[go: up one dir, main page]

JPH1014579A - Monogalactosyl diacylglycerol synthase and gene coding the same - Google Patents

Monogalactosyl diacylglycerol synthase and gene coding the same

Info

Publication number
JPH1014579A
JPH1014579A JP8172337A JP17233796A JPH1014579A JP H1014579 A JPH1014579 A JP H1014579A JP 8172337 A JP8172337 A JP 8172337A JP 17233796 A JP17233796 A JP 17233796A JP H1014579 A JPH1014579 A JP H1014579A
Authority
JP
Japan
Prior art keywords
mgdg
amino acid
synthase
acid sequence
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8172337A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ota
啓之 太田
Mie Shimojima
美恵 下嶋
Akihiko Iwamatsu
明彦 岩松
Kenichiro Takamiya
建一郎 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kirin Brewery Co Ltd
Original Assignee
Kirin Brewery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kirin Brewery Co Ltd filed Critical Kirin Brewery Co Ltd
Priority to JP8172337A priority Critical patent/JPH1014579A/en
Publication of JPH1014579A publication Critical patent/JPH1014579A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject enzyme having a specific amino acid sequence, a monogalactosyl diacylglycerol(MGDG) synthase found abundantly in plants, etc., useful for improving the lipid composition of organisms, esp. controlling the quantity of MGDG. SOLUTION: This enzyme is a new monogalactosyl diacylglycerol(MGDG) synthase as a galactolipid found abundantly in plants, etc., having an amino acid sequence of the formula or that virtually identical with the above-mentioned amino acrid sequence. This enzyme is useful for improving the lipid composition of animals, plants or microorganisms owing to its gene, esp. for controlling the quantity of MGDG. This MGDG synthase is obtained by a process wherein cucumber seeds are allowed to germinate, a mRNA is separated from the resultant greened cotyledons; using the mRNA, a cDNA library is constructed and then retrieved using a synthetic DNA probe coding a partial peptide sequence estimated from the purified enzyme, and the resultant gene is integrated into an expression vector and expressed in host cells.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、植物及び一部の微
生物の主要な脂質であるモノガラクトシルジアシルグリ
セロール(MGDG)を合成する酵素、及びそれをコー
ドする遺伝子に関するものである。
TECHNICAL FIELD The present invention relates to an enzyme for synthesizing monogalactosyldiacylglycerol (MGDG), which is a major lipid of plants and some microorganisms, and a gene encoding the same.

【0002】[0002]

【従来の技術】生体膜の基本成分は、脂質とタンパク質
であり、脂質の中にはリン脂質や糖脂質等の極性脂質と
色素、ステロール等の中性脂質が有る。植物の葉緑体及
び一部の光合成を営む微生物(ラン藻)の細胞膜には、
光合成と関連すると思われる幾つかの種類の脂質が存在
する。それらの膜にある脂質は、多いものはモノガラク
トシルジアシルグリセロール(MGDG)とジガラクト
シルジアシルグリセロール(DGDG)があり、より含
量の少ないものとしてフォスファチジルグリセロール
(PG)とスルフォキノボシルジアシルグリセロール
(SQDG)がある。主要な脂質であるMGDGの合成
は、植物では、葉緑体の包膜で起こる。即ち、1,2−
ジアシル−sn−グリセロールの3位へUDP−ガラク
トースからガラクトースを転移し、1,2−ジアシル−
3−O−(β−D−ガラクトピラノシル)−sn−グリ
セロール(MGDG)を生成する(EC 2.4.1.
46)。ガラクト脂質(MGDG、DGDG)とSQD
Gはジアシルグリセロールを共通の基質として用いるの
で、ガラクト脂質とSQDGの比率がMGDG合成酵素
によって調節されると考えられる。実際には、ガラクト
脂質は、SQDG分子の5〜20倍量存在すると推定さ
れている。MGDGは光合成をする組織に多量にあり、
1g生葉重当たり0.6〜15μmol存在する。葉緑
体膜が細胞の膜系の中で最も多量に存在することを考慮
すると、MGDGが細胞の中で最も多量に存在する脂質
で有ることが推測される。また、ガラクト脂質には、多
価不飽和脂肪酸が多量に存在するが、その95%位はリ
ノレン酸である。従って、分子種としてはsn−1、2
共に18:3で占められたものが多いが、ホウレンソウ
のような、いわゆる「16:3植物」では、sn−1
は、18:3であるが、sn−2は、16:3で占めら
れている。一方、両ポジション共18:3で占められて
いる分子種は細胞質の小胞体で合成された後、葉緑体へ
移送される、いわゆる「真核型」脂質で有り、他方のs
n−2が、16:3に置き変わった物は、葉緑体内で全
合成される、いわゆる「原核型」脂質である。
2. Description of the Related Art Basic components of biological membranes are lipids and proteins. Among lipids, there are polar lipids such as phospholipids and glycolipids and neutral lipids such as pigments and sterols. In the cell membrane of chloroplasts and some photosynthetic microorganisms (cyanobacteria) in plants,
There are several types of lipids that are thought to be associated with photosynthesis. Most of the lipids in these membranes are monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), and the lower ones are phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol. (SQDG). The synthesis of the main lipid, MGDG, occurs in plants in the chloroplast envelope. That is, 1,2-
The transfer of galactose from UDP-galactose to the 3-position of diacyl-sn-glycerol gives 1,2-diacyl-
Produces 3-O- (β-D-galactopyranosyl) -sn-glycerol (MGDG) (EC 2.4.1.
46). Galactolipids (MGDG, DGDG) and SQD
Since G uses diacylglycerol as a common substrate, it is believed that the ratio of galactolipid to SQDG is regulated by MGDG synthase. In fact, galactolipids are estimated to be present in 5-20 times the amount of SQDG molecules. MGDG is abundant in photosynthetic tissues,
There is 0.6 to 15 μmol / g fresh leaf weight. Considering that the chloroplast membrane is the most abundant in the cell membrane system, it is speculated that MGDG is the most abundant lipid in the cell. Galactolipids contain a large amount of polyunsaturated fatty acids, of which about 95% is linolenic acid. Therefore, as the molecular species, sn-1, 2
Both are often occupied by 18: 3, but in a so-called "16: 3 plant" such as spinach, sn-1
Is 18: 3, while sn-2 is occupied by 16: 3. On the other hand, the molecular species occupied by both positions at 18: 3 is a so-called “eukaryotic” lipid which is synthesized in the cytoplasmic endoplasmic reticulum and then transferred to the chloroplast.
What replaces n-2 at 16: 3 is a so-called "prokaryotic" lipid that is totally synthesized in chloroplasts.

【0003】MGDG合成酵素は葉緑体の包膜に存在す
る微量酵素であるため、MGDGの量が極めて多いにも
関わらず、その精製は極めて困難とされてきた。まず第
1に包膜は、細胞の全膜成分中では少ない成分である
し、そのタンパク質も葉緑体の全タンパク中の1〜2%
を占めるに過ぎない。第2に包膜はタンパク質に比べて
極めて脂質の量が多く、酵素の可溶化が容易でないこと
が困難な点である。MGDG合成酵素の含量としては、
包膜のタンパク質の0.1から0.5%と言われてい
る。この酵素の部分精製を報告しているグループが2つ
あり、いずれもホウレンソウの葉緑体包膜から酵素活性
を数百倍に濃縮することに成功しているが、完全精製に
は至っていない(C. R. Acad. Sci. Paris, 313: 521,
1991; Planta, 184,319, 1991)。また分子量は約20
kDaと報告されている。
[0003] Since MGDG synthase is a trace enzyme present in the chloroplast envelope, it has been extremely difficult to purify the MGDG synthase despite its extremely large amount. First, the envelope is a small component in the total membrane components of cells, and its protein is also 1 to 2% of the total chloroplast protein.
Just occupy. Second, the envelope has a much larger amount of lipids than proteins, and it is difficult that the enzyme is not easily solubilized. As the content of MGDG synthase,
It is said to be 0.1 to 0.5% of the envelope protein. Two groups have reported partial purification of this enzyme, all of which have successfully concentrated enzymatic activity several hundred times from the chloroplast envelope of spinach, but have not yet achieved complete purification ( CR Acad. Sci. Paris, 313: 521,
1991; Planta, 184,319, 1991). The molecular weight is about 20
kDa.

【0004】[0004]

【発明が解決しようとする課題】植物の脂質合成に関係
する突然変異体がシロイヌナズナから多数分離されてお
り、特に不飽和化反応を行なう酵素については詳細に分
析されている。ところが、MGDG合成酵素に関わるも
のは、MGDGの量が前述のように極めて多く、変異の
検出も容易と思われるにも関わらず一切報告されていな
い。MGDGは、葉緑体の膜系には広範囲に存在する脂
質であるが、チラコイド膜もさることながら、特に光化
学系IIの反応中心と強く結合した複合体を形成してい
ることが知られている(Biochim. Biophys. Acta, 101
9: 261, 1990)。また、特にMGDGはチラコイド膜の
湾曲部を安定化させ、疎水タンパクを折り畳む役割を果
たしているといわれている(FEBS LETT., 150: 19,198
2)。これらのことから、MGDGの光合成等への生理
的役割は極めて大きいものと推測される。しかしなが
ら、その量を調節することにより膜の安定化を操作する
技術は、突然変異体の利用を含めて、不可能であった。
A large number of mutants involved in plant lipid synthesis have been isolated from Arabidopsis thaliana. Particularly, enzymes that perform desaturation reactions have been analyzed in detail. However, as for MGDG synthase, the amount of MGDG is extremely large as described above, and no mutation has been reported, though it seems that the mutation is easily detected. Although MGDG is a lipid that exists widely in the chloroplast membrane system, it is known that it forms a complex strongly bound to the reaction center of photosystem II, in particular, as well as the thylakoid membrane. (Biochim. Biophys. Acta, 101
9: 261, 1990). In addition, it is said that MGDG in particular plays a role in stabilizing the curved portion of the thylakoid membrane and folding hydrophobic proteins (FEBS LETT., 150: 19,198).
2). From these facts, it is assumed that the physiological role of MGDG in photosynthesis and the like is extremely large. However, techniques to manipulate membrane stabilization by adjusting its amount, including the use of mutants, were not possible.

