
状態を示した。第1と第2の界磁用磁石31,32を合
成した磁極の第1の界磁用磁石31の磁極に対する位相
はこのように回転子2の回転に伴い変化することにな
る。界磁用巻線12への通電は、センサ磁石22の磁極
をホール素子などの検出手段(図示せず)で検出し、制
御を行っている。ブラシレスDC電動機の場合、理論上
回転磁界発生用巻線の通電期間の中心は界磁用磁極のN
S切り替わり点と一致させることにより最大トルクを得
られる。しかし、回転磁界発生用巻線のインダクタンス
等による通電司令信号に対する電流立ち上がりの遅れを
見越して、通電期間の中央を界磁用磁極のNS切り替わ
り点より回転順方向に進ませる事が広く行われており、
この通電期間を進ませる角度を一般に進角と呼んでい
る。本発明ではこの進角の設定も重要である。
FIG. 1B shows that the second field magnet 32 is rotated relative to the first field magnet 31 in the direction of rotation of the rotor 2 so that the positions of the two magnetic poles are shifted. State. The phase of the magnetic pole obtained by combining the first and second field magnets 31 and 32 with respect to the magnetic pole of the first field magnet 31 changes as the rotor 2 rotates. The energization of the field winding 12 is controlled by detecting the magnetic pole of the sensor magnet 22 by detecting means (not shown) such as a Hall element. In the case of a brushless DC motor, the center of the conduction period of the winding for generating a rotating magnetic field is theoretically the N of the magnetic pole for the field.
The maximum torque can be obtained by matching the S switching point. However, in anticipation of a delay in the rise of the current with respect to the energization command signal due to the inductance of the winding for generating the rotating magnetic field, it is widely practiced to move the center of the energization period forward in the rotation direction from the NS switching point of the field magnetic pole. Yes,
The angle at which this energization period is advanced is generally called an advance angle. In the present invention, setting of this advance angle is also important.

【0017】図2(A)及び図2(B)にセンサ磁石2
2の磁極と第1の界磁用磁石31及び第2の界磁用磁石
32の磁極との位置関係を示した。図1(A)及び図2
(A)では第1の界磁用磁石31と第2の界磁用磁石3
2とは同じ磁極が隣り合っているので第1と第2の界磁
用磁石31,32の合成した磁極の位相(例えば、その
合成磁極の中心。)はセンサ磁石22及び第1の界磁用
磁石31の磁極と同じ位相(例えば、その磁極の中
心。)にあるが、図1(B)及び図2(B)では第1の
界磁用磁石31に対して第2の界磁用磁石32が回転順
方向にずれた状態を示している。ここで、第1の界磁用
磁石31と第2の界磁用磁石32とが全く同じ磁束量を
発生しているとともに第2の界磁用磁石32が第1の界
磁用磁石31に対して(a度)回転順方向にずらされた
場合、第1と第2の界磁用磁石31,32の合成した磁
極の位相は第1と第2の界磁用磁石31,32の磁極位
相の平均値となり、その合成した磁極の位相(例えば、
その合成磁極の中心。)は第1の界磁用磁石31の磁極
の位相(例えば、その磁極の中心。)に対して回転順方
向に進角:(a/2度)分進むことになる。
FIGS. 2A and 2B show the sensor magnet 2.
The positional relationship between the second magnetic pole and the magnetic poles of the first field magnet 31 and the second field magnet 32 is shown. 1 (A) and 2
(A) shows a first field magnet 31 and a second field magnet 3.
2, since the same magnetic poles are adjacent to each other, the phase of the combined magnetic pole of the first and second field magnets 31 and 32 (for example, the center of the combined magnetic pole) is the sensor magnet 22 and the first field. 1B (for example, the center of the magnetic pole), but in FIG. 1 (B) and FIG. 2 (B), the second The state where the magnet 32 is shifted in the rotation forward direction is shown. Here, the first field magnet 31 and the second field magnet 32 generate exactly the same amount of magnetic flux, and the second field magnet 32 is connected to the first field magnet 31. On the other hand, when the magnetic poles are shifted in the forward direction (a degrees), the phases of the combined magnetic poles of the first and second field magnets 31 and 32 become the magnetic poles of the first and second field magnets 31 and 32. It becomes the average value of the phase, and the phase of the synthesized magnetic pole (for example,
The center of the composite magnetic pole. ) Leads the phase of the magnetic pole of the first field magnet 31 (for example, the center of the magnetic pole) by an advance angle (a / 2 degrees) in the rotation forward direction.

【0018】そして、第1と第2の界磁用磁石31,3
2の合成した磁極の第1の界磁用磁石31に対する位相
を回転子2の回転に伴い変化させる機構によって、回転
子2の回転数が低いときには図1(A)や図2(A)の
ように第1と第2の界磁用磁石31,32の同じ磁極が
並ぶようにし、回転数が高いときには両者の磁極がずれ
て図1(B)や図2(B)に示すようになることが望ま
しい。すなわち、磁極がずれた場合には第1の界磁用磁
石31の任意のS極と第2の界磁用磁石32の任意のN
極と、第1の界磁用磁石31の任意のN極と第2の界磁
用磁石32の任意のS極とが回転軸21の長手方向から
見た場合に部分的に重なることになる。このように両者
の反対の磁極同士が隣接している部分では発生磁束の局
部的な短絡が生じるので固定子1側の界磁用巻線12に
到達する鎖交磁束量が減少することになる。すなわち、
回転数が高い時には両者間の相対的な磁極ずれ量に応じ
てその鎖交磁束量を減少させるとともに、回転数が低い
場合には第1、第2の界磁用磁石31,32の同磁極が
回転軸21まわりで並ぶことにより鎖交磁束量が最大と
なる。本発明の磁石式ブラシレス電動機50は以上のよ
うな構成を備えているので、広範囲の回転数変化に応じ
て鎖交磁束量を制御することが可能である。
Then, the first and second field magnets 31, 3
When the rotation speed of the rotor 2 is low, the mechanism of changing the phase of the combined magnetic poles of the first and second field magnets with respect to the first field magnet 31 with the rotation of the rotor 2 is shown in FIGS. In this way, the same magnetic poles of the first and second field magnets 31 and 32 are arranged side by side, and when the rotation speed is high, both magnetic poles are shifted to be as shown in FIG. 1 (B) or FIG. 2 (B). It is desirable. That is, when the magnetic poles are shifted, any S pole of the first field magnet 31 and any N pole of the second field magnet 32
The pole, an arbitrary N pole of the first field magnet 31 and an arbitrary S pole of the second field magnet 32 partially overlap when viewed from the longitudinal direction of the rotating shaft 21. . As described above, a local short circuit of the generated magnetic flux occurs in a portion where the opposite magnetic poles are adjacent to each other, so that the amount of interlinkage magnetic flux reaching the field winding 12 on the stator 1 side is reduced. . That is,
When the rotational speed is high, the amount of interlinkage magnetic flux is reduced in accordance with the relative magnetic pole shift between the two, and when the rotational speed is low, the magnetic poles of the first and second field magnets 31, 32 are reduced. Are arranged around the rotation axis 21 to maximize the amount of interlinkage magnetic flux. Since the magnet type brushless motor 50 of the present invention has the above-described configuration, it is possible to control the amount of interlinkage magnetic flux in accordance with a wide range of rotation speed change.

