JPH10148834A - Liquid crystal element and its production - Google Patents
Liquid crystal element and its productionInfo
- Publication number
- JPH10148834A JPH10148834A JP31022596A JP31022596A JPH10148834A JP H10148834 A JPH10148834 A JP H10148834A JP 31022596 A JP31022596 A JP 31022596A JP 31022596 A JP31022596 A JP 31022596A JP H10148834 A JPH10148834 A JP H10148834A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- insulating film
- rubbing
- control film
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000004973 liquid crystal related substance Substances 0.000 title claims abstract description 63
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000004990 Smectic liquid crystal Substances 0.000 claims abstract description 19
- 239000004744 fabric Substances 0.000 claims description 17
- 239000010419 fine particle Substances 0.000 claims description 13
- 239000004677 Nylon Substances 0.000 claims description 11
- 229920001778 nylon Polymers 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000002245 particle Substances 0.000 claims description 4
- 230000003287 optical effect Effects 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 description 22
- 230000005684 electric field Effects 0.000 description 7
- 239000004760 aramid Substances 0.000 description 6
- 229920003235 aromatic polyamide Polymers 0.000 description 6
- 230000007547 defect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 210000002858 crystal cell Anatomy 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000004040 coloring Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、カイラルスメクテ
ィック液晶に適したセル構造を有する液晶素子に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal device having a cell structure suitable for a chiral smectic liquid crystal.
【0002】[0002]
【従来の技術】カイラルスメクティック液晶分子の屈折
率異方性を利用して偏光素子との組合せにより透過光線
を制御する型の表示素子がクラーク(Clark)及び
ラガーウォル(Lagerwall)により提案されて
いる(特開昭56−107216号公報、米国特許第4
367924号明細書等)。このカイラルスメクティッ
ク液晶は、一般に特定の温度域において、カイラルスメ
クティックC相(SmC* )又はH相(SmH* )を呈
し、この状態において、加えられる電界に応答して第1
の光学的安定状態と第2の光学的安定状態のいずれかを
取り、且つ電界の印加のない時はその状態を維持する性
質、即ち双安定性を有し、また電界の変化に対する応答
も速やかであり、高速並びに記憶型の表示素子としての
広い利用が期待されている。2. Description of the Related Art Clark and Lagerwall have proposed a display device of a type that controls transmitted light in combination with a polarizing element by utilizing the refractive index anisotropy of chiral smectic liquid crystal molecules (Clarke and Lagerwall). JP-A-56-107216, U.S. Pat.
369924, etc.). The chiral smectic liquid crystal generally exhibits a chiral smectic C phase (SmC * ) or an H phase (SmH * ) in a specific temperature range, and in this state, responds to an applied electric field to produce a first phase.
Has a property of taking one of the optically stable state and the second optically stable state and maintaining the state when no electric field is applied, that is, has a bistable property, and has a quick response to a change in the electric field. Therefore, wide use as a high-speed and storage type display element is expected.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記カ
イラルスメクティック液晶を用いて構成した液晶セルを
長時間駆動し続けると、セル端部のセル厚が次第に増加
し、黄色に色付いて見えてくるという問題が生ずる。However, when the liquid crystal cell constituted by using the above-mentioned chiral smectic liquid crystal is driven for a long time, the cell thickness at the cell edge gradually increases, and it becomes yellowish. Occurs.
【0004】本発明の目的は、このような問題を解決
し、端部における着色現象を防止した液晶素子を提供す
ることにある。It is an object of the present invention to provide a liquid crystal device which solves such a problem and prevents a coloring phenomenon at an end portion.
【0005】[0005]
【課題を解決するための手段】本発明は第1に液晶素子
を提供するものであり、基板上に電極、絶縁膜、配向制
御膜を順次設けた一対の電極基板を対向配置してその間
隙に液晶を封入してなる液晶素子であって、少なくとも
一方の配向制御膜が、直径0.1〜10μmの孔部を1
0000個/mm2 以上の密度で有することを特徴とす
る液晶素子である。The present invention firstly provides a liquid crystal element. A pair of electrode substrates provided with an electrode, an insulating film, and an alignment control film in that order on a substrate are opposed to each other. A liquid crystal element, wherein at least one of the alignment control films has a hole having a diameter of 0.1 to 10 μm.
A liquid crystal element having a density of 0000 / mm 2 or more.