【0005】本発明の目的は、植物の生体内で重要な役
割を果たしているMGDGの合成に関与する酵素及びそ
れをコードする遺伝子を単離することにあり、更には、
当該遺伝子を導入してMGDG産生能を人為的に改変し
た植物等を作出することにある。
[0005] An object of the present invention is to isolate an enzyme involved in the synthesis of MGDG, which plays an important role in plant organisms, and a gene encoding the same.
An object of the present invention is to produce a plant or the like in which the MGDG-producing ability is artificially modified by introducing the gene.

【0006】[0006]

【課題を解決するための手段】本発明者は、上記課題を
解決するため鋭意検討を重ねた結果、MGDG合成酵素
をコードする遺伝子を単離することに成功し、さらに当
該遺伝子を大腸菌に導入しMGDG生産能を付与するこ
とに成功し、本発明を完成した。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventor succeeded in isolating a gene encoding MGDG synthase, and further introduced the gene into Escherichia coli. And succeeded in imparting MGDG production ability, and completed the present invention.

【0007】即ち、本発明は、配列番号3で表されるア
ミノ酸配列、又は配列番号3で表されるアミノ酸配列と
実質的に同一なアミノ酸配列を有するモノガラクトシル
ジアシルグリセロール合成酵素、及び該酵素と別のタン
パク質とからなる融合タンパク質である。
That is, the present invention provides a monogalactosyldiacylglycerol synthase having the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3; A fusion protein consisting of another protein.

【0008】また、本発明は、配列番号3で表されるア
ミノ酸配列、又は配列番号3で表されるアミノ酸配列と
実質的に同一なアミノ酸配列をコードするモノガラクト
シルジアシルグリセロール合成酵素遺伝子である。更
に、本発明は、上記遺伝子を含む組換えベクター及び上
記遺伝子が導入された細胞である。
[0008] The present invention also relates to a monogalactosyldiacylglycerol synthase gene encoding the amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3. Furthermore, the present invention is a recombinant vector containing the above gene and a cell into which the above gene has been introduced.

【0009】以下、本発明を詳細に説明する。本発明の
MGDG合成酵素は、配列番号3で表されるアミノ酸配
列、又は配列番号3で表されるアミノ酸配列と実質的に
同一なアミノ酸配列を有する。また、本発明のMGDG
合成酵素遺伝子は、配列番号3で表されるアミノ酸配
列、又は配列番号3で表されるアミノ酸配列と実質的に
同一なアミノ酸配列をコードする。ここで「配列番号3
で表されるアミノ酸配列と実質的に同一なアミノ酸配
列」とは、配列番号3で表されるアミノ酸配列の幾つか
のアミノ酸残基について、置換、欠失、付加等の変化が
生じた配列であって、配列番号3で表されるアミノ酸配
列と同様にMGDG合成活性を有するアミノ酸配列をい
う。幾つかのアミノ酸残基について置換、欠失、付加等
の変化を起こさせることは、本願の出願時において常用
されている技術、例えば、部位特異的変異誘発法(Nucl
eic Acid Research, Vol.10, No.20, p6487-6500)によ
り行うことができる。なお、一般に、DNA鎖があるア
ミノ酸配列を持つポリペプチドをコードする場合、一つ
のアミノ酸に対応する遺伝コード(コドン)が複数個存
在するが(縮重異性体)、本発明のMGDG合成酵素遺
伝子においても、配列番号3で表されるアミノ酸配列に
対応する任意の遺伝コードを用いることができることは
言うまでもない。
Hereinafter, the present invention will be described in detail. The MGDG synthase of the present invention has an amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3. Also, the MGDG of the present invention
The synthase gene encodes the amino acid sequence represented by SEQ ID NO: 3, or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3. Here, "SEQ ID NO: 3
"An amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3" is a sequence in which some amino acid residues of the amino acid sequence represented by SEQ ID NO: 3 have undergone a change such as substitution, deletion, or addition. And an amino acid sequence having an activity of synthesizing MGDG, similar to the amino acid sequence represented by SEQ ID NO: 3. Inducing changes such as substitutions, deletions, and additions for some amino acid residues can be achieved by techniques commonly used at the time of filing the present application, such as site-directed mutagenesis (Nucl
eic Acid Research, Vol. 10, No. 20, p6487-6500). In general, when a DNA chain encodes a polypeptide having an amino acid sequence, there are a plurality of genetic codes (codons) corresponding to one amino acid (degenerate isomers), but the MGDG synthase gene of the present invention Of course, any genetic code corresponding to the amino acid sequence represented by SEQ ID NO: 3 can be used.

【0010】本発明のMGDG合成酵素は、上記「従来
の技術」等に記載したごとく本来植物及び一部の微生物
(ラン藻)に存在する酵素である。MGDG合成酵素の
アミノ酸配列は枯草菌及び大腸菌のMurG遺伝子のコード
するタンパク質と局所的に類似しているが全体的には大
きく異なる(第6図)。また、他の既知の脂肪酸及び脂
質の合成に関わる酵素の化学構造とは全く類似していな
い。
[0010] The MGDG synthase of the present invention is an enzyme originally present in plants and some microorganisms (cyanobacteria), as described in the above “Conventional Technology” and the like. The amino acid sequence of MGDG synthase is locally similar to the protein encoded by the MurG gene of Bacillus subtilis and Escherichia coli, but largely different overall (FIG. 6). In addition, it does not resemble the chemical structure of other enzymes involved in the synthesis of fatty acids and lipids.

【0011】MGDG合成酵素は、植物及びラン藻に含
まれているので、これらから単離することができる。具
体的には、以下のような方法により行うことができる。
まず、植物又はラン藻の細胞を破砕し、遠心分離により
ミクロソーム画分を得る。次に、このミクロソーム画分
に界面活性剤を加え、膜に結合したMGDG合成酵素を
可溶化する。このとき用いる界面活性剤は特に限定され
ないが、LDAOを用いるのが好ましい。可溶化したM
GDG合成酵素は、その活性を指標として各種クロマト
グラフィーにより精製する。MGDG合成酵素の活性
は、Teucher とHeinz の方法(Planta 184,319,1991 )
により測定できる。また、上記のような天然素材を原料
とするほか、MGDG合成酵素遺伝子を導入した形質転
換細胞からMGDG合成酵素を単離することもできる。
[0011] MGDG synthase is contained in plants and cyanobacteria and can be isolated therefrom. Specifically, it can be performed by the following method.
First, cells of a plant or cyanobacteria are disrupted, and a microsomal fraction is obtained by centrifugation. Next, a surfactant is added to the microsomal fraction to solubilize the MGDG synthase bound to the membrane. The surfactant used at this time is not particularly limited, but LDAO is preferably used. Solubilized M
GDG synthase is purified by various types of chromatography using its activity as an index. The activity of MGDG synthase was determined by the method of Teucher and Heinz (Planta 184,319,1991).
Can be measured. In addition to using the above-mentioned natural materials as raw materials, MGDG synthase can be isolated from transformed cells into which the MGDG synthase gene has been introduced.

【0012】本発明のMGDG合成酵素を別のタンパク
質と融合させ、融合タンパク質とすることができる。M
GDG合成酵素と融合させるタンパク質は、特に限定さ
れず、例えば、グルタチオンS−トランスフェラーゼ、
β−ガラクトシダーゼ、マルトース結合性タンパク等を
使用することができる。このような融合タンパク質は、
MGDG合成酵素遺伝子とそのプロモーターとの間に当
該別のタンパク質をコードする塩基配列を挿入し、この
融合遺伝子を発現させることにより作成できる。MGD
G合成酵素を融合タンパク質とすることにより、発現量
が向上する、タンパク質の精製が容易になるなどの利点
がある。
The MGDG synthase of the present invention can be fused with another protein to form a fusion protein. M
The protein to be fused with the GDG synthase is not particularly limited, for example, glutathione S-transferase,
β-galactosidase, maltose binding protein and the like can be used. Such a fusion protein
It can be prepared by inserting a base sequence encoding the other protein between the MGDG synthase gene and its promoter, and expressing this fusion gene. MGD
The use of the G synthase as a fusion protein has advantages such as improvement of expression level and easy purification of the protein.

【0013】MGDG合成酵素遺伝子は、例えば、以下
のようにして得ることができる。まず、植物又はラン藻
よりMGDG合成酵素を単離し、これをペプチターゼに
より断片化し、その断片のアミノ酸配列を決定する。次
に、アミノ酸配列を決定した断片化ペプチドに対応する
オリゴヌクレオチドを合成する。これとは別に、植物又
はラン藻より全RNAを抽出し、それらの中からポリA
を有するRNAを分離し、このRNAに相補的なDNA
(cDNA)を合成する。このcDNAをファージλgt
11のような適当なベクターにつなぎ、cDNAライブラ
リーを作成する。ここで、上記で合成したオリゴヌクレ
オチドを用いてcDNAライブラリーのスクリーニング
を行う。スクリーニングは、ヌクレオチドプローブを用
いる方法のほか、抗体を用いる免疫学的方法によっても
行い得る。また、別の頻用される方法として、公知の塩
基配列を元に、目的とする配列の両端に位置する短いD
NA配列に対応するプライマーを設計し、全体の配列を
決定するのに使った材料から得たDNAを鋳型として、
PCRを行うことにより、目的とする配列を得ることも
できる。
[0013] The MGDG synthase gene can be obtained, for example, as follows. First, MGDG synthase is isolated from a plant or cyanobacterium, fragmented with peptidase, and the amino acid sequence of the fragment is determined. Next, an oligonucleotide corresponding to the fragmented peptide whose amino acid sequence has been determined is synthesized. Separately, total RNA is extracted from plants or cyanobacteria and poly-A is extracted from them.
Is isolated and a DNA complementary to this RNA
(CDNA) is synthesized. This cDNA was converted to phage λgt
Connect to an appropriate vector such as 11 to create a cDNA library. Here, a cDNA library is screened using the oligonucleotide synthesized above. Screening can be performed not only by a method using a nucleotide probe but also by an immunological method using an antibody. Further, as another frequently used method, based on a known base sequence, a short DNA located at both ends of a target sequence is used.
A primer corresponding to the NA sequence is designed, and DNA obtained from the material used to determine the entire sequence is used as a template,
By performing PCR, a target sequence can also be obtained.