【0019】上記図1では第1の界磁用磁石31とセン
サ磁石22の磁極位相が固定され、第2の界磁用磁石3
2が第1の界磁用磁石31に対して相対回転可能である
とともに、高速回転時には第2の界磁用磁石32の磁極
が第1の界磁用磁石31の磁極に対して回転子2の回転
順方向に相対的にずれる構成をとっている。本発明では
界磁用磁石31,32及びセンサ磁石22の3部材に関
して固定するか回転可能とするかの組合わせは任意であ
り、例えば第2の界磁用磁石32とセンサ磁石22の磁
極位相が固定されているとともに高速回転時には第2の
界磁用磁石32の磁極が第1の界磁用磁石31の磁極に
対して回転順方向に相対的にずれる構成としてもよい。
また、第2の界磁用磁石32とセンサ磁石22の磁極位
相が固定されているとともに、高速回転時には第2の界
磁用磁石32の磁極が第1の界磁用磁石31の磁極に対
して回転逆方向に相対的にずれる構成としてもよい。ま
た、第1の界磁用磁石31とセンサ磁石22の磁極位相
が固定されているとともに、高速回転時には第2の界磁
用磁石32の磁極が第1の界磁用磁石31の磁極に対し
て回転逆方向に相対的にずれる構成としてもよい。ま
た、第1の界磁用磁石31と第2の界磁用磁石32の発
生磁束量を異なるように配置した一例として、例えば図
1(A)の状態において第1の界磁用磁石31と第2の
界磁用磁石32の鎖交磁束量の比率が1:2の場合は、
その比率が1:1の場合に比べて同一の磁極ずれ動作で
界磁用巻線12に鎖交する磁束量の変化割合を増加させ
ることができる。さらに、センサ磁石22に別個の位相
変更機構を設けることで、低回転時及び高回転時におい
て回転数と独立に進角を変化させることもできるし、低
回転時及び高回転時において実質的に進角に変化がない
構成をとることも可能である。
In FIG. 1, the magnetic pole phases of the first field magnet 31 and the sensor magnet 22 are fixed, and the second field magnet 3
2 is rotatable relative to the first field magnet 31, and the magnetic pole of the second field magnet 32 is rotated with respect to the magnetic pole of the first field magnet 31 during high-speed rotation. Are relatively displaced in the forward rotation direction. In the present invention, the combination of whether the three members of the field magnets 31 and 32 and the sensor magnet 22 are fixed or rotatable is optional. For example, the magnetic pole phases of the second field magnet 32 and the sensor magnet 22 are optional. May be fixed and the magnetic pole of the second field magnet 32 may be relatively displaced in the forward rotation direction with respect to the magnetic pole of the first field magnet 31 during high-speed rotation.
In addition, the magnetic pole phases of the second field magnet 32 and the sensor magnet 22 are fixed, and the magnetic pole of the second field magnet 32 is higher than the magnetic pole of the first field magnet 31 during high-speed rotation. The rotation may be relatively shifted in the reverse direction. Further, the magnetic pole phases of the first field magnet 31 and the sensor magnet 22 are fixed, and the magnetic pole of the second field magnet 32 is higher than the magnetic pole of the first field magnet 31 during high-speed rotation. The rotation may be relatively shifted in the reverse direction. Further, as an example in which the first field magnet 31 and the second field magnet 32 are arranged so that the generated magnetic flux amounts are different from each other, for example, in the state of FIG. When the ratio of the amount of interlinkage magnetic flux of the second field magnet 32 is 1: 2,
The change ratio of the amount of magnetic flux linked to the field winding 12 can be increased by the same magnetic pole shift operation as compared with the case where the ratio is 1: 1. Further, by providing a separate phase changing mechanism for the sensor magnet 22, the advance angle can be changed independently of the rotation speed at the time of low rotation and high rotation, and substantially at the time of low rotation and high rotation. It is also possible to adopt a configuration in which the advance angle does not change.