【0006】また、本発明の第2は、上記液晶素子の製
造方法であって、基板上に電極を形成した後、微粒子を
混入して表面に凸部を付した絶縁膜を形成し、さらにそ
の上に上記絶縁膜の凸部を反映して表面に凸部を有する
配向制御膜を形成し、該配向制御膜をラビング処理する
ことで表面の凸部の配向制御膜を剥すことにより、該配
向制御膜に孔部を形成することを特徴とする液晶素子の
製造方法である。A second aspect of the present invention is the above-mentioned method for manufacturing a liquid crystal element, wherein an electrode is formed on a substrate, and then fine particles are mixed to form an insulating film having projections on the surface. An orientation control film having a convex portion on the surface is formed thereon by reflecting the convex portion of the insulating film, and the orientation control film of the convex portion on the surface is peeled off by rubbing the orientation control film. A method for manufacturing a liquid crystal element, wherein a hole is formed in an alignment control film.
【0007】[0007]
【発明の実施の形態】本発明者の研究によれば、上述し
たセル端部でのセル厚の増加は、駆動により液晶自身が
液晶セル間の特定の方向へ移動することによって、セル
端部での圧力が増加し、その結果セル厚が増加している
ことが認められた。液晶分子が液晶セルの中を移動する
力の発生原因は、駆動パルスによる交流的な電界で、液
晶分子の双極子モーメントが揺らぐことにより発生する
電気力学的効果であろうと推定される。According to the study of the present inventor, the increase in the cell thickness at the cell edge described above is caused by the fact that the liquid crystal itself moves in a specific direction between the liquid crystal cells by driving, so that the cell edge is increased. It was noted that the pressure at the cell increased and as a result the cell thickness increased. It is presumed that the cause of the generation of the force for moving the liquid crystal molecules in the liquid crystal cell is an electrodynamic effect generated by the fluctuation of the dipole moment of the liquid crystal molecules due to the alternating electric field generated by the driving pulse.
【0008】また、本発明者の実験によれば、図2
(A)に示すように、移動の方向22はラビング方向2
0と液晶分子の平均分子軸方向21,21’により決ま
っている。液晶分子の移動方向がこのようにラビング方
向に依存することから、その現象は基板界面でのプレテ
ィルトの状態に依存していることが推測される。平均分
子軸方向21,21’はカイラルスメクティック液晶分
子の双安定状態における平均的な分子位置を示してい
る。Further, according to an experiment conducted by the present inventor, FIG.
As shown in (A), the moving direction 22 is the rubbing direction 2
0 and the average molecular axis directions 21 and 21 ′ of the liquid crystal molecules. Since the moving direction of the liquid crystal molecules depends on the rubbing direction in this way, it is presumed that the phenomenon depends on the state of pretilt at the substrate interface. The average molecular axis directions 21, 21 'indicate the average molecular positions of the chiral smectic liquid crystal molecules in the bistable state.
【0009】ここで、例えば、平均分子軸方向が21で
示した状態で液晶がスイッチングしない程度の適当な交
流電界を印加すると、矢印22方向に液晶分子が移動す
る。但し、ここでは自発分極の向きが負である液晶材料
を用いた場合について述べている。さらに、この液晶移
動現象はセルの配向状態に依存している。Here, for example, when an appropriate AC electric field is applied such that the liquid crystal does not switch in the state where the average molecular axis direction is indicated by 21, the liquid crystal molecules move in the direction of arrow 22. However, here, the case where a liquid crystal material having a negative spontaneous polarization direction is used is described. Further, this liquid crystal movement phenomenon depends on the alignment state of the cell.
【0010】図3に示すようなスメクティック層のシェ
ブロン構造を含む配向はC1及びC2の2種類の配向モ
デルで説明できる。図3で、31はスメクティック層、
32はC1配向領域、33はC2配向領域を表わす。ス
メクティック液晶は、一般に層構造を持つが、SmAか
らSmC又はSmC* に転移すると層間隔が縮むので、
図3のように層が上下基板界面36a,36b間の中央
で折れ曲がった構造(シェブロン構造)をとる。折れ曲
がる方向は図に示すようにC1とC2の二つあり得る
が、良く知られているようにラビングによって基板界面
の液晶分子は基板に対して角度をなし(プレティル
ト)、その傾斜方向はラビング方向Aに向かって液晶分
子先端側が上昇した(先端が浮いた格好になる)向きで
ある。このプレティルトのためにC1配向とC2配向は
弾性エネルギー的に等価ではなく、上述のようにある温
度で転移が起こる。また、機械的な歪みで転移が起こる
こともある。The orientation including the chevron structure of the smectic layer as shown in FIG. 3 can be explained by two types of orientation models C1 and C2. In FIG. 3, 31 is a smectic layer,
32 indicates a C1 alignment region, and 33 indicates a C2 alignment region. Smectic liquid crystals generally have a layered structure, but the transition from SmA to SmC or SmC * reduces the layer spacing.