【0014】このようにして選抜したクローンにおける
本発明遺伝子の塩基配列の決定及び確認は、通常公知の
方法を用いて行なうことができる。例えば、M13ファ
ージを用いるジデオキシヌクレオチド鎖終結法(Gene,
19: 269, 1982)により行なうことができる。また、上
記のような方法によらなくても、本発明の遺伝子は、配
列番号2に基づき、ホスファイト法を用いた市販のDN
Aシンセサイザーで合成する事もできる。
The determination and confirmation of the nucleotide sequence of the gene of the present invention in the clones selected as described above can be performed by a generally known method. For example, the dideoxynucleotide chain termination method using M13 phage (Gene,
19: 269, 1982). In addition, even without using the above method, the gene of the present invention can be obtained from commercially available DN using the phosphite method based on SEQ ID NO: 2.
It can also be synthesized with an A synthesizer.

【0015】DNA鎖またはその断片を発現させてそれ
がコードするタンパク質もしくはポリペプチドを産生さ
せるためには、そのアミノ酸配列に対応するDNA配列
(コーディング領域)以外に、発現調節領域が必要であ
る。本発明のMGDG合成酵素遺伝子を発現させるため
にもそのような領域が必要であるが、それらは特別なも
のである必要はなく、MGDG合成酵素遺伝子本来の発
現調節領域をそのまま用いてもよく、他の生物由来の発
現調節領域を用いてもよい。
In order to express a DNA chain or a fragment thereof to produce a protein or polypeptide encoded thereby, an expression control region is required in addition to the DNA sequence (coding region) corresponding to the amino acid sequence. Such a region is necessary for expressing the MGDG synthase gene of the present invention, but they need not be special ones, and the original expression control region of the MGDG synthase gene may be used as it is, Expression control regions derived from other organisms may be used.

【0016】本発明の「MGDG合成酵素遺伝子を含む
組換えベクター」は、MGDG合成酵素遺伝子を単独
で、又は発現調節領域と共に、ベクターにつなげること
により作成できる。ベクターとしては、プラスミド、フ
ァージ等の公知のものを使用できる。
The “recombinant vector containing the MGDG synthase gene” of the present invention can be prepared by connecting the MGDG synthase gene alone or together with the expression control region to a vector. Known vectors such as plasmids and phages can be used as the vector.

【0017】本発明の「MGDG合成酵素遺伝子が導入
された細胞」は、MGDG合成酵素遺伝子を含むベクタ
ーを細胞に導入することにより作成することができる。
ここで用いるベクターは、MGDG合成酵素遺伝子を導
入細胞中で発現し得るものであることが好ましい。細胞
としては、微生物細胞、植物細胞、動物細胞のいずれで
もよく、生物の種類も問わない。細胞への導入方法は、
常法に従って行うことができ、植物細胞へ導入する場合
は、例えば「Plant Molecular Biology Manual, Second
Edition; S.G.Gelvin, and R.A. Schilperoort eds, K
luwer AcademicPublishers, 1995」記載の方法を用いて
行なうことができる。その例としては、生物的方法であ
るウイルスを用いる方法、アグロバクテリウムを用いる
方法等、物理化学的方法であるエレクトロポレーション
法、ポリエチレングリコール法、パーティクルガン法等
が挙げられる。
The “cells into which the MGDG synthase gene has been introduced” of the present invention can be prepared by introducing a vector containing the MGDG synthase gene into the cells.
The vector used here is preferably one that can express the MGDG synthase gene in the introduced cell. The cells may be any of microbial cells, plant cells, and animal cells, regardless of the type of organism. The method of introduction into cells
It can be performed according to a conventional method, and when introducing into plant cells, for example, refer to “Plant Molecular Biology Manual, Second
Edition; SGGelvin, and RA Schilperoort eds, K
luwer Academic Publishers, 1995 ". Examples include physicochemical methods such as a method using a virus which is a biological method, a method using Agrobacterium, an electroporation method, a polyethylene glycol method, and a particle gun method.

【0018】また、MGDG合成酵素は植物体では葉緑
体の包膜に存在するタンパクであることから、葉緑体へ
の転移ペプチドをコードするDNA鎖をMGDG合成酵
素の上流に付けておくことが好ましい。その例として
は、エンドウのリブロース−1、5−2リン酸カルボキ
シラーゼの小サブユニット遺伝子を当該転移ペプチドを
コードする遺伝子として用いることができる。
Since the MGDG synthase is a protein present in the chloroplast envelope in plants, a DNA chain encoding a chloroplast transit peptide should be added upstream of the MGDG synthase. Is preferred. For example, the small subunit gene of pea ribulose-1, 5-2 phosphate carboxylase can be used as the gene encoding the translocation peptide.

【0019】[0019]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【0020】[0020]

【実施例】以下実施例を挙げて、本発明をさらに詳細に
説明するが、本発明は、これらの実施例によって限定さ
れるものではない。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

【0021】〔実施例1〕 キュウリ子葉からのMGD
G合成酵素の精製 キュウリ種子(Cucumis sativus L. cv. Aonagajibai/
サカタのタネより入手)を湿らせたバーミキュライトで
暗所27℃の下で発芽させた。4日後から29時間蛍光
燈(5W/m2)で光照射し、胚軸を除いた緑化子葉を
収穫し、使用するまで−80℃の冷凍庫で保管した。集
めた約3.2kgの子葉に、等量のTSPB緩衝液(50
mM Tris-HCl, pH 7.8, 10 mM dithiothreitol, 0.8 M
sodium acetate, 1 mM phenylmethylsulfonyl fluorid
e, 20 % glycerol, 0.02 %sodium azide, 1 μM leup
eptin)を加えてワーリングブレンダーで破砕後、ガー
ゼで濾過した。濾液を4℃、15,000×gで15分
間遠心し、その上清を更に165,000×gで1.5
時間遠心してミクロソーム画分を沈殿として得、これを
−30℃で冷凍保存した。なお、MGDG合成酵素は葉
緑体包膜に存在する酵素であるが、包膜の大量調製は困
難なので、包膜を多く含むミクロソーム画分を出発材料
とした。
[Example 1] MGD from cucumber cotyledons
Purification of G synthase Cucumber seeds (Cucumis sativus L. cv. Aonagajibai /
(Obtained from seeds of Sakata) was germinated with moist vermiculite in the dark at 27 ° C. Four days later, light irradiation was performed with a fluorescent lamp (5 W / m2) for 29 hours, and the green cotyledons excluding the hypocotyl were harvested and stored in a freezer at -80 ° C until use. To about 3.2 kg of cotyledons collected, add an equal volume of TSPB buffer (50
mM Tris-HCl, pH 7.8, 10 mM dithiothreitol, 0.8 M
sodium acetate, 1 mM phenylmethylsulfonyl fluorid
e, 20% glycerol, 0.02% sodium azide, 1 μM leup
eptin), and the mixture was crushed with a Waring blender, followed by filtration with gauze. The filtrate was centrifuged at 15,000 × g at 4 ° C. for 15 minutes, and the supernatant was further centrifuged at 165,000 × g for 1.5 minutes.
After centrifugation for hours, a microsomal fraction was obtained as a precipitate, which was stored frozen at -30 ° C. Although MGDG synthase is an enzyme present in the chloroplast envelope, it is difficult to prepare a large amount of the envelope, so a microsomal fraction containing a large amount of the envelope was used as a starting material.

【0022】酵素の界面活性剤による可溶化については
sodium cholate, Brij-35, TritonX-100,CHAPS,
LDAO(lauryldimethylamine oxide), octylglucosid
e等の幾つかの薬剤を用いて比較検討したが、この中で
はCHAPS、LDAO、 octylglucosideによる可溶
化率が高かった。その3つの中から、非イオン性のため
精製の際にイオン交換クロマトグラフィーを利用できる
こと、低コストで大量精製に向いていることが利点にな
る、LDAOを可溶化剤に選定した。先に調製したミク
ロソーム画分へ12mMのLDAOを加えた後、16
5,000×gで1.5時間遠心して、上清を可溶化酵
素とした。この可溶化酵素を亜鉛を用いた金属キレート
アフィニティークロマトグラフィー(ファルマシア社
製)、ハイドロキシアパタイトクロマトグラフィー(和
光純薬製)、Toyopearl HW-55によるゲル濾過(東洋ソ
ーダ社製)、陽イオン交換クロマトグラフィー(2種
類:CM-Toyopearl、東洋ソーダ社製; MonoS、ファル
マシア社製)、UDP-hexanolamine agaroseを用いたアフ
ィニティークロマトグラフィー(シグマ社製)を順次行
ない精製した。この結果、最終的にMGDG合成酵素
は、可溶化直後の粗画分と比較して、11,000倍以上に精
製された。精製効果の高かったステップの1つは、陽イ
オン交換クロマトグラフィーであり、このステップをリ
ガンドの種類を変えて2度繰り返すことによって、併せ
て10倍以上濃縮することが出来、最終的な比活性は6
00nmol/min mg タンパクになった。また、SDS−P
AGEの結果から、MGDG合成酵素の分子量は45k
Daと推定された。これは、報告されているホウレンソ
ウ葉緑体包膜の酵素の分子量約20kDa(Marechal ら
(1991)、及びTeucherとHeinz(1991))の報告とは明らか
に異なっていた。
Regarding the solubilization of enzymes by surfactants
sodium cholate, Brij-35, TritonX-100, CHAPS,
LDAO (lauryldimethylamine oxide), octylglucosid
A comparative study was conducted using several drugs such as e. Among them, the solubilization rate by CHAPS, LDAO and octylglucoside was high. Among these three, LDAO was selected as a solubilizing agent, which is advantageous in that ion exchange chromatography can be used for purification because of its non-ionicity and that it is suitable for mass purification at low cost. After adding 12 mM LDAO to the previously prepared microsomal fraction, 16
After centrifugation at 5,000 × g for 1.5 hours, the supernatant was used as a solubilized enzyme. The solubilized enzyme was subjected to metal chelate affinity chromatography using zinc (Pharmacia), hydroxyapatite chromatography (Wako Pure Chemical Industries), gel filtration with Toyopearl HW-55 (Toyo Soda), cation exchange chromatography (2 types: CM-Toyopearl, manufactured by Toyo Soda Co .; MonoS, manufactured by Pharmacia) and affinity chromatography using UDP-hexanolamine agarose (manufactured by Sigma) were sequentially performed for purification. As a result, the MGDG synthase was finally purified 11,000 times or more as compared with the crude fraction immediately after solubilization. One of the steps having a high purification effect is cation exchange chromatography. By repeating this step twice with different kinds of ligands, the concentration can be more than 10 times as much as the final specific activity. Is 6
It became 00 nmol / min mg protein. Also, SDS-P
From the results of AGE, the molecular weight of MGDG synthase was 45 k
Da. This is due to the reported molecular weight of the enzyme of spinach chloroplast envelope of about 20 kDa (Marechal et al.).
(1991), and Teucher and Heinz (1991)).

