JPH10144260A - Ultra-high-pressure mercury lamp - Google Patents
Ultra-high-pressure mercury lampInfo
- Publication number
- JPH10144260A JPH10144260A JP29377796A JP29377796A JPH10144260A JP H10144260 A JPH10144260 A JP H10144260A JP 29377796 A JP29377796 A JP 29377796A JP 29377796 A JP29377796 A JP 29377796A JP H10144260 A JPH10144260 A JP H10144260A
- Authority
- JP
- Japan
- Prior art keywords
- mercury
- tube
- glass tube
- mercury lamp
- ultra
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Vessels And Coating Films For Discharge Lamps (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は超高圧水銀灯に係わ
り、特に水銀の蒸気圧を制御可能に成した超高圧水銀灯
の改良に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultra-high pressure mercury lamp, and more particularly to an improvement of an ultra-high pressure mercury lamp capable of controlling the vapor pressure of mercury.
【0002】[0002]
【従来の技術】従来から超高圧水銀灯は水銀蒸気圧10
気圧以上(実際には30〜200気圧)の圧力で動作す
る水銀灯を一般の高圧水銀灯灯と区別して呼んでいる。
この様な超気圧水銀灯は電極問距離が0.2mm〜数1
0mmで平均輝度は数千〜数万cd/cm2 (スチル
ブ)程度の高輝度が得られ、フォトエッチング或は露光
用に広く用いられている。2. Description of the Related Art Conventionally, an ultra-high pressure mercury lamp has a mercury vapor pressure of 10 mm.
A mercury lamp that operates at a pressure higher than the atmospheric pressure (actually, 30 to 200 atm) is referred to as a general high-pressure mercury lamp.
Such a super-pressure mercury lamp has a distance between the electrodes of 0.2 mm to several tens.
At 0 mm, a high luminance of several thousand to several tens of thousands of cd / cm 2 (stilb) can be obtained, and is widely used for photoetching or exposure.
【0003】図5は陰極線管のフェースパネル内面に塗
布した蛍光面の露光等に用いられる直管型の超高圧水銀
灯を示すもので、直径数mmの石英製放電用チューブ内
に一定量の水銀と始動用希ガスを封入したものである。FIG. 5 shows a straight tube type ultra-high pressure mercury lamp used for exposing a fluorescent screen applied to the inner surface of a face panel of a cathode ray tube. A certain amount of mercury is placed in a quartz discharge tube having a diameter of several mm. And a rare gas for starting.
【0004】以下図5乃至図8によって従来の超高圧水
銀灯及び陰極線管パネル蛍光面露光用ランプハウジング
を説明する。A conventional ultra-high pressure mercury lamp and a conventional lamp housing for exposing a phosphor screen on a cathode ray tube panel will be described with reference to FIGS.
【0005】図5は超高圧水銀灯の外観図、図6は図5
のA−A′線に沿う断面図、図7はランプハウジングの
平面図、図8はランプハウジングの側断面図を示すもの
である。FIG. 5 is an external view of an ultra-high pressure mercury lamp, and FIG.
7 is a plan view of the lamp housing, and FIG. 8 is a side sectional view of the lamp housing.
【0006】図5及び図6によって超高圧水銀灯1を詳
記する。2は外径4φ,内径1.2φの石英硝子より成
るガラスチューブであり、このガラスチューブ2内に1
φ程度のタングステン棒より成る陰極放電電極3及び陽
極放電電極4が封止され、ガラスチューブ2の内径内で
数mm乃至数十mmのアーク長を介してタングステン棒
の先端が対向配置されている。又、この陰極及び陽極放
電電極3及び4の長手方向に沿って内径内に水銀5及び
5が封止されると共にアルゴン或はクセノン等の放電始
動ガスが封止されている。The ultra-high pressure mercury lamp 1 will be described in detail with reference to FIGS. Reference numeral 2 denotes a glass tube made of quartz glass having an outer diameter of 4φ and an inner diameter of 1.2φ.
The cathode discharge electrode 3 and the anode discharge electrode 4 each formed of a tungsten rod having a diameter of about φ are sealed, and the tips of the tungsten rods are opposed to each other via an arc length of several mm to several tens mm within the inner diameter of the glass tube 2. . Mercury 5 and 5 are sealed in the inner diameter along the longitudinal direction of the cathode and anode discharge electrodes 3 and 4, and a discharge starting gas such as argon or xenon is sealed.
【0007】陰極放電電極3の一端はガラスチューブ2
の一端より突出され、金属の丸棒等で構成された陰極端
子6に電気的に接続され、ガラスチューブ2の端面とは
接着剤等を介して接合されている。この陰極端子6は接
地電位に接続されている。[0007] One end of the cathode discharge electrode 3 is a glass tube 2
And is electrically connected to a cathode terminal 6 formed of a metal round bar or the like, and is joined to the end face of the glass tube 2 via an adhesive or the like. This cathode terminal 6 is connected to the ground potential.
【0008】陽極放電電極4の一端はガラスチューブ2
の端面より突出され、ガラスチューブ2の外径は図6の
断面図に示されている様にホルダ7の内径に挿通され、
エポキシ系の接着剤8を介してホルダ7に固着される。
ホルダ7の他端には金属性のブッシュ9が挿通され、陽
極端子と成され、商用電源或は高周波電源に接続される
様に成されている。[0008] One end of the anode discharge electrode 4 is a glass tube 2
, The outer diameter of the glass tube 2 is inserted through the inner diameter of the holder 7 as shown in the sectional view of FIG.