【0020】第1と第2の界磁用磁石31,32の合成
した磁極の位相を第1の界磁用磁石31の磁極に対して
回転子2の回転に伴い変化させる機構としては図3に示
すものが望ましい。図3において、第1の界磁用磁石3
1は回転軸21に固定してあり、第2の界磁用磁石32
はその中央の軸穴321に回転軸21が挿通されて回転
軸21まわりに所定量回るようになっている。第1の界
磁用磁石31と第2の界磁用磁石32との間に作用する
吸引力および/または反発力によって上記磁極ずれ動作
が妨げられないように、両者間に数mmの間隔5を開け
ておくことが望ましい。ガバナ固定板33は回転軸21
に固定されているとともに、このガバナ固定板33の端
面には中心角90度間隔で上下左右対称位置に設けた4
つの穴331に各々回転支軸341が嵌着されている。
ガバナ34は略円弧状の部品で両端部に貫通穴348,
349を設けてある。貫通穴348には回転支軸341
が嵌着され、貫通穴349には可動側の軸342が嵌着
されてガバナ34を保持している。さらに、上記穴33
1の各近傍に点対称に4つの円弧状の長穴332が設け
てある。また、回転子コア8の片端面には中心角90度
間隔で上下左右対称な半径方向に4つの長溝322が設
けてあり、これらの各長穴および各長溝に上記可動側の
軸342が挿入されるとともに、上記4本の可動側の軸
342同士がばね343で接続されてその弾性力で引き
合うようになっている。このばね343の張力により回
転子2の回転数が低いときには図3(A)に示すように
ガバナ34の可動側軸342は長穴332内において回
転軸21に最も近い位置にある。このときは第2の界磁
用磁石32と第1の界磁用磁石31の同磁極が並ぶよう
に構成してある。回転子2の回転数が大きくなってくる
と遠心力によりガバナ34は図3(B)に示す状態に開
きガバナ34の可動側の軸342がガバナ固定板33の
長穴332に沿って外周側に動くと同時に、長溝322
が長穴332に対して回転子2の外周側に向かって回転
方向にずれて設けてある分だけ可動側の軸342の長溝
322挿入部分がその長溝322を介して回転子コア8
を矢印方向に回転させるので第2の界磁用磁石32が第
1の界磁用磁石31に対して矢印方向に回転することが
できる。回転子2の回転数が低くなってくると遠心力が
小さくなるのでばね343の張力でガバナ34が図3
(A)の状態に閉じて第1、第2の界磁用磁石31,3
2の同磁極が並ぶ位置に戻る。このように、第2の界磁
用磁石32を第1の界磁用磁石31に対し所定量回転軸
21まわりで相対回転させる機構は外部からの制御およ
び動力を要せず、回転子2の構成部品に作用する遠心力
のみで動作されているので、簡単な機構で容易かつ安価
に磁石式ブラシレス電動機の鎖交磁束量の制御を行うこ
とができる。また、上記の通り回転子コア8に長溝32
2を設けてあるので長溝322からガバナ34に至る軸
方向寸法(L)の長寸化を抑えることができるととも
に、作用する遠心力を考慮して所定の回転数で上記の磁
極ずれ動作が起こるようにばね343のばね定数を適宜
設定することで後述の実施例に示されるように幅広い回
転数領域で高いトルク及びモータ交換効率を獲得するこ
とができる。
A mechanism for changing the phase of the combined magnetic pole of the first and second field magnets 31 and 32 with respect to the magnetic pole of the first field magnet 31 with the rotation of the rotor 2 is shown in FIG. Are preferred. In FIG. 3, the first field magnet 3
1 is fixed to the rotating shaft 21 and a second field magnet 32
The rotary shaft 21 is inserted through the central shaft hole 321 so as to rotate around the rotary shaft 21 by a predetermined amount. An interval of several mm 5 between the first field magnet 31 and the second field magnet 32 so that the magnetic pole shift operation is not hindered by the attraction and / or repulsion acting between the two. It is desirable to keep open. The governor fixing plate 33 is connected to the rotating shaft 21.
And the end faces of the governor fixing plate 33 are provided at symmetric positions in the vertical and horizontal directions at a central angle of 90 degrees.
The rotation shaft 341 is fitted in each of the three holes 331.
The governor 34 is a substantially arc-shaped part and has through holes 348 at both ends.
349 are provided. The rotation support shaft 341 is provided in the through hole 348.
The movable side shaft 342 is fitted in the through hole 349 to hold the governor 34. Further, the hole 33
Four arc-shaped long holes 332 are provided near each of the points 1 in a point-symmetric manner. On one end surface of the rotor core 8, four long grooves 322 are provided in the radial direction symmetrical in the vertical and horizontal directions at a central angle of 90 degrees, and the movable side shaft 342 is inserted into each of the long holes and each of the long grooves. At the same time, the four movable shafts 342 are connected to each other by a spring 343 so as to be attracted by their elastic force. When the rotation speed of the rotor 2 is low due to the tension of the spring 343, the movable side shaft 342 of the governor 34 is located closest to the rotation shaft 21 in the elongated hole 332 as shown in FIG. In this case, the same magnetic poles of the second field magnet 32 and the first field magnet 31 are arranged side by side. When the rotation speed of the rotor 2 increases, the governor 34 opens to the state shown in FIG. 3B due to centrifugal force, and the movable side shaft 342 of the governor 34 extends along the elongated hole 332 of the governor fixing plate 33 on the outer peripheral side. At the same time as the long groove 322
Is provided in the rotation direction toward the outer peripheral side of the rotor 2 with respect to the long hole 332, so that the insertion portion of the long groove 322 of the shaft 342 on the movable side is inserted through the long groove 322 to the rotor core 8.
Is rotated in the direction of the arrow, so that the second field magnet 32 can rotate in the direction of the arrow with respect to the first field magnet 31. Since the centrifugal force decreases when the rotation speed of the rotor 2 decreases, the governor 34 is moved by the tension of the spring 343 as shown in FIG.
(A), the first and second field magnets 31 and 3 are closed.
The position returns to the position where the same magnetic poles are arranged. As described above, the mechanism for rotating the second field magnet 32 relative to the first field magnet 31 by a predetermined amount around the rotation shaft 21 does not require external control and power. Since the operation is performed only by the centrifugal force acting on the components, the linkage flux amount of the magnet type brushless motor can be easily and inexpensively controlled with a simple mechanism. Further, as described above, the rotor core 8 has the long groove 32.
2, the axial dimension (L) extending from the long groove 322 to the governor 34 can be suppressed from increasing, and the above-described magnetic pole shift operation occurs at a predetermined rotation speed in consideration of the acting centrifugal force. By appropriately setting the spring constant of the spring 343 as described above, a high torque and a high motor exchange efficiency can be obtained in a wide rotation speed region as shown in an embodiment described later.

【0021】(実施例イ〜ニ)本発明の上記磁石式ブラ
シレス電動機50において、第1および第2の界磁用磁
石31,32として日立金属(株)製のNd−Fe−B
系のラジアル異方性リング磁石(HSー30BR、外径
74mm、軸長23mmのもの。)を用いるとともにエ
アギャップ6の厚みを0.5mmとした条件で、回転数
増加に伴う上記磁極ずれ機構によって、一歯有効磁束量
減少率及び進角を下記表1の条件で同時に変化させた場
合の回転数−トルク特性を図4に、回転数−モータ変換
効率を図5に示した。ここで、一歯有効磁束量とは磁石
回転子から電機子の一磁極に流れ込む最大鎖交磁束量を
いう。 (従来例ホ)第1と第2の界磁用磁石は上記実施例のも
のと同じであるが、第2の界磁用磁石も第1の界磁用磁
石と同じ磁極が並ぶようにして回転軸に固定するととも
に進角を5.5度で固定した以外は上記実施例と同様に
して評価した従来の磁石式ブラシレス電動機の回転数−
トルク特性を図4に、回転数−モータ変換効率を図5に
併記した。
(Embodiments A to D) In the magnet type brushless motor 50 of the present invention, Nd-Fe-B manufactured by Hitachi Metals, Ltd. is used as the first and second field magnets 31, 32.
The above magnetic pole shift mechanism accompanying an increase in the number of revolutions under the condition that a radial anisotropic ring magnet (HS-30BR, outer diameter 74 mm, shaft length 23 mm) is used and the thickness of the air gap 6 is 0.5 mm. FIG. 4 shows the rotation speed-torque characteristics and FIG. 5 shows the rotation speed-motor conversion efficiency when the effective reduction amount of one tooth and the lead angle are simultaneously changed under the conditions shown in Table 1 below. Here, the single tooth effective magnetic flux means the maximum interlinkage magnetic flux that flows from the magnet rotor to one magnetic pole of the armature. (Conventional example e) The first and second field magnets are the same as those of the above embodiment, but the second field magnet is also arranged so that the same magnetic poles as the first field magnet are arranged. Rotational speed of a conventional magnet type brushless motor evaluated in the same manner as in the above embodiment except that it was fixed to the rotating shaft and the lead angle was fixed at 5.5 degrees.
FIG. 4 shows the torque characteristics, and FIG. 5 shows the rotation speed-motor conversion efficiency.