As shown in FIG. 3, the layer has a structure (chevron structure) bent at the center between the upper and lower substrate interfaces 36a and 36b. As shown in the figure, there are two bending directions, C1 and C2. However, as is well known, the liquid crystal molecules at the substrate interface form an angle with the substrate by rubbing (pretilt), and the inclination direction is the rubbing direction. The liquid crystal molecule tip side is raised toward A (the tip is floating). Due to this pretilt, the C1 orientation and the C2 orientation are not equivalent in elastic energy, and transition occurs at a certain temperature as described above. In addition, transition may occur due to mechanical strain.
【0011】図3の層構造を平面的に見ると、ラビング
方向Aに向かってC1配向からC2配向に移る時の境界
34はジグザグの稲妻状でライトニング欠陥と呼ばれ、
C2からC1に移る時の境界35は幅の広い、ゆるやか
な曲線状でヘアピン欠陥と呼ばれる。When the layer structure shown in FIG. 3 is viewed in a plan view, the boundary 34 at the time of shifting from the C1 orientation to the C2 orientation in the rubbing direction A is called a lightning defect in a zigzag lightning shape,
The boundary 35 at the transition from C2 to C1 is wide and gently curved and is called a hairpin defect.
【0012】カイラルスメクティック液晶を配向するた
めの相互にほぼ平行で同一方向の一軸性配向処理が施さ
れた一対の基板を備え、カイラルスメクティック液晶の
プレティルト角をα、ティルト角(コーン角の1/2)
をΘ、SmC* 層の傾斜角をδとして、Θ<α+δで表
わされる配向状態を有するようにすると、C1配向状態
においてさらにシェブロン構造を有する4つの状態が存
在する。A pair of substrates which are substantially parallel to each other and have been subjected to uniaxial alignment processing in the same direction for aligning the chiral smectic liquid crystal are provided. The pretilt angle of the chiral smectic liquid crystal is α, and the tilt angle (1/1 of the cone angle) 2)
Θ, and the tilt angle of the SmC * layer is δ, and if the SmC * layer has an orientation state represented by Θ <α + δ, there are four more states having a chevron structure in the C1 orientation state.
【0013】この4つのC1配向状態は、従来のC1配
向状態とは異なっており、中でも4つのC1配向状態の
うちの2つの状態は、双安定状態(ユニフォーム状態)
を形成している。ここで、無電界時の見かけのティルト
角をθa とすれば、C1配向状態における4つの状態の
うち、Θ<θa <Θ/2の関係を示す状態をユニフォー
ム状態という。The four C1 orientation states are different from the conventional C1 orientation state, and two of the four C1 orientation states are bistable states (uniform states).
Is formed. Here, if the tilt angle of apparent when no electric field and theta a, among the four states in C1 alignment state, Θ <θ a <a state indicating theta / 2 in relation uniform states.
【0014】ユニフォーム状態においては、その光学的
性質から見てダイレクタが上下基板間でねじれていない
と考えられる。図4(A)はC1配向の各状態における
基板間の各位置でのダイレクタの配置を示す模式図であ
る。図中41〜44は各状態においてダイレクタをコー
ンの底面に投影し、これを底面方向から見た様子を示し
ており、41及び42がスプレイ状態、43及び44が
ユニフォーム状態と考えられるダイレクタの配置であ
る。同図からわかる通り、ユニフォームの2状態43と
44においては、上下いずれかの基板界面の液晶分子が
スプレイ状態の位置と入れ替わっている。図4(B)は
C2配向を示しており、界面のスイッチングはなく内部
のスイッチングで2状態45と46がある。このC1配
向のユニフォーム状態は、従来用いていたC2配向にお
ける双安定状態よりも大きなティルト角θa を生じ、輝
度が大きく、しかもコントラストが高い。In the uniform state, it is considered from the optical properties that the director is not twisted between the upper and lower substrates. FIG. 4A is a schematic diagram showing the arrangement of directors at each position between substrates in each state of C1 orientation. In the figure, reference numerals 41 to 44 show the state in which the director is projected on the bottom surface of the cone in each state and viewed from the bottom direction. 41 and 42 are splay states, and 43 and 44 are arrangements of directors considered to be in a uniform state. It is. As can be seen from the figure, in the two states 43 and 44 of the uniform, the liquid crystal molecules at the interface between the upper and lower substrates are replaced with the positions in the spray state. FIG. 4B shows the C2 orientation, and there are two states 45 and 46 by internal switching without interface switching. The uniform state of the C1 orientation produces a larger tilt angle θa than the conventionally used bistable state in the C2 orientation, resulting in high luminance and high contrast.