【0023】次に、精製酵素をプロテアーゼ消化によっ
てペプチド断片化して、岩松の方法(生化学、 63:139,
1991; Electrophoresis 13: 142、1992)によって
断片化ペプチドのアミノ酸配列を決定した。上述の方法
で精製したタンパク質の溶液に、2倍量のアセトンを加
えタンパク質をアセトン沈殿とし、沈殿を乾燥後150
μlの電気泳動用バッファーに溶解した後、12%のア
クリルアミド濃度のSDS電気泳動を行ない、タンパク
質をPVDF膜(アプライド バイオシステム社製)へ
エレクトロブロットティング装置(アトー社製)により
転写した。タンパク質が転写されたPVDF膜を0.1
% Ponceau S(シグマ社製)/1%酢酸で染色し、分子
量約45kDaのバンドを切り取り、0.5mM Na
OHで脱色した。これを還元S−カルボキシメチル化
し、リジルエンドペプチダーゼ(Achromobacter protea
se 1)を酵素:基質(mol:mol)比で1:100になる
ように加え、30℃で16時間反応させた。生成した断
片化ペプチドを溶媒A(98%)と溶媒B(2%)で平
衡化したμ-Bondashere 5μC8-300A (2.1×150 mm,Wate
rs社製)カラムにアプライし、溶媒Bに関し2−50%
のリニアグラジエントで30分間、流速0.25ml/
分で溶出した (溶媒A:0.05%TFA水溶液、溶媒B:2-プロ
パノール:アセトニトリル=7:3(v/v)中の0.02 % TF
A)。溶出されたペプチドを214nmにおける吸収で
検出し、それぞれのピーク画分をマニュアルで集めた。
得られたそれぞれのピーク画分は、気相プロテインシー
ケンサー(Applied Biosystems社、 Model 470A)を用い
て分析した。総ての得られたピーク画分を分析した結
果、断片化ペプチドのアミノ酸配列が明確に決定され
た。以下はその一部を示している。
Next, the purified enzyme was fragmented into peptides by digestion with protease, and the fragmentation was performed according to the method of Iwamatsu (Biochemistry, 63: 139,
1991; Electrophoresis 13: 142, 1992) to determine the amino acid sequence of the fragmented peptide. To the solution of the protein purified by the above-described method, double the amount of acetone was added to precipitate the protein with acetone.
After dissolving in μl of an electrophoresis buffer, SDS electrophoresis was performed at an acrylamide concentration of 12%, and the protein was transferred to a PVDF membrane (manufactured by Applied Biosystems) using an electroblotting apparatus (manufactured by Atto). The PVDF membrane onto which the protein was transferred
% Ponceau S (manufactured by Sigma) / 1% acetic acid, and a band having a molecular weight of about 45 kDa was cut out.
Decolorized with OH. This is reduced S-carboxymethylated and lysyl endopeptidase (Achromobacter protea)
se 1) was added at an enzyme: substrate (mol: mol) ratio of 1: 100, and reacted at 30 ° C. for 16 hours. The resulting fragmented peptide was equilibrated with solvent A (98%) and solvent B (2%) and μ-Bondashere 5μC8-300A (2.1 × 150 mm, Wate
rs) (2-50% for solvent B)
With a linear gradient of 30 minutes and a flow rate of 0.25 ml /
(Solvent A: 0.05% TFA aqueous solution, solvent B: 0.02% TF in 2-propanol: acetonitrile = 7: 3 (v / v)
A). The eluted peptide was detected by absorption at 214 nm, and each peak fraction was manually collected.
Each peak fraction obtained was analyzed using a gas phase protein sequencer (Applied Biosystems, Model 470A). As a result of analyzing all the obtained peak fractions, the amino acid sequence of the fragmented peptide was clearly determined. The following shows some of them.

【0024】 #1:GVSDE (N-末端; AP-10) #2:LVTRCYCPSTEVAK (AP-5) #3:GFVTK (AP-1) #4:IVFTTVVTD (AP-13) #5:RVLILMSDTGG (AP-9) なお、MGDG合成酵素の活性は、後に詳細に述べる
が、3HラベルしたUDP-galactoseと1, 2-dioleoyl-sn-gl
ycerolを基質とし、脂質画分への[3H]-galactoseの取り
込みを指標として測定した。
# 1: GVSDE (N-terminal; AP-10) # 2: LVTRCYCPSTEVAK (AP-5) # 3: GFVTK (AP-1) # 4: IVFTTVVTD (AP-13) # 5: RVLILMSDTGG (AP- 9) The activity of MGDG synthase will be described in detail later. However, UDP-galactose labeled with 3 H and 1,2-dioleoyl-sn-gl
Using ycerol as a substrate, incorporation of [ 3 H] -galactose into the lipid fraction was measured as an index.

【0025】〔実施例2〕 キュウリ子葉由来のcDNAラ
イブラリーの作製 キュウリの種子を30℃暗黒下で湿ったバーミキュライ
トで5日間発芽させた後、蛍光灯下に6時間おいて緑化
させた子葉を材料に用いた。10gの子葉よりChirgwin
らの方法(Biochemistry, 18: 5294-5299, 1979)に従
って全RNAを得た。この全RNAをもとにAvivらの方
法(Proc. Natl. Acad. Sci. USA., 69:1408, 1972)に
従ってポリAを有するRNAを分離した。上記のポリA
を有するRNAにたいして相補的なDNAをGublerらの
方法(Gene, 25: 263, 1983)に従って合成した。この
際、プライマーとしてオリゴ(dT)及びランダムオリ
ゴヌクレオチドを使用した。合成した二本鎖からなるD
NAの両末端にEcoRI / NotI アダプター(ファルマシ
ア社製)を付けた後、末端をリン酸化した。次に余分な
アダプターをゲル濾過法でcDNA画分から除き、cD
NAとEcoRIであらかじめ切断し脱リン酸化したファー
ジλgt11のアームを連結した。このDNAを試験管内パ
ッケイジング法(Gigapack GoldII; Stratagene社)でλ
ファージ粒子にパッケイジングし、λgt11のライブラリ
ーを得た。
Example 2 Preparation of cDNA Library Derived from Cucumber Cotyledons Cucumber seeds were germinated with moist vermiculite at 30 ° C. in the dark for 5 days, and the green cotyledons were kept under fluorescent light for 6 hours. Used for material. Chirgwin from 10g cotyledons
Total RNA was obtained according to the method (Biochemistry, 18: 5294-5299, 1979). Based on this total RNA, RNA having poly A was isolated according to the method of Aviv et al. (Proc. Natl. Acad. Sci. USA., 69: 1408, 1972). Poly A above
The DNA complementary to the RNA having was synthesized according to the method of Gubler et al. (Gene, 25: 263, 1983). At this time, oligo (dT) and random oligonucleotide were used as primers. D consisting of a synthesized double strand
After attaching an EcoRI / NotI adapter (Pharmacia) to both ends of NA, the ends were phosphorylated. Next, the excess adapter was removed from the cDNA fraction by gel filtration, and the cD
The arm of the phage λgt11 which had been preliminarily cut and dephosphorylated with NA and EcoRI was ligated. This DNA was subjected to in vitro packaging (Gigapack Gold II; Stratagene) to obtain a λ
Phage particles were packaged to obtain a λgt11 library.