It is fixed to the holder 7 via an epoxy-based adhesive 8.
A metal bush 9 is inserted into the other end of the holder 7 to form an anode terminal, which is connected to a commercial power supply or a high-frequency power supply.
【0009】ホルダー7は図6に示す様にステアタイト
等の段部7aを形成したセラミックス管を焼結したもの
で、ガラスチューブ2の陽極放電電極4側をホルダー7
の内径内に図8の様にOリング10を介して気密にシリ
コン系の接着剤10aや接着剤8で接合する。The holder 7 is formed by sintering a ceramic tube having a stepped portion 7a of steatite or the like as shown in FIG.
As shown in FIG. 8, an air-tight bonding is performed with a silicon-based adhesive 10a or an adhesive 8 via an O-ring 10 as shown in FIG.
【0010】ガラスチューブ2の端面から突出した陽極
放電電極4即ち、タングステン棒のチップは例えば、所
定長さの0.1mmt×1.5mmWのニッケルリボン
から成るリード線11を上下に挟着させ、コイルスプリ
ング12を重ね合わせ部に巻回して半田付が成され、陽
極放電電極4とリード線11は接合される。The anode discharge electrode 4 protruding from the end face of the glass tube 2, that is, the tip of a tungsten rod, for example, vertically sandwiches a lead wire 11 of a predetermined length of 0.1 mmt × 1.5 mmW nickel ribbon, The coil spring 12 is wound around the overlapped portion to perform soldering, and the anode discharge electrode 4 and the lead wire 11 are joined.
【0011】この様な接合部及びガラスチューブ2の端
部並びにリード線11にシリコンチューブ13が被せら
れ、ホルダ7の内径部には接着剤8が充填されて固定さ
れる。ホルダ7に嵌挿させたブッシュ(陽極端子)9は
円筒状と成され、リード線11の他端はブッシュ9の端
部に半田14で固定されている。A silicon tube 13 is put on such a joint, the end of the glass tube 2 and the lead wire 11, and the inner diameter of the holder 7 is filled with an adhesive 8 and fixed. A bush (anode terminal) 9 fitted in the holder 7 is formed in a cylindrical shape, and the other end of the lead wire 11 is fixed to an end of the bush 9 with solder 14.
【0012】図7及び図8は上述の様に構成した超高圧
水銀灯1をランプハウジング15に挿通したもので、陰
極線管のフェースパネル内面に塗布したR(赤),G
(緑),B(青)等の蛍光膜を露光するための露光台の
下面に配設される。FIGS. 7 and 8 show the ultrahigh-pressure mercury lamp 1 constructed as described above inserted through the lamp housing 15, and R (red) and G applied to the inner surface of the face panel of the cathode ray tube.
It is disposed on the lower surface of an exposure table for exposing a fluorescent film such as (green) and B (blue).
【0013】図7及び図8に於いて、ハウジング15は
金属より成る略々正方形状の紫外線放出部15aと円筒
状の超高圧水銀灯挿入部15bより構成されている。ハ
ウジング15の一部を構成する紫外線放出部15aの略
々中心位置には同心円状の座ぐり穴16が形成され、更
に略々矩形状の窓孔17が形成されている。この座くり
穴16には凸状のレンズ18がOリング19を介してレ
ンズ押え20で気密に装着される。Referring to FIGS. 7 and 8, a housing 15 includes a substantially square ultraviolet-ray emitting portion 15a made of metal and a cylindrical ultrahigh-pressure mercury lamp insertion portion 15b. A concentric counterbore hole 16 is formed at a substantially central position of the ultraviolet emitting portion 15a constituting a part of the housing 15, and a substantially rectangular window hole 17 is further formed. A convex lens 18 is hermetically attached to the counterbore 16 with a lens holder 20 via an O-ring 19.
【0014】ハウジング15の一部を構成する超高圧水
銀灯挿入部15bは座ぐり穴16の穿設方向と直行する
方向に図5及び図6で詳記した超高圧水銀灯1が挿通可
能なホルダ7の外径及びガラスチューブ2の外径よりや
や大きくされた直径を有する段付挿通孔21が穿たれて
いる。この段付挿通孔21の一端にはホルダ7の外周部
に形成した段部7aで超高圧水銀灯1の挿入が阻止され
る第1の座ぐり穴21aが形成され、他端には陰極端子
6を保持する陰極ホルダ22を嵌着可能な第2の座ぐり
穴21bが形成されている。An ultra-high pressure mercury lamp insertion portion 15b constituting a part of the housing 15 has a holder 7 through which the ultra-high pressure mercury lamp 1 described in detail in FIGS. 5 and 6 can be inserted in a direction perpendicular to the direction in which the counterbore 16 is formed. And a stepped insertion hole 21 having a diameter slightly larger than the outside diameter of the glass tube 2. At one end of the stepped insertion hole 21, a first counterbore 21 a for preventing insertion of the ultrahigh-pressure mercury lamp 1 is formed at a step 7 a formed at the outer peripheral portion of the holder 7, and at the other end, the cathode terminal 6 is formed. Is formed with a second counterbore 21b into which a cathode holder 22 for holding the hole can be fitted.