【0022】[0022]

【表1】 [Table 1]

【0023】図4、図5及び表1について実施例イの磁
石式ブラシレス電動機で代表して説明すると、1000
r.p.m未満の回転数が低いときには低回転時進角が20
度であるとともに、1000r.p.m以上に回転数が高く
なって磁極ずれが28度(最大値)のときの高回転時進
角が6度となるように設定してある。すなわち、回転数
が1000r.p.m未満のときには、第1と第2の界磁用
磁石31,32の磁極の位相ずれがなく同磁極が並んで
いる状態でセンサ進角が20度にしてある。そして、回
転数が1000rpm以上になったときに第2の界磁用
磁石32は遠心力によるガバナ34の働きで回転子2の
回転方向に第1の界磁用磁石31に対して28度回転し
て、第1と第2の界磁用磁石31,32の合成した磁極
の位相は第2の界磁用磁石32の磁極の位相の半分だけ
進む。したがって、進角はそれだけ遅れてくる。第2の
界磁用磁石32の磁極ずれが最大の28度になったとき
にその半分の14度だけ進角が遅れて6度となる。この
ときの一歯有効磁束量減少率は34%(100%→66
%)であり、従来例ホに比べて幅広い回転数領域で高い
トルク及びモータ交換効率を獲得できていることがわか
った。また、実施例ロ、ハ、ニについても図示の通り、
従来例ホに比べて幅広い回転数領域で高いトルク及びモ
ータ交換効率を獲得できていることがわかった。さら
に、実施例イ、ロ、ハ、ニを比較すると、低回転時進角
の大きいものほど幅広い回転数領域で高いトルクおよび
モータ交換効率を獲得できていることがわかった。
Referring to FIGS. 4 and 5 and Table 1 as a representative of the magnet type brushless motor of the embodiment A,
When the rotation speed is less than rpm, the advance angle at low rotation is 20
The rotation angle is set so as to be higher than 1000 rpm, and when the magnetic pole shift is 28 degrees (maximum value), the advanced angle at high rotation is set to 6 degrees. That is, when the rotation speed is less than 1000 rpm, the sensor advance angle is set to 20 degrees in a state where the magnetic poles of the first and second field magnets 31 and 32 are aligned without phase shift. When the rotation speed becomes 1000 rpm or more, the second field magnet 32 rotates 28 degrees with respect to the first field magnet 31 in the rotation direction of the rotor 2 by the action of the governor 34 due to the centrifugal force. Then, the phase of the combined magnetic pole of the first and second field magnets 31 and 32 advances by half the phase of the magnetic pole of the second field magnet 32. Therefore, the advance angle is delayed accordingly. When the magnetic pole deviation of the second field magnet 32 reaches the maximum of 28 degrees, the advance angle is delayed by 14 degrees, which is half of that, to 6 degrees. At this time, the reduction rate of the effective magnetic flux of one tooth is 34% (100% → 66).
%), And it was found that higher torque and higher motor exchange efficiency could be obtained in a wider rotational speed range than the conventional example E. In addition, Examples B, C, and D also show
It was found that higher torque and higher motor exchange efficiency could be obtained in a wider rotation speed range than the conventional example E. Further, comparing Examples A, B, C, and D, it was found that the larger the advance angle at low rotation, the higher the torque and motor exchange efficiency in a wider rotation speed range.

【0024】図4、図5から明らかなように、本発明の
磁石式ブラシレス電動機は、従来仕様の電動機と比較し
て、定格トルク(7Nm)や最高効率を低下させること
なく、無負荷回転数(nmax)を2.8倍にまで引き上
げることができた。また、幅広い回転数領域で高いトル
ク及びモータ交換効率が得られた。
As is clear from FIGS. 4 and 5, the magnet type brushless motor of the present invention has no load rotation speed without lowering the rated torque (7 Nm) and the maximum efficiency as compared with the motor of the conventional specification. (N max ) could be increased to 2.8 times. In addition, high torque and motor exchange efficiency were obtained in a wide rotation speed range.

【0025】上記磁極ずれ角(θ:度)の大きさは、上
記界磁用磁石31、32の外周側に対称n極の磁極パタ
ーンを形成した場合、そのn極の各磁極の中心角を
(x:度)とすると、x/2≦θ≦0.8x とするこ
とが好ましい。これは、(x/2:度)未満では回転数
の増加に伴う磁極ずれ動作による一歯有効磁束量の減少
率が30%以上を確保でき難いとともに、(0.8x:
度)を超えると逆方向の回転力の発生を招来する可能性
が高くなり本発明の上記磁極ずれ機構に支障を来たすか
らである。進角(α:度)は、0<α≦x/2 とする
ことが好ましい。この上限値は進角の定義から自明であ
り、下限値は0を含まない制御可能な進角を設定可能で
あるからである。
The magnitude of the magnetic pole shift angle (θ: degree) is determined by calculating the central angle of each magnetic pole of the n poles when a symmetrical n pole magnetic pole pattern is formed on the outer peripheral side of the field magnets 31 and 32. When (x: degree), it is preferable that x / 2 ≦ θ ≦ 0.8x. This is because if it is less than (x / 2: degree), it is difficult to secure a reduction rate of the effective magnetic flux of one tooth of 30% or more due to the magnetic pole shift operation accompanying an increase in the number of revolutions, and (0.8x:
This is because, if it exceeds (degree), there is a high possibility that a rotational force in the opposite direction will be generated, which will hinder the magnetic pole displacement mechanism of the present invention. It is preferable that the lead angle (α: degree) is 0 <α ≦ x / 2. This is because the upper limit value is obvious from the definition of the lead angle, and the lower limit value can be set to a controllable lead angle that does not include 0.

【0026】(実施例ヘ、ト)次に、上記磁石式ブラシ
レス電動機50において、第1および第2の界磁用磁石
31,32として上記実施例イ〜ニと同様のものを用い
るとともに同様のエアギャップ厚みとした条件で、進角
を下記表2のように固定して磁極をずらした場合の回転
数−トルク特性を図8に、回転数−モータ変換効率を図
9に示した。比較のために、上記従来例ホの結果を図
8、図9に併記した。
Next, in the above-mentioned magnet type brushless motor 50, the same magnets as the first and second embodiments are used as the first and second field magnets 31 and 32. FIG. 8 shows the rotational speed-torque characteristics and FIG. 9 shows the rotational speed-motor conversion efficiency when the magnetic pole is shifted while the advance angle is fixed as shown in Table 2 below under the condition of the air gap thickness. For comparison, the results of the above-described conventional example E are also shown in FIGS.

【0027】[0027]

【表2】 [Table 2]

【0028】図8、図9より、進角を固定して第1の界
磁用磁石31の磁極に対して第2の界磁用磁石32の磁
極を28度ずらした実施例ヘ、トについても従来例ホに
比べて幅広い回転数領域で高いトルク及びモータ交換効
率を獲得できることがわかった。さらに、実施例ヘ、ト
の比較から、進角の大きな方が幅広い回転数領域で高い
トルク及びモータ交換効率を獲得できることがわかっ
た。
FIGS. 8 and 9 show an embodiment in which the lead angle is fixed and the magnetic pole of the second field magnet 32 is shifted by 28 degrees with respect to the magnetic pole of the first field magnet 31. It was also found that a higher torque and higher motor exchange efficiency could be obtained in a wider rotational speed range than in the conventional example E. Further, from the comparison of Examples, it was found that the larger the advance angle, the higher the torque and the motor exchange efficiency can be obtained in a wide rotational speed range.