【0015】前述した液晶分子の移動は、実際の液晶セ
ルでは図2に示すように、例えばセル全体で液晶分子位
置が矢印21で示した状態にあったとすると、矢印22
の方向へ液晶の移動が生じる。その結果、図2(B)に
示すように領域23のセル厚が経時的に厚くなり、色付
きを生じてくることになる。液晶分子が矢印21’で示
した状態にある時には、交流電界下での移動方向は逆に
なるが、いずれにせよ、ラビング方向20に対して垂直
な方向、即ちスメクティック層内において液晶の移動が
生じる。As shown in FIG. 2, in the actual liquid crystal cell, for example, if the position of the liquid crystal molecule is in the state indicated by the arrow 21 in the entire cell, the movement of the liquid crystal molecule is caused by the arrow 22
Liquid crystal moves in the direction of. As a result, as shown in FIG. 2B, the cell thickness of the region 23 increases with time, and coloring occurs. When the liquid crystal molecules are in the state shown by the arrow 21 ', the moving direction under the AC electric field is reversed, but in any case, the liquid crystal moves in the direction perpendicular to the rubbing direction 20, that is, in the smectic layer. Occurs.
【0016】本発明者は、前述した液晶の移動の状態が
基板界面、即ち配向制御膜表面の物理的状態に強く依存
することから、配向制御膜に適当な大きさの孔部を設け
ることにより、該孔部においてプレティルト角を局所的
に0とし、これによって液晶移動を低減したものであ
る。The inventor of the present invention has proposed that by providing a hole of an appropriate size in the alignment control film, since the state of the movement of the liquid crystal described above strongly depends on the physical condition of the substrate interface, ie, the surface of the alignment control film. The pretilt angle is locally set to 0 in the hole, thereby reducing the movement of the liquid crystal.
【0017】図1は本発明の液晶素子の一例を示す断面
模式図である。FIG. 1 is a schematic sectional view showing an example of the liquid crystal element of the present invention.
【0018】図1に示すように、この液晶セルは、一対
の平行に配置した上基板11a及び下基板11bと、そ
れぞれの基板に配線した例えば厚さが約400〜300
0Åの透明電極12aと12bとを備えている。上基板
11aと下基板11bとの間には2つの安定状態を持つ
非らせん構造のカイラルスメクティック液晶15が挟持
されており、具体的には、SmC* 、SmH* の他、I
相(SmI* )、K相(SmK* )やG相(SmG* )
の液晶を用いることができる。As shown in FIG. 1, this liquid crystal cell comprises a pair of parallel upper and lower substrates 11a and 11b, and a wiring having a thickness of about 400 to 300
It has 0 ° transparent electrodes 12a and 12b. A chiral smectic liquid crystal 15 having a non-helical structure having two stable states is sandwiched between the upper substrate 11a and the lower substrate 11b. Specifically, in addition to SmC * and SmH * ,
Phase (SmI * ), K phase (SmK * ) and G phase (SmG * )
Liquid crystal can be used.
【0019】本発明において上記液晶として特に好まし
くは、高温側でコレステリック相を示すものを用いるこ
とができ、例えば以下の表に示す相転移温度及び物性値
を有するピリミジン系混合液晶Aを用いることができ
る。In the present invention, it is particularly preferable to use a liquid crystal exhibiting a cholesteric phase at a high temperature side, for example, a pyrimidine-based mixed liquid crystal A having a phase transition temperature and physical properties shown in the following table. it can.
【0020】[0020]
【表1】 [Table 1]
【0021】透明電極12a及び12bの上には、例え
ば厚さが100〜3000Åの絶縁膜13a及び13b
が形成されている。14a及び14bは配向制御膜であ
り、50〜1000Åの膜厚で形成される。通常高分子
ポリマーが用いられるが、この発明における素子では、
フッ素含有ポリイミド等の高いプレティルト角を与える
配向制御膜が好適である。On the transparent electrodes 12a and 12b, for example, insulating films 13a and 13b each having a thickness of 100 to 3000 ° are provided.
Are formed. 14a and 14b are alignment control films, each having a thickness of 50 to 1000 °. Usually, a high molecular polymer is used, but in the device of the present invention,
An orientation control film that gives a high pretilt angle, such as a fluorine-containing polyimide, is preferable.
【0022】本発明においては、配向制御膜14a、1
4bの少なくとも一方(図1では両方)に直径0.1〜
10μmの孔部を10000個/mm2 以上の密度で有
していることが必要である。かかる孔部は、好ましくは
配向制御層の厚み方向で下層まで貫通するものであり、
下層が液晶に対して作用を与えるようになる。当該孔部
の直径が10μmを超えると、配向欠陥が生じ、表示に
悪影響を与えるため好ましくない。また、0.1μm未
満の場合には、孔部を設けた効果が得られなくなり好ま
しくない。当該孔部は10000個/mm2 以上の密度
で効果を発揮するが、上限としては、100000個/
mm2 程度であり、これを超えると配向欠陥を発生して
表示に悪影響を及ぼす恐れがある。In the present invention, the orientation control films 14a, 1
4b has a diameter of at least 0.1 (both in FIG. 1).