【0015】更に、ガラスチューブ2及びホルダ7を水
冷するために図7の紫外線放出部15aの手前の側壁面
から段付挿通孔21方向に向って2本の水路孔23を穿
って、これら2本の水路孔23の一方から水冷用の水を
注入し、他方の水路孔23より水を排出する様に成して
段付挿通孔21内に挿通した超高圧水銀灯1を水によっ
て冷却する。尚、24は接地端子を示す。Further, in order to water-cool the glass tube 2 and the holder 7, two water passage holes 23 are formed from the side wall surface in front of the ultraviolet emitting portion 15a in FIG. Water for water cooling is injected from one of the water passage holes 23, and water is discharged from the other water passage hole 23. The ultrahigh-pressure mercury lamp 1 inserted into the stepped insertion hole 21 is cooled by water. Incidentally, reference numeral 24 denotes a ground terminal.
【0016】超高圧水銀灯挿入部15bの端部の外径部
には雄螺子が形成され、この雄螺子と螺合する雌螺子が
形成された絶縁材から成るカップリング・リング30を
有する接栓26が接続可能と成されている。A male screw is formed at an outer diameter portion at the end of the ultrahigh-pressure mercury lamp insertion portion 15b, and a plug having a coupling ring 30 made of an insulating material formed with a female screw to be screwed with the male screw. 26 can be connected.
【0017】上述の接栓26を外した状態で、段付挿通
孔21内に超高圧水銀灯1を挿通すると、ガラスチュー
ブ2のアーク長部が窓孔17の下端に来る位置に段部7
aでストップされる。陰極端子6側は第2の座くり穴2
1b内に介在させたOリング27で有底円筒状の陰極ホ
ルダ22側に水漏れがない様に螺着される。陰極ホルダ
22の内径内には有底円筒状のスプリング受28が摺動
可能に配設され、スプリング受28内にはコイルスプリ
ング29が配設されて、陰極端子6の端面を一方向に所
定の偏倚力で押圧している。When the ultrahigh-pressure mercury lamp 1 is inserted into the stepped insertion hole 21 with the above-mentioned plug 26 removed, the stepped portion 7 is positioned at a position where the arc length of the glass tube 2 comes to the lower end of the window hole 17.
Stopped at a. The cathode terminal 6 side is the second counterbore 2
The O-ring 27 is screwed onto the bottomed cylindrical cathode holder 22 side without water leakage. A bottomed cylindrical spring receiver 28 is slidably disposed within the inner diameter of the cathode holder 22, and a coil spring 29 is disposed within the spring receiver 28 so that the end face of the cathode terminal 6 is fixed in one direction. Is pressed by the biasing force.
【0018】一方、接栓26はカップリング、リング3
0と螺合する絶縁体より成るアウタシェル31及びこの
アウタシェル31内に嵌挿されたインナシェル32並び
にカーボン等で構成され、このインナシェル32内にブ
ッシュ(陽極端子)9に線接触する様に漏斗状に座ぐら
れた高圧端子33が圧入され、この高圧端子33に接続
されたコード34を介して昇圧電源トランス等の2次側
に接続され、例えば、商用電源の50Hz〜60Hzの
周波数の交流の高電圧が供給され、超高圧水銀灯1は点
灯され紫外線を窓孔17を介して露光面に照射する様に
成されている。On the other hand, the plug 26 is a coupling, a ring 3
An outer shell 31 made of an insulator screwed to the outer shell 31 and an inner shell 32 inserted into the outer shell 31 and a carbon or the like, and a funnel is formed in the inner shell 32 so as to make line contact with the bush (anode terminal) 9. A high-voltage terminal 33 is press-fitted and connected to a secondary side of a step-up power transformer or the like via a cord 34 connected to the high-voltage terminal 33. Is supplied, and the ultra-high pressure mercury lamp 1 is turned on to irradiate the exposed surface with ultraviolet rays through the window hole 17.
【0019】[0019]
【発明が解決しようとする課題】上述の様な超高圧水銀
灯では通常点灯させる場合、周波数50〜60Hzの商
用電源を用いて点灯させるが、この様な商用電源による
正弦波点灯では超高圧水銀灯がプラズマ状態で放電して
いる半周期での時間T1 は立ち上がり時間T0 及び立ち
下がり時間T2 の和となるのが、この立ち上がり時間及
び立ち下がり時間T2 の総和Σ(T0 +T2 )はロス時
間と成り略々25%にも達する。In the above-mentioned ultra-high pressure mercury lamp, when it is normally lit, it is lit using a commercial power supply having a frequency of 50 to 60 Hz. The time T 1 in the half cycle of discharging in the plasma state is the sum of the rise time T 0 and the fall time T 2 , and the sum of the rise time and the fall time T 2 Σ (T 0 + T 2 ) Is a loss time, which is approximately 25%.
【0020】これに対し、10KHz〜30KHzの高
周波で駆動した場合の立ち上がり時間T0 ′及び立ち下
がり時間T2 ′の総和Σ(T0 ′+T2 ′)でのロス時
間は略々10%〜5%の効率改善を図ることが可能と成
る。On the other hand, the loss time in the sum of the rise time T 0 ′ and the fall time T 2 Σ (T 0 ′ + T 2 ′) when driven at a high frequency of 10 KHz to 30 KHz is approximately 10% to It is possible to improve the efficiency by 5%.