【0029】進角を固定した場合にも上記と同様に、磁
極ずれ角(θ:度)は、 x/2≦θ≦0.8x とす
ることが好ましい。進角(α:度)についても、 0<
α≦x/2 とすることが好ましい。
Even when the advance angle is fixed, it is preferable that the magnetic pole shift angle (θ: degree) is set to x / 2 ≦ θ ≦ 0.8x in the same manner as described above. For the advance angle (α: degree), 0 <
It is preferable that α ≦ x / 2.

【0030】上記実施例では、磁極ずれ動作及び進角の
同時可変、または磁極ずれ動作単独により一歯有効磁束
量を34%減少させた例を記載したが、本発明によれば
一歯有効磁束量の減少率を30%以上とすることが極め
て容易である。さらに、より好ましくはその減少率を4
0%以上、特に好ましくは50%とすることも可能であ
る。また、上記本発明の態様では、第1、第2の界磁用
永久磁石の外周面に同じ対称8極の磁極パターンを形成
した場合を記載したが、両者が同じ非対称の磁極パター
ンであってもよい。さらに、磁極数は限定されるもので
はないが好ましくは2極〜128極、より好ましくは4
〜32極のものに非常に有用である。また、第1及び第
2の界磁用磁石が異なる磁極パターンを有していてもよ
い。さらには、例えば第1及び第2の界磁用磁石の同じ
磁極が並んだ状態において発生する鎖交磁束量の比率を
異なる適宜の値に設定することで、高回転数になるとと
もに1つの磁極ずれ動作によってより大きな鎖交磁束量
の変化が可能である。また、上記本発明の態様では、同
軸に配置した2つの界磁用磁石を用いて回転数の変化に
伴ってそのうちの1つを相対回転させることで磁石式ブ
ラシレス電動機の鎖交磁束量を減少させたが、3つ以上
の界磁用磁石を用いて1つまたは2つ以上の界磁用磁石
を回転軸に固定するとともに残りの界磁用磁石を相対回
転させることでも本発明を構成することができる。ま
た、本発明では界磁用磁石の形状、寸法、個数等は限定
されるものではなく、回転子の外周面回転方向に交互に
異なる磁極が形成されるように回転子コア上に任意の界
磁用磁石を配置可能である。例えば、固定子に対向配置
させた回転子コアの外周面回転方向にアークセグメント
磁石をリング状に連続して貼着するか、あるいはその回
転子コアの外周面回転方向に所定の間隔をあけてアーク
セグメント磁石を所定の磁極数分配置する構成等により
上記回転子2に代用させてもよい。また、上記図1の界
磁用磁石の外周面に薄いカバー(例えば非磁性カバー
等。)を配置したもので上記回転子2に代用させてもよ
い。また、上記本発明の態様ではガバナの可動側軸をば
ねで連結した構成を記載したが、このばねとしては公知
の各種バネを用い得る。さらにはばねに代えて公知の各
種ゴムを用いてもよく、あるいはばねとゴムとを併用し
てもよいことは勿論である。
In the above embodiment, the example was described in which the effective magnetic flux per tooth was reduced by 34% by the simultaneous variation of the magnetic pole shift operation and the advance angle, or the magnetic pole shift operation alone. It is very easy to reduce the amount by 30% or more. More preferably, the reduction rate is 4
It can be 0% or more, particularly preferably 50%. Further, in the above aspect of the present invention, the case where the same symmetrical 8-pole magnetic pole pattern is formed on the outer peripheral surface of the first and second field permanent magnets has been described, but both are the same asymmetric magnetic pole pattern. Is also good. Further, the number of magnetic poles is not limited, but is preferably 2 to 128, more preferably 4
Very useful for ~ 32 poles. Further, the first and second field magnets may have different magnetic pole patterns. Furthermore, for example, by setting the ratio of the amount of interlinkage magnetic flux generated in a state where the same magnetic poles of the first and second field magnets are lined up to different appropriate values, the rotation speed is increased and one magnetic pole is increased. A larger change in the amount of interlinkage magnetic flux can be achieved by the shift operation. Further, in the above aspect of the present invention, the amount of interlinkage magnetic flux of the magnet type brushless motor is reduced by using the two field magnets arranged coaxially and rotating one of them relative to the rotation speed. However, the present invention is also configured by fixing one or two or more field magnets to the rotating shaft using three or more field magnets and relatively rotating the remaining field magnets. be able to. In the present invention, the shape, size, number, etc. of the field magnets are not limited, and any field may be formed on the rotor core so that different magnetic poles are formed alternately in the rotation direction of the outer peripheral surface of the rotor. A magnet for magnet can be arranged. For example, the arc segment magnets may be continuously adhered in a ring shape in the direction of rotation of the outer peripheral surface of the rotor core opposed to the stator, or at predetermined intervals in the direction of rotation of the outer peripheral surface of the rotor core. The rotor 2 may be substituted by a configuration or the like in which arc segment magnets are arranged for a predetermined number of magnetic poles. Further, a thin cover (for example, a non-magnetic cover or the like) may be disposed on the outer peripheral surface of the field magnet shown in FIG. Further, in the above-described embodiment of the present invention, the configuration in which the movable side shaft of the governor is connected by a spring is described, but various known springs may be used as the spring. Further, various known rubbers may be used instead of the spring, or a spring and a rubber may be used in combination.

【0031】[0031]

【発明の効果】以上説明したように、本発明の磁石式ブ
ラシレス電動機は低い回転数の時は従来のものと同じよ
うに高いトルクが得られるとともに、従来のものと比較
して3倍近い高い回転数まで高いトルクで交換効率良く
使用できるものとなったので、例えば自動車の駆動用電
動機として内燃機関に代えて使える有用なものとなっ
た。
As described above, the magnet-type brushless motor of the present invention can obtain a high torque at a low rotation speed as in the conventional motor, and is nearly three times as high as the conventional motor. Since the motor can be used at high torque up to the rotation speed and with high exchange efficiency, it has become useful, for example, as a motor for driving an automobile in place of an internal combustion engine.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の磁石式ブラシレス電動機の一態様を示
す主要部の分解斜視図であり、磁極ずれが無い状態
(A)及び磁極ずれ状態(B)を示している。
FIG. 1 is an exploded perspective view of a main part showing one embodiment of a magnetic brushless electric motor of the present invention, showing a state in which there is no magnetic pole shift (A) and a magnetic pole shift state (B).

【図2】本発明の磁石式ブラシレス電動機において界磁
用磁石の磁極の進角を説明する図であり、磁極ずれが無
い状態(A)及び磁極ずれ状態(B)を示している。
FIG. 2 is a view for explaining the advance of the magnetic pole of the field magnet in the magnet type brushless motor of the present invention, showing a state where there is no magnetic pole shift (A) and a magnetic pole shift state (B).