It is necessary to have 10 μm holes at a density of 10,000 / mm 2 or more. Such a hole preferably penetrates to the lower layer in the thickness direction of the orientation control layer,
The lower layer acts on the liquid crystal. If the diameter of the hole exceeds 10 μm, it is not preferable because an alignment defect occurs and a display is adversely affected. On the other hand, when the thickness is less than 0.1 μm, the effect of providing the holes cannot be obtained, which is not preferable. The hole has an effect at a density of 10000 holes / mm 2 or more, but the upper limit is 100000 holes / mm 2.
mm 2 or more, and if it exceeds this, there is a possibility that an alignment defect is generated and display is adversely affected.
【0023】上記配向制御膜の孔部は、好ましくは下層
となる絶縁膜13a,13bに微粒子19を混入してお
くことにより、形成することができる。即ち、絶縁膜1
3a,13bの表面には、該微粒子19によって凸部が
形成され、該凸部によってその上に形成される配向制御
膜14a,14b表面にも凸部が形成される。この凸部
を有する配向制御膜をラビング処理することにより、該
凸部の配向制御膜が剥され、孔部が形成される。The hole of the orientation control film can be formed by mixing fine particles 19 into the insulating films 13a and 13b, which are preferably lower layers. That is, the insulating film 1
Projections are formed by the fine particles 19 on the surfaces of 3a and 13b, and projections are also formed on the surfaces of the alignment control films 14a and 14b formed thereon by the projections. By rubbing the alignment control film having the convex portions, the alignment control film of the convex portions is peeled off, and holes are formed.
【0024】本発明において上記微粒子19の粒径D
は、絶縁膜13a,13bの表面に良好に凸部を形成す
る上で、上記絶縁膜の膜厚diに対し、di<D<50
diであることが好ましい。また該微粒子の素材として
は、SiO2等の無機材料が好ましく用いられる。In the present invention, the particle diameter D of the fine particles 19
Is for forming a convex portion on the surfaces of the insulating films 13a and 13b, and for the thickness di of the insulating film, di <D <50
It is preferably di. As a material for the fine particles, an inorganic material such as SiO 2 is preferably used.
【0025】本発明において、好ましくは、上記ラビン
グ処理に用いるラビング布の基布とパイルのなす角度が
70〜90°の範囲で揃えられ、且つ、該角度が該ラビ
ング布全面に亙って同一方向に揃えられており、順目で
ラビング処理を行うことにより、良好に配向制御膜の凸
部を剥して孔部を形成することができる。ラビング布と
しては、ナイロン或いは変性ナイロンが好ましい。In the present invention, preferably, the angle between the base cloth of the rubbing cloth used for the rubbing treatment and the pile is set in the range of 70 to 90 °, and the angle is the same over the entire surface of the rubbing cloth. By performing the rubbing treatment in order, the convex portions of the orientation control film can be removed to form the holes. As the rubbing cloth, nylon or modified nylon is preferable.
【0026】[0026]
[実施例1]ガラス基板上にITOからなる透明電極を
形成し、その上に塗布焼成タイプの絶縁膜、具体的には
有機チタン化合物と有機ケイ素化合物混合液を用い、そ
の中に宇部日東化成(株)製の粒径2000Åのシリカ
微粒子を印刷後に10000個/mm2 以上存在するよ
うに混合し、オングストローマーにより1000Åに印
刷塗布した後、300℃で焼成した。その上に日立化成
(株)製のポリアミド配向膜LQ1802の1%NMP
(n−メチルピロリドン)溶液をスピンナーで塗布し、
270℃で1時間焼成した。次にこの基板をラビングし
た。ラビング布の材料は、起毛部の材質が、ナイロン、
変性ナイロンであるアラミド、木綿の3種類、毛足の長
さは2mmの織布を用いた。また、それぞれの布の起毛
度を60°、70°、80°、90°と調製したものを
用いた。ラビング装置の概略図は図5に示した。図5
中、51は基板、52はラビングローラー、53はラビ
ング布である。尚、図5においては便宜上、透明電極、
絶縁膜、配向制御膜を省略している。ラビング条件は回
転数C=400rpm、基板送り速度がB=50mm/
sec、押し込み量εを液晶のプレティルト角αが17
°となるように適当に調整した。[Example 1] A transparent electrode made of ITO was formed on a glass substrate, and an insulating film of a coating and firing type, specifically, a mixed solution of an organic titanium compound and an organic silicon compound was used thereon, in which Ube Nitto Kasei was used. Silica fine particles having a particle size of 2000 ° manufactured by Co., Ltd. were mixed so as to be present at 10,000 particles / mm 2 or more after printing, printed and coated at 1,000 ° by an angstromer, and fired at 300 ° C. 1% NMP of a polyamide alignment film LQ1802 manufactured by Hitachi Chemical Co., Ltd.