【0021】更に、陽極放電電極4と陰極放電電極3間
に商用交流電源或は10KHz〜30KHzの高周波電
源から昇圧電圧を供給する場合の水銀5の水銀溜りは図
5の拡大図に示す様に陽極及び陰極放電電極3及び4の
タングステン棒の放電チップ3a及び4aは水銀端面5
aより突出している。Further, when a boost voltage is supplied between the anode discharge electrode 4 and the cathode discharge electrode 3 from a commercial AC power supply or a high frequency power supply of 10 KHz to 30 KHz, the mercury pool of mercury 5 is as shown in the enlarged view of FIG. Discharge tips 3a and 4a of tungsten rods of anode and cathode discharge electrodes 3 and 4
a.
【0022】この様な超高圧水銀灯1では交流点灯する
ために陽陰極放電電極の放電チップ4a及び3aの内壁
が交流点灯するため両端部で汚れ、紫外線放射性能を劣
化させる問題があった。In such an ultra-high pressure mercury lamp 1, since the inner walls of the discharge tips 4a and 3a of the positive and negative discharge electrodes are AC-lit for AC lighting, there is a problem that both ends are stained and the ultraviolet radiation performance is deteriorated.
【0023】本発明は叙上の問題点を解消した超高圧水
銀灯を提供しようとするもので、発明が解決しようとす
る課題はガラスチューブ内壁の汚れもなく、水銀の蒸気
圧を制御して短波長帯域の紫外線を減衰させることなく
大量に放射して、蛍光面露光時の露光効果を高め得る超
高圧水銀灯を得ようとするものである。An object of the present invention is to provide an ultra-high pressure mercury lamp that solves the above-mentioned problems. The problem to be solved by the present invention is that the inner wall of the glass tube is not stained and the vapor pressure of mercury is controlled to shorten the mercury. It is an object of the present invention to obtain an ultra-high pressure mercury lamp capable of radiating a large amount of ultraviolet light in a wavelength band without attenuating the light to enhance an exposure effect at the time of exposing a phosphor screen.
【0024】[0024]
【課題を解決するための手段】本発明の超高圧水銀灯
は、その例が図1に示されている様に、ガラスチューブ
2内に対向して封止された陰極及び陽極放電電極3及び
4の陽極放電電極4のチップを覆う様に配設された陽極
側水銀5と、該陰極放電電極3のチップは陰極側水銀端
面5aより突出され、陽極及び陰極放電電極4及び3間
に直流パルスの昇圧電圧が供給されて成る超高圧水銀灯
に於いて、ガラスチューブ2の形状を変化させてガラス
チューブ2内の水銀5の蒸気圧を制御して成るものであ
る。As shown in FIG. 1, an ultra-high pressure mercury lamp according to the present invention has cathode and anode discharge electrodes 3 and 4 which are sealed in a glass tube 2 so as to face each other. The anode mercury 5 disposed so as to cover the tip of the anode discharge electrode 4 and the tip of the cathode discharge electrode 3 protrude from the cathode mercury end face 5a, and a DC pulse is applied between the anode and the cathode discharge electrodes 4 and 3. In the ultra-high pressure mercury lamp supplied with the boosted voltage, the vapor pressure of mercury 5 in the glass tube 2 is controlled by changing the shape of the glass tube 2.
【0025】本発明の超高圧水銀灯によれば陰極放電電
極3のチップ3aから放出した電子eは陽極放電電極4
を覆う水銀端面5bに吸収され、これら動作が連続的に
行なわれ放電がプラズマ状態と成り、所定のデューティ
を以った直流パルスで点灯駆動されるために、ガラスチ
ューブ2の内径壁に沿ったプラズマを生じて短波長側の
紫外線を多量に放出可能な超高圧水銀灯を得ることが出
来る。According to the ultrahigh pressure mercury lamp of the present invention, the electrons e emitted from the tip 3a of the cathode discharge electrode 3
Is absorbed by the mercury end face 5b covering the glass tube, these operations are continuously performed, and the discharge is turned into a plasma state, and the discharge is performed by a DC pulse having a predetermined duty. An ultra-high pressure mercury lamp capable of generating plasma and emitting a large amount of ultraviolet light on the short wavelength side can be obtained.
【0026】[0026]
【発明の実施の形態】以下、本発明の超高圧水銀灯の一
実施例を図1及び図2によって説明する。図1は本発明
の超高圧水銀灯の放電用チューブ部の模式図、図2は本
発明の超高圧水銀灯の一実施例を示す側断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the ultra-high pressure mercury lamp of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic view of a discharge tube portion of an ultra-high pressure mercury lamp of the present invention, and FIG. 2 is a side sectional view showing one embodiment of the ultra-high pressure mercury lamp of the present invention.
【0027】本発明に於ける超高圧水銀灯1に於いて、
従来構成の図5乃至図8で説明した超高圧水銀灯及びそ
のハウジングでの相違点のみを図1及び図2によって説
明する。In the ultrahigh pressure mercury lamp 1 according to the present invention,
Only the differences between the ultra-high pressure mercury lamp of the conventional configuration described in FIGS. 5 to 8 and its housing will be described with reference to FIGS.