【図3】本発明の磁石式ブラシレス電動機において、第
1と第2の界磁用磁石の合成した磁極の位相を第1の界
磁用磁石の磁極に対して回転子の回転に伴い変化させる
機構を示す分解斜視図であり、(A)は低回転数のと
き、(B)は高回転数のときである。
FIG. 3 In the magnet type brushless motor of the present invention, the phase of the combined magnetic pole of the first and second field magnets is changed with the rotation of the rotor with respect to the magnetic pole of the first field magnet. It is an exploded perspective view which shows a mechanism, (A) is at the time of low rotation speed, (B) is at the time of high rotation speed.

【図4】本発明及び従来の磁石式ブラシレス電動機の回
転数−トルク特性の一例を示す図である。
FIG. 4 is a diagram showing an example of the rotation speed-torque characteristics of the present invention and a conventional magnet type brushless motor.

【図5】本発明及び従来の磁石式ブラシレス電動機の回
転数−モータ変換効率の一例を示す図である。
FIG. 5 is a diagram showing an example of the rotational speed-motor conversion efficiency of the present invention and a conventional magnet type brushless motor.

【図6】トランスミッション付の内燃機関の出力特性図
である。
FIG. 6 is an output characteristic diagram of an internal combustion engine with a transmission.

【図7】従来のブラシレスDC電動機の特性図である。FIG. 7 is a characteristic diagram of a conventional brushless DC motor.

【図8】本発明の磁石式ブラシレス電動機の回転数−ト
ルク特性の他の例を示す図である。
FIG. 8 is a diagram showing another example of the rotation speed-torque characteristic of the magnet type brushless electric motor of the present invention.

【図9】本発明の磁石式ブラシレス電動機の回転数−モ
ータ変換効率の他の例を示す図である。
FIG. 9 is a diagram showing another example of the rotational speed-motor conversion efficiency of the magnet type brushless electric motor of the present invention.

【符号の説明】[Explanation of symbols]