【0026】〔実施例3〕 MGDG合成酵素遺伝子保
持株のスクリーニング 精製酵素から推定された部分ペプチド配列#2の一部(C
YCPSTEVAK)を元にDNAプローブを合成した(Applied Bio
syste社;モデル394)。 5’−TGYTAYTGYCCIWSIACIGARGTIGCIAAR (IUBコード)
(配列番号1)
[Example 3] Screening of MGDG synthase gene-carrying strain A part of the partial peptide sequence # 2 deduced from the purified enzyme (C
DNA probe was synthesized based on YCPSTEVAK) (Applied Bio
syste; model 394). 5'-TGYTAYTGYCCIWSIACIGARGTIGCIAAR (IUB code)
(SEQ ID NO: 1)

【0027】この5’末端を32P-dCTPで標識した後、サ
ンブルック(Sambrook)らの著書(Molecular Cloning; S
econd edition, Cold Spring Harbor Laboratory Pres
s, 1989)に従って、ハイブリダイゼーションを行なっ
た。その条件は5×SSC(1×SSCは0.15M NaCl、15m
M クエン酸ナトリウム),10mM EDTA,10×De
nhardtの液( 50×Denhardtの液はFicoll(Type400, Pha
rmacia社), polyvinylpyrrolidone, bovine serum albu
min (fraction V, Sigma社) を各10g/l),及び2
50μg/mlサケ精子DNAから成る液中で60℃、
16時間とした。その後、メンブレンを5×SSC,
0.1%SDS液中45℃、15分2回洗い、オートラ
ジオグラフィーを取った。陽性クローンを純化後、cD
NAをpBluescript II SK+にサブク
ローニングし、常法に従って、塩基配列を決定した。そ
のDNA配列(1647bp)及び予想されるアミノ酸配列を
第1図〜第3図に示す(それぞれ配列番号2で表されD
NA配列及び配列番号3で表されるアミノ酸配列を含
む)。図中の矢印は葉緑体へのトランジット配列の予想
される切断点、細い下線部は精製酵素の限定分解ペプチ
ドのシーケンスから推定した配列と一致した部分を、太
い下線部は大腸菌で発現させる際にPCRに用いたプラ
イマーの位置を示す。このアミノ酸配列をデータベース
中の他のタンパク質のアミノ酸配列と比較した(解析ソ
フトGENETYX )。結果を図6に示す。図6中の*印は3
種の遺伝子で一致したアミノ酸の位置を示す。図6が示
すように、このアミノ酸配列は、Bacillus subtilis と
E. coliのMurG遺伝子(ペプチドグリカンの合成に関係
する遺伝子)と約20%の有為な相同性を示した(クロ
ーン名;pBSMGDG1)。
After labeling the 5 'end with 32 P-dCTP, Sambrook et al. (Molecular Cloning; S)
econd edition, Cold Spring Harbor Laboratory Pres
s, 1989). The conditions were 5 × SSC (1 × SSC was 0.15M NaCl, 15m
M sodium citrate), 10 mM EDTA, 10 × De
nhardt solution (50 × Denhardt solution is Ficoll (Type400, Pha
rmacia), polyvinylpyrrolidone, bovine serum albu
min (fraction V, Sigma) at 10 g / l each) and 2
60 ° C. in a solution consisting of 50 μg / ml salmon sperm DNA,
16 hours. After that, the membrane was changed to 5 × SSC,
After washing twice in a 0.1% SDS solution at 45 ° C. for 15 minutes, autoradiography was performed. After purifying positive clones,
NA was subcloned into pBluescript II SK +, and the nucleotide sequence was determined according to a conventional method. The DNA sequence (1647 bp) and the predicted amino acid sequence are shown in FIGS. 1 to 3 (each represented by SEQ ID NO: 2 and
NA sequence and the amino acid sequence represented by SEQ ID NO: 3). The arrows in the figure indicate the expected breakpoints of the transit sequence into the chloroplast, the thin underlined part indicates the part corresponding to the sequence deduced from the sequence of the limited digested peptide of the purified enzyme, and the thick underlined part indicates the expression in E. coli. Shows the positions of the primers used for PCR. This amino acid sequence was compared with the amino acid sequences of other proteins in the database (analysis software GENETYX). FIG. 6 shows the results. The mark * in FIG. 6 is 3.
The position of the corresponding amino acid in the species gene is indicated. As shown in FIG. 6, this amino acid sequence is identical to Bacillus subtilis.
It showed about 20% significant homology with the MurG gene of E. coli (a gene involved in the synthesis of peptidoglycan) (clone name: pBSMGDG1).

【0028】〔実施例4〕 MGDG合成酵素候補遺伝
子(pBSMGDG1)の大腸菌での発現による活性測定 MGDG合成酵素候補遺伝子がどのような酵素活性を有
しているか確認するため、この遺伝子を大腸菌で発現さ
せ、活性測定することを試みた。MGDG合成酵素候補
遺伝子と大腸菌での発現ベクターpGEX-3X(Pharmacia社
製)を用い、Glutathione S- transferase(GST)のC末端
へのフュージョンタンパクとして発現させるために、Ba
mHI及びEcoRIサイトをMGDG合成酵素候補遺伝子の両
端にPCRにより付けた。
Example 4 Activity Measurement of MGDG Synthase Candidate Gene (pBSMGDG1) by Expression in Escherichia coli To confirm what kind of enzyme activity the MGDG synthase candidate gene has in Escherichia coli, this gene was expressed in Escherichia coli. And tried to measure the activity. Using the MGDG synthase candidate gene and the expression vector pGEX-3X (Pharmacia) in Escherichia coli, Ba was used to express Glutathione S-transferase (GST) as a fusion protein at the C-terminus.
mHI and EcoRI sites were added to both ends of the MGDG synthase candidate gene by PCR.

【0029】センスプラーマー; 5'-GGGGATCCCTGGTGTT
TCAGATGAAACCAATG(下線はBamHIサイト)(配列番号
4) アンチセンスプライマー; 5'-CCGAATTCCCGCCGGAATATTG
TGGTACAAAAC(下線はEcoRIサイト)(配列番号5)
Sense primer; 5'-GG GGATCC CTGGTGTT
TCAGATGAAACCAATG (underlined BamHI site) (SEQ ID NO: 4) Antisense primer; 5'-CC GAATTC CCGCCGGAATATTG
TGGTACAAAAC (EcoRI site underlined) (SEQ ID NO: 5)

【0030】上記の2種のプライマーを用いてpBSMGDG1
を鋳型としたPCRを行なうと約1.3kbpの産物が
得られた。なお、反応条件は、パーキンエルマー社のマ
ニュアルに従い、94℃(1.5分)、60℃(2
分)、72℃(3分)を1サイクルとする反応を30回
繰り返した。この反応産物をBamHI及びEcoRIで切断した
後、同じ制限酵素のセットで予め切断したpGEX-3Xにク
ローニングした(pGEX-GTとする)。このプラスミド
を、常法(Molecular cloning pp.1.76-1.84; 1989)に
従って調整した大腸菌XL1-Blue株のコンピテントセルに
導入し、アンピシリン耐性による選別により形質転換株
を得た(1b-2とする)。なお、元のプラスミドpGEX-3X
を導入した大腸菌株をGEX-3Xと名付けた。
Using the above two kinds of primers, pBSMGDG1
When a PCR was carried out using as a template, a product of about 1.3 kbp was obtained. The reaction conditions were 94 ° C. (1.5 minutes) and 60 ° C. (2 minutes) according to the manual of PerkinElmer.
) And 72 ° C (3 minutes) as one cycle were repeated 30 times. After the reaction product was cut with BamHI and EcoRI, it was cloned into pGEX-3X previously cut with the same set of restriction enzymes (referred to as pGEX-GT). This plasmid was introduced into competent cells of Escherichia coli XL1-Blue strain prepared according to a conventional method (Molecular cloning pp. 1.76-1.84; 1989), and a transformant was obtained by selection with ampicillin resistance (1b-2). ). The original plasmid pGEX-3X
The E. coli strain into which was introduced was named GEX-3X.

【0031】GEX-3X及び1b-2をアンピシリン50μg/
mlを含む50mlのLB培地で、37℃で3時間培養
し、最終濃度0.1mMのイソプロピルチオガラクトシ
ド(IPTG)を加え、更に2時間培養した。3000回転
5分間の遠心分離により集菌し、菌体を5mlのMOD
緩衝液(50 mM MOPS-NaOH (pH7.9), 10mM dithiothreito
l)に懸濁し、超音波により(Output2, duty60, 30秒を
2回;トミー社製)破砕した。
GEX-3X and 1b-2 were combined with 50 μg / ampicillin /
The cells were cultured at 37 ° C. for 3 hours in 50 ml of an LB medium containing the same, and a final concentration of 0.1 mM isopropylthiogalactoside (IPTG) was added, followed by further 2 hours of culture. The cells are collected by centrifugation at 3,000 rpm for 5 minutes, and the cells are MOD of 5 ml.
Buffer solution (50 mM MOPS-NaOH (pH7.9), 10 mM dithiothreito
l) and crushed by ultrasonic waves (output 2, duty 60, twice for 30 seconds; manufactured by Tommy).

【0032】この破砕液を用いてMGDG合成酵素の活
性をTeucherとHeinzの方法(Planta184, 319, 1991)に従
って測定した。この際、基質として400μMのUDP
-galactoseを加えた。30μlの酵素液に50μlの1,
2-dioleoyl-sn-glycerol (これは予め0.01%のTween 20
を含む TSPB緩衝液に溶かし濃度4mg/mlに調整済
み)と110μlのMOD緩衝液を加え30℃で5分間
プレインキュベーションした。反応は10μlのUDP
−[4,5-3H] galactose (92.5 Bq nmol-1)を加えて開始
し、30℃で10分間行なった。次に、1mlの酢酸エ
チルを加えて反応を止めた。ボルテックスで良く攪拌し
た後、0.5mlの0.45%(W/V)のNaCl水溶液
を加え500×g、5分間遠心分離した。下層を捨て、
再び0.45%のNaCl水溶液を加え攪拌し、遠心分
離した上層の放射能の値を液体シンチレーションカウン
ターで測定した( LS6500CE、 Beckman-RIIC社
製)。この際、4mlのシンチレーションカクテル(ACS
-II)と0.5mlのメタノールを加えた。
Using this crushed liquid, the activity of MGDG synthase was measured according to the method of Teucher and Heinz (Planta 184, 319, 1991). At this time, 400 μM UDP was used as a substrate.
Added -galactose. 50 μl of 1, 1 in 30 μl of enzyme solution
2-dioleoyl-sn-glycerol (This is a 0.01% Tween 20
And adjusted to a concentration of 4 mg / ml in a TSPB buffer solution) and 110 μl of MOD buffer solution, and pre-incubated at 30 ° C. for 5 minutes. Reaction is 10 μl UDP
Starting with the addition of-[4,5- 3 H] galactose (92.5 Bq nmol-1), the reaction was performed at 30 ° C for 10 minutes. Next, 1 ml of ethyl acetate was added to stop the reaction. After vortexing well, 0.5 ml of 0.45% (W / V) aqueous NaCl solution was added, and the mixture was centrifuged at 500 × g for 5 minutes. Discard the lower layer,
A 0.45% NaCl aqueous solution was added again, the mixture was stirred, and the radioactivity of the upper layer after centrifugation was measured with a liquid scintillation counter (LS6500CE, manufactured by Beckman-RIIC). At this time, 4 ml of scintillation cocktail (ACS
-II) and 0.5 ml of methanol were added.