(N-methylpyrrolidone) solution is applied with a spinner,
Baking was performed at 270 ° C. for 1 hour. Next, the substrate was rubbed. The material of the rubbing cloth is nylon,
Three types of denatured nylon, aramid and cotton, and a woolen fabric having a bristle length of 2 mm were used. Moreover, the thing which adjusted the degree of raising of each cloth to 60 degrees, 70 degrees, 80 degrees, and 90 degrees was used. A schematic diagram of the rubbing device is shown in FIG. FIG.
Reference numeral 51 denotes a substrate, 52 denotes a rubbing roller, and 53 denotes a rubbing cloth. In FIG. 5, for convenience, a transparent electrode,
The insulating film and the orientation control film are omitted. The rubbing conditions were as follows: rotation speed C = 400 rpm, substrate feed speed B = 50 mm /
sec, and the amount of indentation ε is 17
° was appropriately adjusted.
【0027】上記基板と、同じ処理をしたもう1枚の基
板とをラビング方向が平行且つ同方向になるように1.
5μmのギャップを保って貼り合わせ、セルを作製し、
前述のピリジミン系混合液晶Aを90℃で注入し、前述
のC1ユニフォーム配向を得た。The above-mentioned substrate and another substrate which has been subjected to the same treatment are subjected to the following steps so that the rubbing directions are parallel and the same.
Affixing with a gap of 5 μm to produce a cell,
The aforementioned pyridimine-based mixed liquid crystal A was injected at 90 ° C. to obtain the aforementioned C1 uniform orientation.
【0028】次にセル全体の配向を、図2(A)におけ
る平均分子軸方向21に揃え、パルス幅Δt=25μs
ec、電圧振幅Vpp=40V、(1/2)デューティー
の矩形波を約7時間印加した後に、図2(B)領域23
におけるセル厚を測定し、初期に比較して何%増加した
かを計算した。その結果を下表に示す。Next, the orientation of the entire cell is aligned with the average molecular axis direction 21 in FIG. 2A, and the pulse width Δt = 25 μs
ec, a voltage amplitude V pp = 40 V, a rectangular wave having a (矩形) duty is applied for about 7 hours, and then a region 23 in FIG.
Was measured, and the percentage increased from the initial stage was calculated. The results are shown in the table below.
【0029】[0029]
【表2】 [Table 2]
【0030】上記の通り、ナイロンやアラミドを用いた
ラビング処理、特に、70〜90°についてセル厚変化
が低減できることがわかった。As described above, it was found that the rubbing treatment using nylon or aramid, particularly the change in cell thickness at 70 to 90 °, can be reduced.
【0031】さらに、本発明者はラビング布の状態が配
向膜に与える影響を調べた。SEM(走査型電子顕微
鏡)によりそれぞれのサンプルの配向膜の孔部の状況を
観察したところ、木綿のラビング布を用いた基板の配向
制御膜にはほとんど孔部が認められなかった。また、ナ
イロン、アラミドの起毛度60°のものもセル全面でほ
とんど孔部が認められなかった。一方、ナイロン、アラ
ミドの起毛度70〜90°のものは、直径0.1〜10
μmの孔部が点在しているのが認められた。Further, the present inventor examined the influence of the state of the rubbing cloth on the alignment film. Observation of the state of the holes in the alignment film of each sample by SEM (scanning electron microscope) revealed that almost no holes were found in the alignment control film of the substrate using a cotton rubbing cloth. Also, in the case of nylon and aramid having a degree of raising of 60 °, almost no pores were observed on the entire surface of the cell. On the other hand, nylon and aramid having a brushing degree of 70 to 90 ° have a diameter of 0.1 to 10 °.
μm holes were found to be scattered.
【0032】[実施例2]絶縁膜へのシリカ微粒子の混
合量を調整して、印刷後の密度が5000、1000
0、20000個/mm2 となるようにした以外は、実
施例1と同様に、セルを作製し、駆動した。尚、ラビン
グ布はナイロンとアラミドの起毛度90°のものを用い
た。結果を表3に示す。Example 2 The density after printing was adjusted to 5000 or 1000 by adjusting the mixing amount of the silica fine particles in the insulating film.
A cell was manufactured and driven in the same manner as in Example 1 except that the density was set to 0, 20,000 cells / mm 2 . The rubbing cloth used was made of nylon and aramid having a raising degree of 90 °. Table 3 shows the results.