【0028】図1及び図2は図5及び図6の従来構成で
説明した超高圧水銀灯1のガラスチューブ2内と同様の
側断面を示す模式図であり、石英製のガラスチューブ2
は例えば、外径が4mmφ、内径が1.2mmφ、長さ
は略々51mmである。陰極放電電極3及び陽極放電電
極4を構成するタンングステン棒は高周波点灯周波数1
0KHz以上で点灯する場合は0.6mmφ以上が必要
であり、超高圧水銀灯1で使用出来るタングステン棒の
最大径は1.0mmφまでであり、使用可能範囲は高周
波点灯する場合0.6mmφ乃至1.0mmφの範囲と
なる。FIGS. 1 and 2 are schematic views showing the same side cross section as the inside of the glass tube 2 of the extra-high pressure mercury lamp 1 described with reference to FIGS.
Has, for example, an outer diameter of 4 mmφ, an inner diameter of 1.2 mmφ, and a length of approximately 51 mm. The tungsten rod constituting the cathode discharge electrode 3 and the anode discharge electrode 4 has a high frequency lighting frequency of 1
In the case of lighting at 0 KHz or more, a diameter of 0.6 mmφ or more is required. The maximum diameter of a tungsten rod that can be used in the ultrahigh pressure mercury lamp 1 is up to 1.0 mmφ. The range is 0 mmφ.
【0029】これらタングステン棒からなる陰極及び陽
極放電電極3及び4の放電チップ3a及び4aはタング
ステン棒を切断した後にガラスチューブ2内への封止工
程で熱加工が施される為に角がとれる程度であるが、例
えば10KHzの高周波で点灯駆動する場合は商用電源
周波数に比べて、周波数が200倍以上有るために少く
とも、陰極放電電極3の放電チップ3aの先端形状は電
子放射を安定化させるために放物線状に形成するを可と
する。The discharge tips 3a and 4a of the cathode and anode discharge electrodes 3 and 4 made of these tungsten rods are rounded off because the tungsten rods are cut and then heat-treated in a sealing step in the glass tube 2. For example, in the case of driving at a high frequency of 10 KHz, since the frequency is 200 times or more as compared with the frequency of the commercial power supply, the shape of the tip of the discharge tip 3 a of the cathode discharge electrode 3 stabilizes electron emission. It can be formed in a parabolic shape.
【0030】陰極放電電極3及び陽極放電電極4はガラ
スチューブ2に封止される。夫々の放電チップ3a及び
4aは互に例えば15mm程度の放電ギャップを介して
対向配置され、夫々のタングステン棒はガラスチューブ
2の両端より外側に突出され、上述した陽極端子6及び
リード線11に接続される。The cathode discharge electrode 3 and the anode discharge electrode 4 are sealed in the glass tube 2. The respective discharge tips 3a and 4a are disposed to face each other with a discharge gap of, for example, about 15 mm, and each tungsten rod projects outward from both ends of the glass tube 2 and is connected to the anode terminal 6 and the lead wire 11 described above. Is done.
【0031】本発明の放電用のガラスチューブ2では陰
極側の陰極放電電極3は水銀5の水銀溜りの水銀端面5
aより、その放電チップ3aが突出する様にガラスチュ
ーブ2の内径が絞られ、陽極放電電極4の放電チップ4
aは水銀端面5bより内側に配設される様にガラスチュ
ーブ内径を絞って水銀5の水銀溜り部を形成する。尚、
40は水路孔23より供給されてチューブ壁を冷却する
水である。In the discharge glass tube 2 of the present invention, the cathode discharge electrode 3 on the cathode side is the mercury end face 5 of the mercury pool of mercury 5.
a, the inner diameter of the glass tube 2 is reduced so that the discharge tip 3a protrudes from the discharge tip 4a of the anode discharge electrode 4.
“a” forms a mercury reservoir for mercury 5 by narrowing the inner diameter of the glass tube so as to be disposed inside the mercury end face 5b. still,
Reference numeral 40 denotes water supplied from the channel hole 23 to cool the tube wall.
【0032】従って、本発明では陰極放電電極3と陽極
放電電極4に直流パルス源41からデューティが10K
Hz乃至30KHzの直流成分を供給することで、陰極
放電電極3の放電チップ3aから放出された電子eはア
ルゴンガス等の封入された放電ギャップを介して陽極放
電電極4側の水銀端面5bに吸収され、点弧放電がプラ
ズマ状と成される。Therefore, according to the present invention, the duty ratio of the DC pulse source 41 to the cathode discharge electrode 3 and the anode discharge electrode 4 is 10K.
By supplying a DC component of 30 Hz to 30 KHz, electrons e emitted from the discharge tip 3a of the cathode discharge electrode 3 are absorbed by the mercury end face 5b on the anode discharge electrode 4 side through a discharge gap filled with argon gas or the like. As a result, the ignition discharge is made into a plasma state.
【0033】この場合のプラズマ状と成された陽光柱は
パルス状の高周波を印加しているためガラスチューブ2
の内径壁に略一杯に拡がった器壁安定型のプラズマと成
る。In this case, the positive column formed into a plasma state is a glass tube 2 because a pulsed high frequency is applied.
The plasma becomes a wall-stabilized plasma which has spread almost completely on the inner diameter wall of the vessel.