1 固定子、2 回転子、3 界磁用磁石、4 磁極、
5 間隔、6 空隙、7,8 回転子コア、 11 固
定子磁極、12 界磁用巻線、21 回転軸、22 セ
ンサ磁石、31 第1の界磁用磁石、32 第2の界磁
用磁石、33固定部材、34 ガバナ、50 磁石式ブ
ラシレス電動機、321 軸穴、322 長溝、331
穴、332 長穴、341 回転支軸(固定軸)、3
42可動側軸、343 弾性部材、348,349 貫
通穴。
1 stator, 2 rotors, 3 field magnets, 4 magnetic poles,
5 spacing, 6 air gap, 7, 8 rotor core, 11 stator magnetic pole, 12 field winding, 21 rotation axis, 22 sensor magnet, 31 first field magnet, 32 second field magnet , 33 fixing member, 34 governor, 50 magnet brushless motor, 321 shaft hole, 322 long groove, 331
Hole, 332 Slot, 341 Rotating support shaft (fixed shaft), 3
42 movable shaft, 343 elastic member, 348, 349 through hole.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三田 正裕 埼玉県熊谷市三ヶ尻5200番地 日立金属株 式会社磁性材料研究所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Mita 5200 Mitsugajiri, Kumagaya-shi, Saitama Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 複数の固定子磁極とこの固定子磁極に回
転磁界を発生するための巻線を有する固定子、 回転軸とこの回転軸に設けられており前記複数の固定子
磁極に対して回転する界磁用磁石を有する回転子、 及び界磁用磁石の磁極の固定子に対する位置を検出して
その位置に応じて前記巻線に電流を供給する制御回路を
有している磁石式ブラシレス電動機において、 前記界磁用磁石は、回転方向に順次異なった極性の磁極
が並んでいる第1の界磁用磁石とこの第1の界磁用磁石
に対して相対回転可能で回転方向に順次異なった極性の
磁極が並んでいる第2の界磁用磁石からなり、 前記第1と第2の界磁用磁石は前記固定子磁極に対向し
ているとともに、前記の第1と第2の界磁用磁石の合成
した磁極の位相を第1の界磁用磁石の磁極に対して回転
子の回転に伴い変化させる機構を有することを特徴とす
る磁石式ブラシレス電動機。
1. A stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field in the stator magnetic poles, a rotating shaft and a plurality of stator magnetic poles provided on the rotating shaft. A rotor having a rotating field magnet, and a magnet type brushless having a control circuit for detecting a position of a magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the electric motor, the field magnet includes a first field magnet in which magnetic poles having different polarities are sequentially arranged in a rotation direction and a first field magnet that is rotatable relative to the first field magnet and sequentially rotates in the rotation direction. A second field magnet in which magnetic poles of different polarities are arranged, wherein the first and second field magnets face the stator magnetic pole and the first and second field magnets The phase of the combined magnetic pole of the field magnet is matched with the magnetic pole of the first field magnet. Magnet type brushless motor and having a mechanism for changing with the rotation of the rotor Te.
【請求項2】 前記の第1と第2の界磁用磁石の合成し
た磁極の位相を第1の界磁用磁石の磁極に対して回転子
の回転に伴い変化させる機構は、回転子の回転数が低い
ときには前記第1と第2の界磁用磁石は同じ極性の磁極
が並び、回転数の高いときには磁極がそこからずれるよ
うに構成されることを特徴とする請求項1記載の磁石式
ブラシレス電動機。
2. A mechanism for changing the phase of a combined magnetic pole of the first and second field magnets with respect to the magnetic pole of the first field magnet as the rotor rotates. 2. The magnet according to claim 1, wherein the first and second field magnets are arranged such that magnetic poles of the same polarity are arranged when the rotation speed is low, and the magnetic poles are shifted therefrom when the rotation speed is high. Type brushless electric motor.
【請求項3】 前記の第1と第2の界磁用磁石の合成し
た磁極の位相が第1の界磁用磁石の磁極に対して回転子
の回転方向にずれることによって、回転数の変化に伴い
進角が変化することを特徴とする請求項1記載の磁石式
ブラシレス電動機。
3. A change in rotation speed due to a phase of a combined magnetic pole of the first and second field magnets being shifted in a rotating direction of the rotor with respect to a magnetic pole of the first field magnet. 2. The magnet type brushless electric motor according to claim 1, wherein the advance angle changes in accordance with the following.
【請求項4】 前記の第1と第2の界磁用磁石の合成し
た磁極の位相を第1の界磁用磁石の磁極に対して回転子
の回転に伴い変化させる機構は、回転子の遠心力を利用
していることを特徴とする請求項1記載の磁石式ブラシ
レス電動機。
4. A mechanism for changing the phase of a combined magnetic pole of the first and second field magnets with respect to the magnetic pole of the first field magnet as the rotor rotates. The brushless motor according to claim 1, wherein a centrifugal force is used.
【請求項5】 複数の固定子磁極とこの固定子磁極に回
転磁界を発生するための巻線を有する固定子、 回転軸とこの回転軸に設けられており前記複数の固定子
磁極に対して回転する界磁用磁石を有する回転子、 及び界磁用磁石の磁極の固定子に対する位置を検出して
その位置に応じて前記巻線に電流を供給する制御回路を
有している磁石式ブラシレス電動機において、 前記界磁用磁石は、回転方向に順次異なった極性の磁極
が並んでいる第1の界磁用磁石とこの第1の界磁用磁石
に対して相対回転可能で回転方向に順次異なった極性の
磁極が並んでいる第2の界磁用磁石からなり、 前記第1と第2の界磁用磁石は前記固定子磁極に対向し
ているとともに、前記の第1と第2の界磁用磁石の合成
した磁極の位相を第1の界磁用磁石の磁極に対して回転
子の回転に伴い変化させる機構は、回転子の遠心力を利
用して、回転子の回転数が低いときには前記第1と第2
の界磁用磁石は同じ極性の磁極が並び、回転数の高いと
きには磁極がそこからずれるように構成されることを特
徴とする磁石式ブラシレス電動機。
5. A stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field on the stator magnetic poles, a rotating shaft and a plurality of stator magnetic poles provided on the rotating shaft. A rotor having a rotating field magnet, and a magnet type brushless having a control circuit for detecting a position of a magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the electric motor, the field magnet includes a first field magnet in which magnetic poles having different polarities are sequentially arranged in a rotation direction and a first field magnet that is rotatable relative to the first field magnet and sequentially rotates in the rotation direction. A second field magnet in which magnetic poles of different polarities are arranged, wherein the first and second field magnets face the stator magnetic pole and the first and second field magnets The phase of the combined magnetic pole of the field magnet is matched with the magnetic pole of the first field magnet. Mechanism for changing with the rotation of the rotor Te utilizes centrifugal force of the rotor, when the rotational speed of the rotor is low and the first second
The magnetic brushless electric motor according to claim 1, wherein the field magnets are arranged such that magnetic poles of the same polarity are arranged and the magnetic poles are deviated therefrom when the rotation speed is high.
【請求項6】 複数の固定子磁極とこの固定子磁極に回
転磁界を発生するための巻線を有する固定子、 回転軸とこの回転軸に設けられており前記複数の固定子
磁極に対して回転する界磁用磁石を有する回転子、 及び界磁用磁石の磁極の固定子に対する位置を検出して
その位置に応じて前記巻線に電流を供給する制御回路を
有している磁石式ブラシレス電動機において、 前記界磁用磁石は、回転方向に順次異なった極性の磁極
が並んでいる第1の界磁用磁石とこの第1の界磁用磁石
に対して相対回転可能で回転方向に順次異なった極性の
磁極が並んでいる第2の界磁用磁石からなり、 前記第1と第2の界磁用磁石は前記固定子磁極に対向し
ているとともに、前記の第1と第2の界磁用磁石の合成
した磁極の位相を第1の界磁用磁石の磁極に対して回転
子の回転に伴い変化させる機構は、回転子の遠心力を利
用して、回転子の回転数が低いときには前記第1と第2
の界磁用磁石は同じ極性の磁極が並び、回転数の高いと
きには磁極がそこからずれるように構成され、 前記の第1と第2の界磁用磁石の合成した磁極の位相が
第1の界磁用磁石の磁極に対して回転子の回転方向にず
れることによって、回転数の変化に伴い進角が変化する
ことを特徴とする磁石式ブラシレス電動機。
6. A stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field at the stator magnetic poles, a rotating shaft and a plurality of stator magnetic poles provided on the rotating shaft. A rotor having a rotating field magnet, and a magnet type brushless having a control circuit for detecting a position of a magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the electric motor, the field magnet includes a first field magnet in which magnetic poles having different polarities are sequentially arranged in a rotation direction and a first field magnet that is rotatable relative to the first field magnet and sequentially rotates in the rotation direction. A second field magnet in which magnetic poles of different polarities are arranged, wherein the first and second field magnets face the stator magnetic pole and the first and second field magnets The phase of the combined magnetic pole of the field magnet is matched with the magnetic pole of the first field magnet. Mechanism for changing with the rotation of the rotor Te utilizes centrifugal force of the rotor, when the rotational speed of the rotor is low and the first second
The field magnets are arranged such that magnetic poles of the same polarity are arranged, and when the rotation speed is high, the magnetic poles deviate therefrom. The phase of the combined magnetic poles of the first and second field magnets is the first. A magnet-type brushless electric motor characterized in that an advancing angle changes with a change in the number of rotations by being shifted in a rotation direction of a rotor with respect to a magnetic pole of a field magnet.
【請求項7】 複数の固定子磁極とこの固定子磁極に回
転磁界を発生するための巻線を有する固定子、 回転軸とこの回転軸に設けられており前記複数の固定子
磁極に対して回転する界磁用磁石を有する回転子、 及び界磁用磁石の磁極の固定子に対する位置を検出して
その位置に応じて前記巻線に電流を供給する制御回路を
有している磁石式ブラシレス電動機において、 前記界磁用磁石は、回転方向に順次異なった極性の磁極
が並んでいる第1の界磁用磁石とこの第1の界磁用磁石
に対して相対回転可能で回転方向に順次異なった極性の
磁極が並んでいる第2の界磁用磁石からなり、前記第1
と第2の界磁用磁石は前記固定子磁極に対向していると
ともに、前記の第1と第2の界磁用磁石の合成した磁極
の位相を第1の界磁用磁石の磁極に対して回転子の回転
に伴い変化させる機構は回転軸に固定された固定部材の
穴に沿って弾性部材で連結されたガバナの可動側軸が回
転子の回転順方向または逆方向へ移動するとともにその
可動側軸から第2の界磁用磁石に相対回転力が付与され
ることで構成されることを特徴とする磁石式ブラシレス
電動機。
7. A stator having a plurality of stator magnetic poles and a winding for generating a rotating magnetic field at the stator magnetic poles, a rotating shaft and a plurality of stator magnetic poles provided on the rotating shaft. A rotor having a rotating field magnet, and a magnet type brushless having a control circuit for detecting a position of a magnetic pole of the field magnet with respect to the stator and supplying a current to the winding according to the position. In the electric motor, the field magnet includes a first field magnet in which magnetic poles having different polarities are sequentially arranged in a rotation direction and a first field magnet that is rotatable relative to the first field magnet and sequentially rotates in the rotation direction. A second field magnet in which magnetic poles of different polarities are arranged;
And the second field magnet are opposed to the stator magnetic poles, and the phase of the combined magnetic pole of the first and second field magnets is shifted with respect to the magnetic poles of the first field magnet. The mechanism that changes with the rotation of the rotor is such that the movable side shaft of the governor connected by an elastic member moves along the hole of the fixed member fixed to the rotation shaft in the forward or reverse direction of the rotation of the rotor. A magnet type brushless electric motor characterized in that a relative rotational force is applied from a movable side shaft to a second field magnet.
JP9015817A 1996-09-30 1997-01-30 Magnet type brushless motor Pending JPH10155262A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP9015817A JPH10155262A (en) 1996-09-30 1997-01-30 Magnet type brushless motor
US08/933,968 US5821710A (en) 1996-09-30 1997-09-19 Brushless motor having permanent magnets
DE19743314A DE19743314A1 (en) 1996-09-30 1997-09-30 Brushless motor with permanent magnet rotor e.g. for powering motor vehicle