【0033】[0033]
【表3】 [Table 3]
【0034】上記に示したように、微粒子の量が500
0個/mm2 では効果が小さいことがわかる。As described above, when the amount of fine particles is 500
It can be seen that the effect is small at 0 pieces / mm 2 .
【0035】[比較例1]実施例1において絶縁膜に微
粒子を混入せず、ラビング布としてナイロンとアラミド
の起毛度90°のものを用いた以外は実施例1と同様に
してセルを作製し、駆動したところ、図3(B)領域に
おけるセル厚は初期に比較して約30%増加した。Comparative Example 1 A cell was prepared in the same manner as in Example 1 except that fine particles were not mixed into the insulating film and that the rubbing cloth was made of nylon and aramid having a raising degree of 90 °. 3B, the cell thickness in the region of FIG. 3B was increased by about 30% as compared with the initial stage.
【0036】[0036]
【発明の効果】以上説明したように、本発明によれば、
経時的なセル厚変化による着色現象が防止され、耐久性
の向上した液晶素子が得られる。As described above, according to the present invention,
A coloring phenomenon due to a change in cell thickness over time is prevented, and a liquid crystal element with improved durability can be obtained.
【図1】本発明の液晶素子の一実施形態の断面模式図で
ある。FIG. 1 is a schematic cross-sectional view of one embodiment of a liquid crystal element of the present invention.
【図2】液晶分子の移動によるセル厚変化の説明図であ
る。FIG. 2 is an explanatory diagram of a change in cell thickness due to movement of liquid crystal molecules.
【図3】カイラルスメクティック液晶を用いた液晶素子
のスメクティック層の説明図である。FIG. 3 is an explanatory diagram of a smectic layer of a liquid crystal element using a chiral smectic liquid crystal.
【図4】カイラルスメクティック液晶を用いた液晶素子
の液晶の配向状態の説明図である。FIG. 4 is an explanatory diagram of a liquid crystal alignment state of a liquid crystal element using a chiral smectic liquid crystal.
【図5】ラビング処理の説明図である。FIG. 5 is an explanatory diagram of a rubbing process.
11a,11b 基板 12a,12b 透明電極 13a,13b 絶縁膜 14a,14b 配向制御膜 15 液晶 16 封止材 17 スペーサー 18 接着材 19 微粒子 20 ラビング方向 21,21’ 平均分子軸方向 22 液晶移動方向 23 セル厚変化領域 31 スメクティック層 32 C1配向 33 C2配向 34 ライトニング欠陥 35 ヘアピン欠陥 36a,36b 基板 41,42 スプレイ状態 43,44 ユニフォーム状態 45,46 ユニフォーム状態 51 基板 52 ラビングローラー 53 ラビング布 11a, 11b Substrate 12a, 12b Transparent electrode 13a, 13b Insulating film 14a, 14b Alignment control film 15 Liquid crystal 16 Sealing material 17 Spacer 18 Adhesive material 19 Fine particles 20 Rubbing direction 21, 21 'Average molecular axis direction 22 Liquid crystal moving direction 23 Cell Thickness change region 31 Smectic layer 32 C1 orientation 33 C2 orientation 34 Lightning defect 35 Hairpin defect 36a, 36b Substrate 41, 42 Spray state 43, 44 Uniform state 45, 46 Uniform state 51 Substrate 52 Rubbing roller 53 Rubbing cloth
Claims (9)
次設けた一対の電極基板を対向配置してその間隙に液晶
を封入してなる液晶素子であって、少なくとも一方の配
向制御膜が、直径0.1〜10μmの孔部を10000
個/mm2 以上の密度で有することを特徴とする液晶素
子。1. A liquid crystal element comprising a pair of electrode substrates having a substrate on which an electrode, an insulating film, and an alignment control film are sequentially provided, and a liquid crystal sealed in a gap therebetween, wherein at least one of the alignment control films is provided. Has a hole having a diameter of 0.1 to 10 μm
A liquid crystal element having a density of not less than 2 / mm 2 .
形成された凸部が埋めており、該絶縁膜の凸部が、該絶
縁膜内に散布された微粒子によって形成されている請求
項1記載の液晶素子。2. A projection formed in a lower insulating film fills a hole of the orientation control film, and the projection of the insulating film is formed by fine particles dispersed in the insulating film. The liquid crystal device according to claim 1.
diに対し、 di<D<50di である請求項2記載の液晶素子。3. The liquid crystal device according to claim 2, wherein the particle diameter D of the fine particles satisfies di <D <50 di with respect to the film thickness di of the insulating film.
である請求項1〜3いずれかに記載の液晶素子。4. The liquid crystal device according to claim 1, wherein the liquid crystal is a chiral smectic liquid crystal.