【0033】[0033]

【表1】 [Table 1]

【0034】ここでタンパク量はBensadounとWeinstein
の方法(Anal. Biochem.,70, 241,1976)で測定した。
MGDG合成酵素候補遺伝子を発現している大腸菌株
(1b-2)でのみgalactoseの取り込みがあり、しかもそ
の量はIPTGにより大幅に誘導された。
Here, the amount of protein is determined by Bensadoun and Weinstein.
(Anal. Biochem., 70, 241, 1976).
Only in the Escherichia coli strain (1b-2) expressing the MGDG synthase candidate gene, galactose was incorporated, and the amount was significantly induced by IPTG.

【0035】次に、形質転換した大腸菌でgalactoseが
取り込まれて生成する脂質がMGDGであるかどうかを
TLCにより調べた。まず、上記のようにIPTGによ
り誘導をかけた大腸菌の破砕物を調整し、酵素活性の測
定時に50μMのUDP−[14C] galactose (493Bq n
mol-1)を加えた。その理由は、3H標識したgalactoseで
は、後述のTLCによる分画後の反応産物をイメージア
ナライザー(BAS2000,フジフィルム社製)で検出するこ
とが困難な為である。30℃で10分反応を行なった
後、上記と同様の方法で1mlの酢酸エチルの添加によ
り反応を止め、0、45%NaClで2度洗浄した後、得ら
れた酢酸エチル層のうち500μlを乾燥し、再び10
0μlのクロロホルム:メタノール(1:1)混液に溶
解して、全量をTLCに供し展開溶媒1(クロロホル
ム:メタノール:水=65:15:2、V/V)により
分画した。その際、脂質の対照として、ホウレンソウ葉
の抽出物を同時に展開し、糖脂質をアンスロン試薬を噴
霧することにより発色させて移動度を比較した。この結
果を図5に示す。図5において、レーン1は、ホウレン
ソウ葉から抽出した脂質であり、レーン2から5は大腸
菌抽出物により合成された脂質である。レーン2、3は
GEX-3X由来、レーン4、5は1b-2由来であり、その内レ
ーン2、4は、IPTG誘導前、レーン3、5は誘導後
の菌体からの抽出物を用いた。また、レーン6はキュウ
リ子葉から精製した酵素を用いた反応による生成物を示
す。図5が示すように、GEX-3XではIPTGによる誘導
の有無に関わらず放射性のMGDGは検出されなかった
が、1b-2では、上記の第1表に示した脂質画分への取り
込みと軌を一つにして、MGDGの位置に明らかな放射
能によるバンドが検出され、しかもIPTGによる誘導
が有った。以上のことから、この遺伝子がMGDG合成
酵素遺伝子をコードしていることが明らかになった。
Next, it was examined by TLC whether the lipid produced by the incorporation of galactose in the transformed Escherichia coli was MGDG. First, a crushed product of Escherichia coli induced by IPTG was prepared as described above, and 50 μM of UDP- [ 14 C] galactose (493 Bq n
mol-1) was added. The reason is that with 3 H-labeled galactose, it is difficult to detect the reaction product after fractionation by TLC described below with an image analyzer (BAS2000, manufactured by Fujifilm Corporation). After performing the reaction at 30 ° C. for 10 minutes, the reaction was stopped by adding 1 ml of ethyl acetate in the same manner as described above, and after washing twice with 0 and 45% NaCl, 500 μl of the obtained ethyl acetate layer was removed. Dried and again 10
It was dissolved in 0 μl of a chloroform: methanol (1: 1) mixed solution, and the whole amount was subjected to TLC to fractionate with a developing solvent 1 (chloroform: methanol: water = 65: 15: 2, V / V). At this time, as a lipid control, spinach leaf extract was simultaneously developed, and glycolipids were colored by spraying an anthrone reagent to compare the mobilities. The result is shown in FIG. In FIG. 5, lane 1 is a lipid extracted from spinach leaves, and lanes 2 to 5 are lipids synthesized by an E. coli extract. Lanes 2 and 3
GEX-3X and lanes 4 and 5 were derived from 1b-2. Among them, lanes 2 and 4 used extracts from cells before induction of IPTG, and lanes 3 and 5 used extracts from cells after induction. Lane 6 shows a product obtained by a reaction using an enzyme purified from cucumber cotyledons. As shown in FIG. 5, radioactive MGDG was not detected in GEX-3X regardless of the presence or absence of induction by IPTG, but in 1b-2, incorporation into the lipid fractions and the As a result, a band due to apparent radioactivity was detected at the position of MGDG, and there was induction by IPTG. From the above, it became clear that this gene encodes the MGDG synthase gene.

【0036】〔実施例5〕 MGDG合成酵素遺伝子(p
BSUDGT1)を発現している大腸菌の脂質組成 上記の活性測定に使用した大腸菌株GEX-3X及び1b-2を用
いて、脂質組成を調べた。脂質はBlighとDyerの方法(Ca
n. J. Biochem. Physiol., 37: 911, 1959)によって、
IPTGによる誘導をかけた菌体から抽出し、MGDG
の場合は展開溶媒1で、リン脂質の場合は展開溶媒2
(クロロホルム:メタノール:酢酸=65:20:1
0、V/V)で分離した。Phosphatidylglycerol(PG),
cardiolipin(CL), Phosphatidylethanolamine(PE)はDit
tmer試薬(J. Lipid Res., 5: 126, 1964)と反応さ
せ、また、MGDGはアンスロン試薬と反応させて、そ
れぞれの標準脂質と比較して検出した。なお、脂質の定
量に当たっては、リン脂質は、Fiske-Subbarowの方法
(J. Biol. Chem., 66:375, 1925)でガラクト脂質はga
lactoseを標準品としてRadinらの方法(J. Biol. Che
m., 217: 789, 1955)を用いた。
Example 5 MGDG synthase gene (p
Lipid Composition of Escherichia coli Expressing BSUDGT1) Lipid composition was examined using Escherichia coli strains GEX-3X and 1b-2 used for the above activity measurement. Lipids are prepared by the method of Bligh and Dyer (Ca
n. J. Biochem. Physiol., 37: 911, 1959).
Extracted from the cells induced by IPTG, MGDG
Is developing solvent 1 and phospholipid is developing solvent 2
(Chloroform: methanol: acetic acid = 65: 20: 1
0, V / V). Phosphatidylglycerol (PG),
cardiolipin (CL), Phosphatidylethanolamine (PE) is Dit
Reacted with tmer reagent (J. Lipid Res., 5: 126, 1964), and MGDG was reacted with anthrone reagent and detected by comparison with each standard lipid. In the determination of lipids, phospholipids were determined by the method of Fiske-Subbarow (J. Biol. Chem., 66: 375, 1925).
Using lactose as a standard, the method of Radin et al. (J. Biol. Che
m., 217: 789, 1955).

【0037】[0037]

【表2】 [Table 2]

【0038】脂質組成の分析結果から、本来大腸菌には
存在しないMGDGが、驚くべきことに17%以上も生
成していることが判明した。また、相対的に他の脂質も
全般に減少した。
From the result of analyzing the lipid composition, it was found that MGDG, which is not originally present in Escherichia coli, surprisingly produced 17% or more. Also, other lipids generally decreased relatively.

【0039】[0039]

【発明の効果】本発明のMGDG合成酵素をコードする
遺伝子は、形質転換による動物、植物、微生物の脂質組
成の改良、特にMGDGの量の制御に有用である。
The gene encoding the MGDG synthase of the present invention is useful for improving the lipid composition of animals, plants, and microorganisms by transformation, particularly for controlling the amount of MGDG.

【0040】[0040]

【配列表】[Sequence list]

配列番号1: 配列の長さ:30 配列の型:核酸(DNA) トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: TGYTAYTGYC CIWSIACIGA RGTIGCIAAR SEQ ID NO: 1 Sequence length: 30 Sequence type: Nucleic acid (DNA) Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Sequence: TGYTAYTGYC CIWSIACIGA RGTIGCIAAR