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25871196 1996-09-30
JP8-258711 1996-09-30
JP9015817A JPH10155262A (en) 1996-09-30 1997-01-30 Magnet type brushless motor

Publications (1)

Publication Number Publication Date
JPH10155262A true JPH10155262A (en) 1998-06-09

Family

ID=26352036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9015817A Pending JPH10155262A (en) 1996-09-30 1997-01-30 Magnet type brushless motor

Country Status (1)

Country Link
JP (1) JPH10155262A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204541A (en) * 2000-11-01 2002-07-19 Shin Etsu Chem Co Ltd Permanent magnet type rotary motor
US6771000B2 (en) 2001-02-28 2004-08-03 Hitachi, Ltd. Electric rotary machine and power generation systems using the same
JP2006006026A (en) * 2004-06-17 2006-01-05 Yaskawa Electric Corp Rotor and rotating electric machine equipped therewith
JP2007267452A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric motor
JP2008182875A (en) * 2006-10-26 2008-08-07 Deere & Co Control of dual rotor electromagnetic apparatus
JP2008306846A (en) * 2007-06-07 2008-12-18 Honda Motor Co Ltd Motor control device
WO2009001686A1 (en) * 2007-06-27 2008-12-31 Meidensha Corporation Pseudo current type 120-degree conduction inverter
WO2009060588A1 (en) 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba Inverter device for washing machine
JP2009539336A (en) * 2006-05-31 2009-11-12 ゲットラーク ゲットリーベ ウント ツァーンラトファブリーク ヘルマン ハーゲンマイアー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Electrical synchronous machine
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2012249386A (en) * 2011-05-26 2012-12-13 Yaskawa Electric Corp Rotary electric machine and wind generator system
WO2013085551A1 (en) * 2011-12-07 2013-06-13 Rotonix Usa, Inc. Homopolar motor-generator
US8739581B2 (en) 2007-11-05 2014-06-03 Kabushiki Kaisha Toshiba Washing machine
US8937417B2 (en) 2011-01-20 2015-01-20 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and wind power generation system
JP5759054B1 (en) * 2014-12-09 2015-08-05 市山 義和 Magnet excitation rotating electrical machine system
WO2015186442A1 (en) * 2014-06-06 2015-12-10 市山義和 Magnet excitation rotating electric machine system
JP2016067064A (en) * 2014-06-06 2016-04-28 市山 義和 Magnet excitation rotary electric machine system
CN115313798A (en) * 2021-05-08 2022-11-08 香港城市大学深圳研究院 Alternating pole magnetic gear motor

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204541A (en) * 2000-11-01 2002-07-19 Shin Etsu Chem Co Ltd Permanent magnet type rotary motor
US6771000B2 (en) 2001-02-28 2004-08-03 Hitachi, Ltd. Electric rotary machine and power generation systems using the same
JP2006006026A (en) * 2004-06-17 2006-01-05 Yaskawa Electric Corp Rotor and rotating electric machine equipped therewith
JP2007267452A (en) * 2006-03-27 2007-10-11 Honda Motor Co Ltd Electric motor
JP2009539336A (en) * 2006-05-31 2009-11-12 ゲットラーク ゲットリーベ ウント ツァーンラトファブリーク ヘルマン ハーゲンマイアー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Electrical synchronous machine
JP2008182875A (en) * 2006-10-26 2008-08-07 Deere & Co Control of dual rotor electromagnetic apparatus
JP2008306846A (en) * 2007-06-07 2008-12-18 Honda Motor Co Ltd Motor control device
WO2009001686A1 (en) * 2007-06-27 2008-12-31 Meidensha Corporation Pseudo current type 120-degree conduction inverter
US8232759B2 (en) 2007-06-27 2012-07-31 Meidensha Corporation Pseudo current type 120-degree conduction inverter
US8739581B2 (en) 2007-11-05 2014-06-03 Kabushiki Kaisha Toshiba Washing machine
WO2009060588A1 (en) 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba Inverter device for washing machine
US8704467B2 (en) 2007-11-07 2014-04-22 Kabushiki Kaisha Toshiba Inverter device for washing machine
US8937417B2 (en) 2011-01-20 2015-01-20 Kabushiki Kaisha Yaskawa Denki Rotating electric machine and wind power generation system
JP2012191690A (en) * 2011-03-09 2012-10-04 Yaskawa Electric Corp Variable-field rotary electric machine
JP2012249386A (en) * 2011-05-26 2012-12-13 Yaskawa Electric Corp Rotary electric machine and wind generator system
WO2013085551A1 (en) * 2011-12-07 2013-06-13 Rotonix Usa, Inc. Homopolar motor-generator
US8917004B2 (en) 2011-12-07 2014-12-23 Rotonix Hong Kong Limited Homopolar motor-generator
WO2015186442A1 (en) * 2014-06-06 2015-12-10 市山義和 Magnet excitation rotating electric machine system
JP2016067064A (en) * 2014-06-06 2016-04-28 市山 義和 Magnet excitation rotary electric machine system
JP5759054B1 (en) * 2014-12-09 2015-08-05 市山 義和 Magnet excitation rotating electrical machine system
CN115313798A (en) * 2021-05-08 2022-11-08 香港城市大学深圳研究院 Alternating pole magnetic gear motor

Similar Documents

Publication Publication Date Title
US5821710A (en) Brushless motor having permanent magnets
Rasmussen et al. Motor integrated permanent magnet gear with a wide torque-speed range
JPH10155262A (en) Magnet type brushless motor
JP4306851B2 (en) Lead angle correction method for magnet type brushless motor
JP3188727B2 (en) Combined single-phase variable reluctance motor
US5041749A (en) High speed, high power, single phase brushless DC motor
US6097126A (en) Three-phrase reluctance motor
KR100565220B1 (en) Magnetoresistive synchronous motor
JPH0686527A (en) Hybrid stepping motor
JPH11150931A (en) Three-phase stepping motor and its driving method
JPH10327569A (en) Permanent-magnet brushless motor
JP2009539336A (en) Electrical synchronous machine
EP1182766A1 (en) Brushless motor
RU2180766C2 (en) Electronically commutated two-phase reluctance machine
KR100565219B1 (en) Rotating Magnet Type Induction Motor
US6731033B2 (en) Motor-driven system with stator provided with inductors
US20020063484A1 (en) Single-stator-double-rotor rotating motor
JP3704857B2 (en) Reluctance motor
JPH1146471A (en) Magnet excited brushless motor
JP2001169517A (en) Capacitor motor
JPH1169743A (en) Magnet type brushless motor
GB2317997A (en) Relatively adjustaable rotor in a brushless machine
KR20050009500A (en) The stator and rotor Structure of flux reversal machine
JP3342429B2 (en) Stepping motor
JP2001314053A (en) Permanent magnet field pole rotating electric machine