【0034】一般に陰極線管の蛍光面或はブラックスト
ライプ等の露光に用いられる超高圧水銀灯では分光分布
の波長は決まっていて、露光に必要な波長は5000Å
以下であり、特に紫外線の帯域を必要とする。3650
Å以下の波長帯域の紫外線が多いと露光時に蛍光膜を焼
付ける時のエネルギーが小さいため他の部分まで影響を
与えることがないので解像度の良い蛍光面の露光が可能
となるので、超高圧水銀灯としては3650Å以下の波
長を多量に放出可能なものが要求される。In general, the wavelength of the spectral distribution of an ultra-high pressure mercury lamp used for exposing a fluorescent screen of a cathode ray tube or a black stripe is fixed, and the wavelength required for exposure is 5000 °.
In particular, it requires an ultraviolet band. 3650
と If there is much ultraviolet light in the following wavelength band, the energy required to print the phosphor film during exposure is so small that it does not affect other parts, so that it is possible to expose the phosphor screen with good resolution. It is required to be able to emit a large amount of wavelengths of 3650 ° or less.
【0035】本発明では陽極放電電極4の水銀端面5b
の水銀5の蒸発面積φ、水銀溜りのガラスチューブの厚
みt、冷却水40の温度、ランプ入力等を考慮して、水
銀端面より蒸発する圧力をコントロールする様にする。In the present invention, the mercury end face 5b of the anode discharge electrode 4
In consideration of the evaporation area φ of the mercury 5, the thickness t of the glass tube of the mercury reservoir, the temperature of the cooling water 40, the lamp input, etc., the pressure at which the mercury 5 evaporates is controlled.
【0036】今、ランプ入力及び冷却温度並びにガラス
厚みtが一定とすると、水銀端面5bの蒸発面積φの絞
量を変化させれば水銀の蒸発量を、即ち蒸気圧を変化さ
せることが出来る。Now, assuming that the lamp input, the cooling temperature, and the glass thickness t are constant, the evaporation amount of mercury, that is, the vapor pressure can be changed by changing the aperture of the evaporation area φ of the mercury end face 5b.
【0037】この様に水銀端面5bの蒸発面積を変える
ことで、陰極及び陽極放電電極3及び4間のギャップ空
間で生ずるプラズマ中の水銀の蒸気圧を制御すると共に
パルス波による高周波灯点駆動によって、ガラスチュー
ブ2の内径と略同径のプラズマの陽極柱が形成されるた
めにギャップ空間内の蒸発水銀原子の存在する空間内で
短波長帯の紫外線が吸収されないため、より多くの36
50Å以下の紫外線を放出可能となる。又、窓孔17か
ら出射される紫外線の点光源の大きさ(太さ)を大きく
することが可能となる。As described above, by changing the evaporation area of the mercury end face 5b, the vapor pressure of mercury in the plasma generated in the gap space between the cathode and anode discharge electrodes 3 and 4 is controlled, and the high-frequency lamp driving by pulse waves is performed. Since an anode column of plasma having substantially the same diameter as the inner diameter of the glass tube 2 is formed, ultraviolet rays in a short wavelength band are not absorbed in the space where the evaporated mercury atoms exist in the gap space.
Ultraviolet rays of 50 ° or less can be emitted. Further, it is possible to increase the size (thickness) of the point light source of the ultraviolet light emitted from the window hole 17.
【0038】図2は、上述の原理に基づいて構成した、
放電用ランプチューブ部分を示すもので、水銀端面5b
のガラスチューブ2の絞り径、即ち蒸発面積φ1 を内径
と同径の1.2mmφとしたもので、この値が最大値
で、1.2mmφ以下が最適値となる。一般に超高圧水
銀灯1はハウジング15内に挿入され、露光台の下端に
水平状態で配置されるため、水銀端面が表面張力によっ
て内径内に傾斜しないで保持可能範囲の上限値がφ1 =
1.2mmφである。FIG. 2 shows a configuration based on the above principle.
Shows the discharge lamp tube part, mercury end face 5b
The aperture diameter glass tube 2, i.e. the evaporation area phi 1 obtained by a 1.2 mm having the same diameter as the inner diameter, the value is the maximum value, 1.2 mm or less is the optimum value. Generally, the ultra-high pressure mercury lamp 1 is inserted into the housing 15 and arranged horizontally at the lower end of the exposure table. Therefore, the upper limit value of the holding range without the inclination of the mercury end face inside due to surface tension is φ 1 =
1.2 mmφ.
【0039】又、陰極放電電極3のタングステン棒の直
径は0.6mmφ乃至1.0mmφで、水銀5の水銀溜
りを形成する内径の絞り径は1.2mmφ乃至1.6m
mφに選択可能であり、この場合も水銀端面5aが水平
位置に配置したとき傾斜して、垂れない様に成る範囲で
ある。The diameter of the tungsten rod of the cathode discharge electrode 3 is 0.6 mmφ to 1.0 mmφ, and the aperture diameter of the inner diameter forming the mercury pool of mercury 5 is 1.2 mmφ to 1.6 m.
mφ, which is also a range in which the mercury end face 5a is inclined and does not drip when placed at a horizontal position.
【0040】図3及び図4は本発明のガラスチューブ2
のギャップ空間及び陽極放電電極4部分を変化させた他
の構成を示す超高圧水銀灯の側断面図を示すもので図3
は陰極側の水銀端面5bの蒸発面積φ2 を大きくし、ギ
ャップ空間の内径d1 を拡げてプラズマの陽光柱を大き
くする様にした場合である。FIGS. 3 and 4 show the glass tube 2 of the present invention.