【0041】配列番号2: 配列の長さ:1266 配列の型:核酸(DNA) 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起源: 生物名:キュウリ (Cucumis sativus) 株名:青長地這 配列: GGT GTT TCA GAT GAA ACC AAT GGG ATT AGA GAC GAT GGA TTT GGT GTT TCG CAA GAT GGG GCA CTG CCA TTG AAT AAA ATC GAG GCT GAG AAC CCC AAA CGG GTT CTT ATT TTA ATG AGT GAC ACT GGT GGA GGT CAT CGG GCT TCT GCT GAG GCA ATC AAG GCA GCC TTT AAT GAA GAA TTT GGG AAC AAT TAT CAG GTG TTT ATA ACT GAT TTG TGG ACG GAC CAC ACT CCT TGG CCT TTC AAT CAA TTA CCA AGA AGC TAC AAC TTC TTG GTG AAA CAT GGC ACA TTG TGG AAG ATG ACT TAC TAT GTG ACT GCT CCA AAA GTG ATT CAT CAG TCA AAT TTT GCT GCA ACT TCA ACA TTC ATA GCT CGA GAA GTA GCA AAA GGA CTG ATG AAA TAT AGG CCA GAT ATT ATT ATC AGT GTT CAT CCT CTG ATG CAG CAT GTT CCC ATT CGT ATT TTG AGG TCG AAG GGC CTC TTG AAT AAG ATT GTT TTC ACC ACA GTA GTC ACA GAT TTG AGC ACC TGC CAC CCA ACA TGG TTT CAC AAG CTT GTT ACA AGA TGC TAC TGC CCA TCT ACG GAG GTA GCA AAG AGG GCT TTG AAA GCT GGA CTC CAG CCT TCC AAA CTA AAG GTT TTT GGC CTT CCT GTG CGG CCT TCC TTT GTT AAG CCT ATT CGT CCG AAG ATT GAG TTA AGA AAA GAA TTG GGC ATG GAT GAA AAT CTT CCT GCC GTG TTG CTT ATG GGA GGG GGG GAA GGC ATG GGT CCC ATT GAG GCT ACT GCA AAG GCG CTA AGT AAG GCA TTG TAT GAT GAA AAT CAT GGA GAG CCA ATA GGC CAA GTT CTT GTG ATC TGT GGC CAC AAC AAA AAA CTA GCT GGC AGG TTG CGT TCA ATT GAT TGG AAG GTT CCT GTC CAG GTG AAG GGG TTT GTC ACA AAA ATG GAG GAA TGC ATG GGA GCT TGT GAT TGC ATT ATA ACA AAG GCG GGC CCT GGA ACG ATT GCT GAA GCC ATG ATA AGA GGT CTT CCT ATA ATT CTG AAT GAC TAC ATT GCT GGA CAG GAA GCT GGA AAT GTG CCA TAT GTC GTC GAA AAC GGA TGT GGG AAG TTT TCA AAA TCT CCT AAA GAG ATA GCG AAC ATT GTA GCA AAA TGG TTT GGG CCA AAA GCA GAT GAG TTG CTG ATC ATG TCA CAG AAT GCC TTG AGG CTT GCT AGA CCT GAT GCT GTA TTT AAG ATT GTT CAT GAT CTC CAT GAG CTT GTT AAA CAA AGA AGT TTT GTA CCA CAA TAT TCC GGC SEQ ID NO: 2 Sequence length: 1266 Sequence type: nucleic acid (DNA) Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA Origin: Organism: Cucumis sativus Stock name: Aochi Chiku sequence: GGT GTT TCA GAT GAA ACC AAT GGG ATT AGA GAC GAT GGA TTT GGT GTT TCG CAA GAT GGG GCA CTG CCA TTG AAT AAA ATC GAG GCT GAG AAC CCC AAA CGG GTT CTT ATT TTA ATG AGT GAC ACT GGT GGA GGT CAT CGG GCT TCT GCT GAG GCA ATC AAG GCA GCC TTT AAT GAA GAA TTT GGG AAC AAT TAT CAG GTG TTT ATA ACT GAT TTG TGG ACG GAC CAC ACT CCT TGG CCT TTC AAT CAA TTA CCA AGA TGC TAC ATC GTG AAA CAT GGC ACA TTG TGG AAG ATG ACT TAC TAT GTG ACT GCT CCA AAA GTG ATT CAT CAG TCA AAT TTT GCT GCA ACT TCA ACA TTC ATA GCT CGA GAA GTA GCA AAA GGA CTG ATG AAA TAT AGG CCA GAT ATT ATT ATC AGT GTT CAT CCT CTG ATG CAG CAT GTT CCC ATT CGT ATT TTG AGG TCG AAG GGC CTC TTG AAT AAG ATT GTT TTC ACC ACA GTA GTC ACA GAT TTG AGC ACC TGC CAC CCA ACA T GG TTT CAC AAG CTT GTT ACA AGA TGC TAC TGC CCA TCT ACG GAG GTA GCA AAG AGG GCT TTG AAA GCT GGA CTC CAG CCT TCC AAA CTA AAG GTT TTT GGC CTT CCT GTG CGG CCT TCC TTT GTT AAG CCT ATT CGT CCG AAG ATT GAG TTA AGA AAA GAA TTG GGC ATG GAT GAA AAT CTT CCT GCC GTG TTG CTT ATG GGA GGG GGG GAA GGC ATG GGT CCC ATT GAG GCT ACT GCA AAG GCG CTA AGT AAG GCA TTG TAT GAT GAA AAT CAT GGA GAG CCA ATA GGC CATT GTG ATC TGT GGC CAC AAC AAA AAA CTA GCT GGC AGG TTG CGT TCA ATT GAT TGG AAG GTT CCT GTC CAG GTG AAG GGG TTT GTC ACA AAA ATG GAG GAA TGC ATG GGA GCT TGT GAT TGC ATT ATA ACA AAG AGG GCG GGC CCT GGA ACGATT GCT GAA GCC ATG ATA AGA GGT CTT CCT ATA ATT CTG AAT GAC TAC ATT GCT GGA CAG GAA GCT GGA AAT GTG CCA TAT GTC GTC GAA AAC GGA TGT GGG AAG TTT TCA AAA TCT CCT AAA GAG ATA GCG AAC ATT GTA GCA AAA TGG GGG CCA AAA GCA GAT GAG TTG CTG ATC ATG TCA CAG AAT GCC TTG AGG CTT GCT AGA CCT GAT GCT GTA TTT AAG ATT GTT CAT GAT CTC CAT GAG CTT GTT AAA CAA AGA AGT TTT GTA CCA CAA TAT TCC GGC

【0042】配列番号:3 配列の長さ:422 配列の型:タンパク質 トポロジー:直鎖状 配列の種類:ペプチド 起源: 生物名:ホウレンソウ (Cucumis sativus) 株名:青長地這 配列の特徴: 特徴を現す記号:CDS 存在位置:130..1395 特徴を決定した方法:P 配列: Gly Val Ser Asp Glu Thr Asn Gly Ile Arg Asp Asp Gly Phe Gly Val 16 Ser Gln Asp Gly Ala Leu Pro Leu Asn Lys Ile Glu Ala Glu Asn Pro 32 Lys Arg Val Leu Ile Leu Met Ser Asp Thr Gly Gly Gly His Arg Ala 48 Ser Ala Glu Ala Ile Lys Ala Ala Phe Asn Glu Glu Phe Gly Asn Asn 64 Tyr Gln Val Phe Ile Thr Asp Leu Trp Thr Asp His Thr Pro Trp Pro 80 Phe Asn Gln Leu Pro Arg Ser Tyr Asn Phe Leu Val Lys His Gly Thr 96 Leu Trp Lys Met Thr Tyr Tyr Val Thr Ala Pro Lys Val Ile His Gln 112 Ser Asn Phe Ala Ala Thr Ser Thr Phe Ile Ala Arg Glu Val Ala Lys 128 Gly Leu Met Lys Tyr Arg Pro Asp Ile Ile Ile Ser Val His Pro Leu 144 Met Gln His Val Pro Ile Arg Ile Leu Arg Ser Lys Gly Leu Leu Asn 160 Lys Ile Val Phe Thr Thr Val Val Thr Asp Leu Ser Thr Cys His Pro 176 Thr Trp Phe His Lys Leu Val Thr Arg Cys Tyr Cys Pro Ser Thr Glu 192 Val Ala Lys Arg Ala Leu Lys Ala Gly Leu Gln Pro Ser Lys Leu Lys 208 Val Phe Gly Leu Pro Val Arg Pro Ser Phe Val Lys Pro Ile Arg Pro 224 Lys Ile Glu Leu Arg Lys Glu Leu Gly Met Asp Glu Asn Leu Pro Ala 240 Val Leu Leu Met Gly Gly Gly Glu Gly Met Gly Pro Ile Glu Ala Thr 256 Ala Lys Ala Leu Ser Lys Ala Leu Tyr Asp Glu Asn His Gly Glu Pro 272 Ile Gly Gln Val Leu Val Ile Cys Gly His Asn Lys Lys Leu Ala Gly 288 Arg Leu Arg Ser Ile Asp Trp Lys Val Pro Val Gln Val Lys Gly Phe 304 Val Thr Lys Met Glu Glu Cys Met Gly Ala Cys Asp Cys Ile Ile Thr 320 Lys Ala Gly Pro Gly Thr Ile Ala Glu Ala Met Ile Arg Gly Leu Pro 336 Ile Ile Leu Asn Asp Tyr Ile Ala Gly Gln Glu Ala Gly Asn Val Pro 352 Tyr Val Val Glu Asn Gly Cys Gly Lys Phe Ser Lys Ser Pro Lys Glu 368 Ile Ala Asn Ile Val Ala Lys Trp Phe Gly Pro Lys Ala Asp Glu Leu 384 Leu Ile Met Ser Gln Asn Ala Leu Arg Leu Ala Arg Pro Asp Ala Val 400 Phe Lys Ile Val His Asp Leu His Glu Leu Val Lys Gln Arg Ser Phe 416 Val Pro Gln Tyr Ser Gly 422 SEQ ID NO: 3 Sequence length: 422 Sequence type: Protein Topology: Linear Sequence type: Peptide Origin: Organism: Spinach (Cucumis sativus) Strain: Blue Nagachizoku Sequence features: Features Symbol indicating: CDS Location: 130.1395 Method for determining characteristics: P sequence: Gly Val Ser Asp Glu Thr Asn Gly Ile Arg Asp Asp Gly Phe Gly Val 16 Ser Gln Asp Gly Ala Leu Pro Leu Asn Lys Ile Glu Ala Glu Asn Pro 32 Lys Arg Val Leu Ile Leu Met Ser Asp Thr Gly Gly Gly His Arg Ala 48 Ser Ala Glu Ala Ile Lys Ala Ala Phe Asn Glu Glu Phe Gly Asn Asn 64 Tyr Gln Val Phe Ile Thr Asp Leu Trp Thr Asp His Thr Pro Trp Pro 80 Phe Asn Gln Leu Pro Arg Ser Tyr Asn Phe Leu Val Lys His Gly Thr 96 Leu Trp Lys Met Thr Tyr Tyr Val Thr Ala Pro Lys Val Ile His Gln 112 Ser Asn Phe Ala Ala Thr Ser Thr Phe Ile Ala Arg Glu Val Ala Lys 128 Gly Leu Met Lys Tyr Arg Pro Asp Ile Ile Ile Ser Val His Pro Leu 144 Met Gln His Val Pro Ile Arg Ile Leu Arg Se r Lys Gly Leu Leu Asn 160 Lys Ile Val Phe Thr Thr Val Val Thr Asp Leu Ser Thr Cys His Pro 176 Thr Trp Phe His Lys Leu Val Thr Arg Cys Tyr Cys Pro Ser Thr Glu 192 Val Ala Lys Arg Ala Leu Lys Ala Gly Leu Gln Pro Ser Lys Leu Lys 208 Val Phe Gly Leu Pro Val Arg Pro Ser Phe Val Lys Pro Ile Arg Pro 224 Lys Ile Glu Leu Arg Lys Glu Leu Gly Met Asp Glu Asn Leu Pro Ala 240 Val Leu Leu Met Gly Gly Gly Glu Gly Met Gly Pro Ile Glu Ala Thr 256 Ala Lys Ala Leu Ser Lys Ala Leu Tyr Asp Glu Asn His Gly Glu Pro 272 Ile Gly Gln Val Leu Val Ile Cys Gly His Asn Lys Lys Leu Ala Gly 288 Arg Leu Arg Ser Ile Asp Trp Lys Val Pro Val Gln Val Lys Gly Phe 304 Val Thr Lys Met Glu Glu Cys Met Gly Ala Cys Asp Cys Ile Ile Thr 320 Lys Ala Gly Pro Gly Thr Ile Ala Glu Ala Met Ile Arg Gly Leu Pro 336 Ile Ile Leu Asn Asp Tyr Ile Ala Gly Gln Glu Ala Gly Asn Val Pro 352 Tyr Val Val Glu Asn Gly Cys Gly Lys Phe Ser Lys Ser Pro Lys Glu 368 Ile Ala Asn Ile Val Ala Lys Trp Phe Gly Pro Lys Ala Asp Glu Leu 384 Leu Ile Met Ser Gln As n Ala Leu Arg Leu Ala Arg Pro Asp Ala Val 400 Phe Lys Ile Val His Asp Leu His Glu Leu Val Lys Gln Arg Ser Phe 416 Val Pro Gln Tyr Ser Gly 422