ト角をΘ、SmC*層の傾斜角をδとすると、その配向
状態が、 Θ<α+δ で表わされる請求項4記載の液晶素子。5. The liquid crystal device according to claim 4, wherein the pretilt angle of the liquid crystal is α, the tilt angle is Θ, and the inclination angle of the SmC * layer is δ, and the alignment state is represented by Θ <α + δ.
態を有し、各安定状態での光学軸のなす角度の1/2で
あるθa と液晶のティルト角Θとの関係が、 Θ<θa <Θ/2 で表わされる請求項4又は5記載の液晶素子。6. The liquid crystal element has at least two stable states, and the relationship between θ a , which is half the angle formed by the optical axis in each stable state, and the tilt angle 液晶 of the liquid crystal is as follows : Θ <θ The liquid crystal device according to claim 4, wherein a <Θ / 2.
であって、基板上に電極を形成した後、微粒子を混入し
て表面に凸部を付した絶縁膜を形成し、さらにその上に
上記絶縁膜の凸部を反映して表面に凸部を有する配向制
御膜を形成し、該配向制御膜をラビング処理することで
表面の凸部の配向制御膜を剥すことにより、該配向制御
膜に孔部を形成することを特徴とする液晶素子の製造方
法。7. The method for manufacturing a liquid crystal element according to claim 1, wherein after forming an electrode on the substrate, an insulating film having a convex portion formed on the surface by mixing fine particles is formed. An alignment control film having a convex portion on the surface reflecting the convex portion of the insulating film is formed thereon, and the alignment control film having the convex portion on the surface is peeled off by rubbing the alignment control film, whereby the alignment is performed. A method for manufacturing a liquid crystal element, wherein a hole is formed in a control film.
基布とパイルのなす角度が70〜90°の範囲で揃えら
れ、且つ、該角度が該ラビング布全面に亙って同一方向
に揃えられており、順目でラビング処理を行う請求項7
記載の液晶素子の製造方法。8. An angle between the base cloth of the rubbing cloth used for the rubbing treatment and the pile is set in the range of 70 to 90 °, and the angle is set in the same direction over the entire surface of the rubbing cloth. And performing the rubbing process in order.
The manufacturing method of the liquid crystal element of the description.
性ナイロンである請求項8記載の液晶素子の製造方法。9. The method according to claim 8, wherein the material of the rubbing cloth is nylon or modified nylon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31022596A JPH10148834A (en) | 1996-11-21 | 1996-11-21 | Liquid crystal element and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP31022596A JPH10148834A (en) | 1996-11-21 | 1996-11-21 | Liquid crystal element and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10148834A true JPH10148834A (en) | 1998-06-02 |
Family
ID=18002704
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP31022596A Withdrawn JPH10148834A (en) | 1996-11-21 | 1996-11-21 | Liquid crystal element and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10148834A (en) |
-
1996
- 1996-11-21 JP JP31022596A patent/JPH10148834A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2942161B2 (en) | Liquid crystal alignment treatment method, liquid crystal element manufacturing method using the method, and liquid crystal element | |
JPH05273537A (en) | Ferroelectric liquid crystal display element and its production | |
JP2005234254A (en) | Liquid crystal display device and manufacturing method thereof | |
JP2612503B2 (en) | Liquid crystal element | |
JP2737032B2 (en) | Liquid crystal cell | |
JPH09146126A (en) | Liquid crystal display and information transmission device | |
CN1064138C (en) | Liquid crystal device | |
JP2767836B2 (en) | Ferroelectric liquid crystal device | |
JP4503243B2 (en) | Manufacturing method of nematic liquid crystal device | |
JPH10148834A (en) | Liquid crystal element and its production | |
JPH07168188A (en) | Liquid crystal element, liquid crystal device using the same and liquid crystal display device | |
JP3083016B2 (en) | Liquid crystal alignment treatment method and liquid crystal element manufacturing method | |
JP2614347B2 (en) | Liquid crystal element and liquid crystal display | |
JP3180171B2 (en) | Ferroelectric liquid crystal device | |
JP2582309B2 (en) | Liquid crystal element | |
JP2715209B2 (en) | Ferroelectric liquid crystal device | |
JPH08227077A (en) | Liquid crystal display element and information transmission device using the same | |
JPH05216034A (en) | Ferroelectric liquid crystal element | |
JPH05333341A (en) | Production of ferroelectric liquid crystal element | |
JPH07181495A (en) | Ferroelectric liquid crystal element | |
JPH07191328A (en) | Liquid crystal element | |
JPH04317026A (en) | Liquid crystal cell | |
JPH09318949A (en) | Production of liquid crystal element and orientation treatment of liquid crystal | |
JPH07253582A (en) | Liquid crystal display element and information transmitting device using the same | |
JPH06324340A (en) | Production of ferroelectric liquid crystal element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20040203 |