FIG. 3 is a side sectional view of an extra-high pressure mercury lamp showing another configuration in which the gap space and the anode discharge electrode 4 are changed.
Shows a case where the manner to increase the evaporation area phi 2 of the cathode-side mercury end face 5b, to increase the plasma of the positive column by expanding the inner diameter d 1 of the gap space.
【0041】図4は陽極放電電極4の水銀溜り部分のガ
ラスチューブの管壁の厚みt3 を薄くし、ギャップ空間
の直径d2 を1.2mmφ以下に選択した場合である。
図2及び図3に示す場合も管壁厚t1 ,t2 等の厚みは
冷却水40の温度に応じて所定厚みにコントロールされ
たものを選択する。FIG. 4 shows a case where the thickness t 3 of the glass tube wall of the mercury reservoir of the anode discharge electrode 4 is reduced, and the diameter d 2 of the gap space is selected to be 1.2 mmφ or less.
Also in the cases shown in FIGS. 2 and 3, the thicknesses such as the tube wall thicknesses t 1 and t 2 are selected to be controlled to a predetermined thickness according to the temperature of the cooling water 40.
【0042】本発明の超高圧水銀灯は上述した様に直流
駆動であるため陽極側の放電面を水銀端面とすることが
出来るので、この陽極側の水銀端面5bの水銀蒸発面積
φをコントロールすることでガラスチューブ内の水銀の
蒸気圧がコントロール出来て電極管壁近傍の汚れも一方
向で済む。Since the ultrahigh-pressure mercury lamp of the present invention is driven by a direct current as described above, the discharge surface on the anode side can be used as the mercury end surface. Therefore, it is necessary to control the mercury evaporation area φ of the mercury end surface 5b on the anode side. Thus, the vapor pressure of mercury in the glass tube can be controlled, and the contamination near the electrode tube wall can be reduced in one direction.
【0043】又、高周波(パルス波)点灯駆動であるた
めプラズマの陽光柱はギャップ空間の略々全域を占める
様に拡がるが、通常の商用電源による点灯ではプラズマ
の占有領域はギャップ空間の略々60%程度であり、残
りの40%の水銀蒸気中でプラズマからの短波長側の紫
外線は吸収されてしまうが、本例ではギャップ空間のほ
とんど一杯にプラズマが発生するため短波長側の紫外線
は吸収されることがなく、露光用光源として最適な超高
圧水銀灯が得られる。In addition, the positive column of the plasma spreads so as to occupy substantially the entire gap space because of the high-frequency (pulse wave) lighting drive. In the remaining 40% of the mercury vapor, short-wavelength ultraviolet rays from the plasma are absorbed, but in this example, plasma is generated almost completely in the gap space. An ultrahigh-pressure mercury lamp that is not absorbed and is optimal as a light source for exposure can be obtained.
【0044】更に、点光源としての面積を考えた場合、
内径方向(幅方向)の寸法をコントロールすることが出
来るので設計値通りの所定寸法の点光源が得られる等の
効果を有する。Further, considering the area as a point light source,
Since the size in the inner diameter direction (width direction) can be controlled, there is an effect that a point light source having a predetermined size as designed can be obtained.
【0045】[0045]
【発明の効果】本発明の超高圧水銀灯によればガラスチ
ューブ内の水銀の蒸気圧をコントロールすることで、露
光に好適な短波長帯域の紫外線を減衰させずに放出可能
なものが簡単に得られる。According to the ultrahigh-pressure mercury lamp of the present invention, by controlling the vapor pressure of mercury in the glass tube, it is possible to easily obtain an ultraviolet ray in a short wavelength band suitable for exposure without attenuating ultraviolet rays. Can be
【図1】本発明の超高圧水銀灯の放電用チューブ部の模
式図である。FIG. 1 is a schematic view of a discharge tube part of an ultrahigh pressure mercury lamp of the present invention.
【図2】本発明の超高圧水銀灯の一実施例を示す側断面
図である。FIG. 2 is a side sectional view showing one embodiment of the ultra-high pressure mercury lamp of the present invention.
【図3】本発明の超高圧水銀灯の他の一実施例を示す側
断面図である。FIG. 3 is a side sectional view showing another embodiment of the extra-high pressure mercury lamp of the present invention.
【図4】本発明の超高圧水銀灯の更に他の一実施例を示
す側断面図である。FIG. 4 is a side sectional view showing still another embodiment of the extra-high pressure mercury lamp of the present invention.
【図5】従来の超高圧水銀灯の外観図である。FIG. 5 is an external view of a conventional ultra-high pressure mercury lamp.
【図6】図5のA−A′に沿う断面図である。FIG. 6 is a sectional view taken along the line AA ′ of FIG. 5;
【図7】ランプハウジングの平面図である。FIG. 7 is a plan view of the lamp housing.
【図8】ランプハウジングの側断面図である。FIG. 8 is a side sectional view of a lamp housing.