【0043】配列番号4: 配列の長さ:32 配列の型:核酸(DNA) トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: GGGGATCCCTGGTGTTTCAGATGAAACCAATGSEQ ID NO: 4: Sequence length: 32 Sequence type: Nucleic acid (DNA) Topology: Linear Sequence type: Other nucleic acids Synthetic DNA Sequence: GGGGATCCCTGGTGTTTCAGATGAAACCAATG

【0044】配列番号5: 配列の長さ:33 配列の型:核酸(DNA) トポロジー:直鎖状 配列の種類:他の核酸 合成DNA 配列: CCGAATTCCCGCCGGAATATTGTGGTACAAAACSEQ ID NO: 5 Sequence length: 33 Sequence type: nucleic acid (DNA) Topology: linear Sequence type: other nucleic acids Synthetic DNA sequence: CCGAATTCCCGCCGGAATATTGTGGTACAAAAC

【図面の簡単な説明】[Brief description of the drawings]

【図1】キュウリのMGDG合成酵素遺伝子の塩基配列
及びそれに対応するアミノ酸配列を示す(図2に続
く)。
FIG. 1 shows the nucleotide sequence of the cucumber MGDG synthase gene and the corresponding amino acid sequence (following FIG. 2).

【図2】キュウリのMGDG合成酵素遺伝子の塩基配列
及びそれに対応するアミノ酸配列を示す(図3に続
く)。
FIG. 2 shows the nucleotide sequence of the MGDG synthase gene of cucumber and its corresponding amino acid sequence (continued from FIG. 3).

【図3】キュウリのMGDG合成酵素遺伝子の塩基配列
及びそれに対応するアミノ酸配列を示す。
FIG. 3 shows the nucleotide sequence of the MGDG synthase gene of cucumber and the corresponding amino acid sequence.

【図4】MGDG合成酵素遺伝子を大腸菌で発現させる
プラスミドの作成の仕方を示す概略図である。
FIG. 4 is a schematic diagram showing how to prepare a plasmid for expressing the MGDG synthase gene in Escherichia coli.

【図5】MGDG合成酵素を発現している大腸菌抽出物
での脂質合成産物のクロマトグラムを示す写真である。
FIG. 5 is a photograph showing a chromatogram of a lipid synthesis product in an Escherichia coli extract expressing MGDG synthase.

【図6】MGDG合成酵素と枯草菌、大腸菌のMurG
遺伝子とのアミノ酸配列の相同性を示す図である。
FIG. 6: MGDG synthase and Bacillus subtilis, E. coli MurG
FIG. 2 is a view showing the homology of amino acid sequences to genes.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年7月10日[Submission date] July 10, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図5[Correction target item name] Fig. 5

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図5】 FIG. 5

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12N 9/10 C12N 9/10 //(C12N 1/21 C12R 1:19) (C12N 9/10 C12R 1:19) (72)発明者 高宮 建一郎 神奈川県横浜市緑区長津田4259 東京工業 大学 生命理工学部内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location C12N 9/10 C12N 9/10 // (C12N 1/21 C12R 1:19) (C12N 9/10 (C12R 1:19) (72) Inventor Kenichiro Takamiya 4259 Nagatsuda, Midori-ku, Yokohama-shi, Kanagawa Prefecture Tokyo Institute of Technology Life Science and Engineering

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 配列番号3で表されるアミノ酸配列、又
は配列番号3で表されるアミノ酸配列と実質的に同一な
アミノ酸配列を有するモノガラクトシルジアシルグリセ
ロール合成酵素。
1. A monogalactosyldiacylglycerol synthase having an amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3.
【請求項2】 請求項1記載のモノガラクトシルジアシ
ルグリセロール合成酵素と別のタンパク質とからなる融
合タンパク質。
2. A fusion protein comprising the monogalactosyldiacylglycerol synthase according to claim 1 and another protein.
【請求項3】 配列番号3で表されるアミノ酸配列、又
は配列番号3で表されるアミノ酸配列と実質的に同一な
アミノ酸配列をコードするモノガラクトシルジアシルグ
リセロール合成酵素遺伝子。
3. A monogalactosyldiacylglycerol synthase gene encoding an amino acid sequence represented by SEQ ID NO: 3 or an amino acid sequence substantially identical to the amino acid sequence represented by SEQ ID NO: 3.
【請求項4】 請求項3記載のモノガラクトシルジアシ
ルグリセロール合成酵素遺伝子を含む組換えベクター。
4. A recombinant vector containing the monogalactosyldiacylglycerol synthase gene according to claim 3.
【請求項5】 請求項3記載のモノガラクトシルジアシ
ルグリセロール合成酵素遺伝子が導入された細胞。
5. A cell into which the monogalactosyldiacylglycerol synthase gene according to claim 3 has been introduced.
JP8172337A 1996-07-02 1996-07-02 Monogalactosyl diacylglycerol synthase and gene coding the same Pending JPH1014579A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8172337A JPH1014579A (en) 1996-07-02 1996-07-02 Monogalactosyl diacylglycerol synthase and gene coding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8172337A JPH1014579A (en) 1996-07-02 1996-07-02 Monogalactosyl diacylglycerol synthase and gene coding the same

Publications (1)

Publication Number Publication Date
JPH1014579A true JPH1014579A (en) 1998-01-20

Family

ID=15940041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8172337A Pending JPH1014579A (en) 1996-07-02 1996-07-02 Monogalactosyl diacylglycerol synthase and gene coding the same

Country Status (1)

Country Link
JP (1) JPH1014579A (en)

Similar Documents

Publication Publication Date Title
Ishiguro et al. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato
Bower et al. Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase.
Nersissian et al. Uclacyanins, stellacyanins, and plantacyanins are distinct subfamilies of phytocyanins: Plant‐specific mononuclear blue copper proteins
Ueki et al. Purification and characterization of phospholipase D (PLD) from rice (Oryza sativa L.) and cloning of cDNA for PLD from rice and maize (Zea mays L.)
Fujioka et al. A new isoform of human myosin phosphatase targeting/regulatory subunit (MYPT2): cDNA cloning, tissue expression, and chromosomal mapping
Reverdatto et al. A multisubunit acetyl coenzyme A carboxylase from soybean
KR100316347B1 (en) Recombinant microorganisms expressing a fusion protein of Escherichia coli enterotoxin II signal peptide and fusion protein of human growth hormone and a method of producing human growth hormone using the same
EP1183346B1 (en) Method for generating split, non-transferable genes that are able to express an active protein product
IL180694A (en) Detoxifizyme having activity of transforming aflatoxin and the gene encodes thereof
JPH05507199A (en) plant thioesterase
CZ264496A3 (en) Increase of polypeptide secretion
Bonk et al. Purification and characterization of chaperonin 60 and heat-shock protein 70 from chromoplasts of Narcissus pseudonarcissus (Involvement of heat-shock protein 70 in a soluble protein complex containing phytoene desaturase)
Engel et al. Murein-metabolizing enzymes from Escherichia coli: existence of a second lytic transglycosylase
Hum et al. Expression of active domains of a human folate-dependent trifunctional enzyme in Escherichia coli
JP3120684B2 (en) Mutant farnesyl diphosphate synthase that synthesizes geranylgeranyl diphosphate and DNA encoding the same
US5633433A (en) Rubber particle protein gene from guayule
León et al. High-level production of recombinant sulfide-reactive hemoglobin I from Lucina pectinata in Escherichia coli: High yields of fully functional holoprotein synthesis in the BLi5 E. coli strain
MAKSEL et al. Cloning and expression of diadenosine 5′, 5‴-P1, P4-tetraphosphate hydrolase from Lupinus angustifolius L
Wang et al. High-level expression of soluble rat hsc70 in Escherichia coli: purification and characterization of the cloned enzyme
AU690604B2 (en) Plant arabinogalactan protein (AGP) genes
CA2478014A1 (en) Protein or polypeptide having lachrymator synthase activity, dna encoding the protein or the polypeptide, process for producing protein or polypeptide having lachrymator synthase activity using the dna, and nucleic acid molecule inhibiting the translation of mrna concerning the protein or the peptide
EP0675202A1 (en) The rubber particle protein gene from guayule
Luo et al. Magnesium chelatase subunit D from pea: characterization of the cDNA, heterologous expression of an enzymatically active protein and immunoassay of the native protein
CN100419077C (en) DNA strand encoding glycerol-3-phosphate acyltransferase
JPH1014579A (en) Monogalactosyl diacylglycerol synthase and gene coding the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122