1 超高圧水銀灯 2 ガラスチューブ 3 陰極放電電極 4 陽極放電電極 5 水銀 5a,5b 水銀端面 40 直流パルス源 DESCRIPTION OF SYMBOLS 1 Ultra-high pressure mercury lamp 2 Glass tube 3 Cathode discharge electrode 4 Anode discharge electrode 5 Mercury 5a, 5b Mercury end face 40 DC pulse source
Claims (3)
陰極及び陽極放電電極の該陽極放電電極のチップを覆う
様に配設された陽極側水銀と、該陰極放電電極のチップ
は陰極側水銀端面より突出され、該陽極及び陰極放電電
極間に直流パルスの昇圧電圧が供給されて成る超高圧水
銀灯に於いて、 上記ガラスチューブの形状を変化させて該ガラスチュー
ブ内の上記水銀蒸気圧を制御して成ることを特徴とする
超高圧水銀灯。An anode mercury disposed so as to cover a tip of an anode discharge electrode of a cathode and an anode discharge electrode which are sealed in a glass tube and a tip of the cathode discharge electrode is disposed on a cathode side. In an ultra-high pressure mercury lamp protruding from a mercury end face and supplied with a boosted voltage of a DC pulse between the anode and the cathode discharge electrode, the shape of the glass tube is changed to change the mercury vapor pressure in the glass tube. An ultra-high pressure mercury lamp characterized by being controlled.
蒸発面積を制御して水銀の蒸気圧を制御して成ることを
特徴とする請求項1記載の超高圧水銀灯。2. The ultra-high pressure mercury lamp according to claim 1, wherein the vapor pressure of mercury is controlled by controlling the evaporation area of the mercury on the anode side of the glass tube.
り部のガラス厚を制御して水銀の蒸気圧を制御して成る
ことを特徴とする請求項1又は請求項2記載の超高圧水
銀灯。3. The ultra-high pressure mercury lamp according to claim 1, wherein the vapor pressure of mercury is controlled by controlling the glass thickness of the mercury reservoir on the anode side of the glass tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29377796A JPH10144260A (en) | 1996-11-06 | 1996-11-06 | Ultra-high-pressure mercury lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29377796A JPH10144260A (en) | 1996-11-06 | 1996-11-06 | Ultra-high-pressure mercury lamp |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10144260A true JPH10144260A (en) | 1998-05-29 |
Family
ID=17799057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29377796A Pending JPH10144260A (en) | 1996-11-06 | 1996-11-06 | Ultra-high-pressure mercury lamp |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10144260A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002543576A (en) * | 1999-04-29 | 2002-12-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Metal halide lamp |
DE102011083997A1 (en) * | 2011-10-04 | 2013-04-04 | Von Ardenne Anlagentechnik Gmbh | Gas discharge lamp has lamp main portion which is provided with adjusting unit for adjusting filling pressure during operation of gas discharge lamp, while gas filling is performed under pressure higher than atmospheric pressure |
-
1996
- 1996-11-06 JP JP29377796A patent/JPH10144260A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002543576A (en) * | 1999-04-29 | 2002-12-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Metal halide lamp |
JP4693995B2 (en) * | 1999-04-29 | 2011-06-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Metal halide lamp |
DE102011083997A1 (en) * | 2011-10-04 | 2013-04-04 | Von Ardenne Anlagentechnik Gmbh | Gas discharge lamp has lamp main portion which is provided with adjusting unit for adjusting filling pressure during operation of gas discharge lamp, while gas filling is performed under pressure higher than atmospheric pressure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6566817B2 (en) | High intensity discharge lamp with only one electrode | |
US4461981A (en) | Low pressure inert gas discharge device | |
US6380679B1 (en) | Short-arc discharge lamp with a starting antenna | |
US8946993B2 (en) | Fluorescent excimer lamps | |
JPS63141256A (en) | Discharge lamp | |
JPS63248050A (en) | Rare gas discharge lamp | |
JP3462306B2 (en) | Cold cathode discharge lamp, lamp lighting device, and lighting device | |
US6633127B2 (en) | High-pressure discharge lamp having construction for preventing breakdown | |
US7057345B2 (en) | Short arc discharge lamp and light source device | |
JP2000100389A (en) | Discharge lamp | |
JPH10144260A (en) | Ultra-high-pressure mercury lamp | |
JP4777594B2 (en) | High pressure discharge lamp and lamp unit using the same | |
US5150015A (en) | Electrodeless high intensity discharge lamp having an intergral quartz outer jacket | |
US2728871A (en) | Electric discharge lamp | |
US4097774A (en) | Arc discharge flash lamp and shielded cold cathode therefor | |
JPH06181050A (en) | Noble gas discharge lamp device | |
JP3125775B2 (en) | High-pressure mercury lamp and its light source device | |
JP2000357489A (en) | Ultraviolet discharge lamp | |
US4366418A (en) | Spectral source, particularly for atomic absorption spectrometry | |
US3513344A (en) | High pressure mercury vapor discharge lamp containing lead iodide | |
JP2004227820A (en) | Discharge lamp | |
JP2005209397A (en) | Dielectric barrier discharge lamp and ultraviolet irradiation device | |
JPH1167159A (en) | Electrodeless hid lamp and device thereof | |
JP3065079B1 (en) | Rare gas discharge lamp, method of manufacturing rare gas discharge lamp, and apparatus using rare gas discharge lamp | |
JP2005209398A (en) | Dielectric barrier discharge lamp and ultraviolet irradiation device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Effective date: 20040122 Free format text: JAPANESE INTERMEDIATE CODE: A7423 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050201 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050222 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050420 |
|
A02 | Decision of refusal |
Effective date: 20050920 Free format text: JAPANESE INTERMEDIATE CODE: A02 |