[go: up one dir, main page]

JPH10141933A - Method and apparatus for measuring flatness - Google Patents

Method and apparatus for measuring flatness

Info

Publication number
JPH10141933A
JPH10141933A JP31540296A JP31540296A JPH10141933A JP H10141933 A JPH10141933 A JP H10141933A JP 31540296 A JP31540296 A JP 31540296A JP 31540296 A JP31540296 A JP 31540296A JP H10141933 A JPH10141933 A JP H10141933A
Authority
JP
Japan
Prior art keywords
flatness
measurement point
measurement
amount
unevenness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31540296A
Other languages
Japanese (ja)
Inventor
Ryoichi Hashimoto
良一 橋本
Masashi Otani
昌司 大谷
Hiroshi Inatome
弘師 稲留
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP31540296A priority Critical patent/JPH10141933A/en
Publication of JPH10141933A publication Critical patent/JPH10141933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

(57)【要約】 【課題】測定対象面の平坦度を表面状態に拘らず正確に
測定できる平坦度の測定方法を提供する。 【解決手段】測定対象面11上の複数の測定点において
検査光をスポット状に集光し、その集光された検査光の
反射光により、各測定点の像を光学系4により結像させ
る。各測定点の像を設定位置に結像させるための焦点位
置調節量に基づき、測定対象面11の各測定点における
一定の基準位置からの凹凸量を求める。その求めた基準
位置からの凹凸量に基づき測定対象面11の平坦度を演
算する。
(57) [Problem] To provide a flatness measuring method capable of accurately measuring the flatness of a surface to be measured regardless of the surface state. An inspection light is condensed in a spot shape at a plurality of measurement points on a measurement target surface, and an image of each measurement point is formed by an optical system by reflected light of the collected inspection light. . The amount of unevenness from a fixed reference position at each measurement point on the measurement target surface 11 is obtained based on the focal position adjustment amount for forming an image at each measurement point at the set position. The flatness of the measurement target surface 11 is calculated based on the obtained unevenness amount from the reference position.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば記録媒体用
基板の素材表面等の平坦度を、光学的に非接触で測定す
る方法と装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for optically measuring the flatness of, for example, a material surface of a recording medium substrate in a non-contact manner.

【0002】[0002]

【従来の技術】例えばカーボン基板は、アルミ基板やガ
ラス基板と比べ、軽量で、耐衝撃性や耐熱性に優れ、薄
型化が可能であるなど、記録媒体用基板の素材として極
めて優れている。そのようなカーボン基板の表面を研磨
するに際しては、その表面の平坦度が低いものは研磨対
象から除外し、研磨コストの低減を図ることが望まれ
る。
2. Description of the Related Art For example, a carbon substrate is extremely excellent as a material for a substrate for a recording medium, such as being lighter in weight, superior in impact resistance and heat resistance, and thinner than an aluminum substrate or a glass substrate. When the surface of such a carbon substrate is polished, it is desired that those having a low flatness on the surface be excluded from the objects to be polished to reduce the polishing cost.

【0003】そのような基板等の表面の平坦度を光学的
に測定する従来法として、その測定対象面に垂直方向も
しくは任意の角度をなす斜め方向から単一波長の光線を
入射させた場合の反射光と、基準面に同様に光線を入射
させた場合の反射光とを干渉させ、得られる干渉縞の疎
密度から平坦度を求める垂直式もしくは斜入式レーザー
干渉法がある。
As a conventional method for optically measuring the flatness of the surface of such a substrate or the like, a method is employed in which a single wavelength light beam is incident on the surface to be measured from a vertical direction or an oblique direction at an arbitrary angle. There is a vertical or oblique laser interferometry in which the reflected light interferes with the reflected light when a light beam similarly enters the reference surface, and the flatness is obtained from the sparse density of the obtained interference fringes.

【0004】[0004]

【発明が解決しようとする課題】しかし、上記従来の方
法では、測定対象面の凹凸が均一で、反射率が均一かつ
高くないと、正確な測定を行うことができなかった。そ
のため、測定対象面が予め研磨したり表面処理されてい
る必要があった。例えば、測定対象面における凹部と凸
部との高さの差が局所的に約10μm以上ある場合、そ
こでの干渉縞が極端に乱されたり、過密状態となるた
め、測定が不可能になる。また、測定対象面に光沢がな
く、反射率が低く、反射率むらがあると測定が困難にな
る。例えばカーボン基板は、表面処理や研磨加工を行な
っていない場合、基板の表面状態が悪く、従来方法では
平坦度を測定できない場合があった。すなわち、測定対
象面の表面状態は狭い範囲に限定されていた。
However, in the above-mentioned conventional method, accurate measurement cannot be performed unless the unevenness of the surface to be measured is uniform and the reflectance is uniform and high. Therefore, the surface to be measured had to be polished or surface-treated in advance. For example, when the difference between the height of the concave portion and the height of the convex portion on the measurement target surface is locally about 10 μm or more, the interference fringes there are extremely disturbed or overcrowded, so that the measurement becomes impossible. In addition, if the surface to be measured has no gloss, the reflectance is low, and the reflectance is uneven, the measurement becomes difficult. For example, when a carbon substrate has not been subjected to surface treatment or polishing, the surface state of the substrate is poor, and the flatness cannot be measured by the conventional method in some cases. That is, the surface condition of the measurement target surface is limited to a narrow range.

【0005】本発明は、上記問題を解決することのでき
る平坦度の測定方法および測定装置を提供することを目
的とする。
An object of the present invention is to provide a method and an apparatus for measuring flatness which can solve the above-mentioned problems.

【0006】[0006]

【課題を解決するための手段】本発明の平坦度の測定方
法は、測定対象面上の複数の測定点において検査光をス
ポット状に集光し、その集光された検査光の反射光によ
り、各測定点の像を光学系により結像させ、各測定点の
像を設定位置に結像させるための焦点位置調節量に基づ
き、測定対象面の各測定点における一定の基準位置から
の凹凸量を求め、その求めた基準位置からの凹凸量に基
づき測定対象面の平坦度を演算することを特徴とする。
その平坦度は、各測定点における基準位置からの凹凸量
の最大値と最小値との差により求めることができる。本
発明の平坦度の測定装置は、検査光を出射する光源と、
その検査光を測定対象面上の測定点にスポット状に集光
する手段と、その集光された検査光の反射光により測定
点の像を結像させる光学系と、その測定点の像を設定位
置に結像させることができるように、その光学系の焦点
位置を調節する手段と、その焦点位置の調節量に基づ
き、測定対象面の測定点における一定の基準位置からの
凹凸量を記憶する手段と、その測定点を変更する手段
と、複数の測定点における基準位置からの凹凸量に基づ
き測定対象面の平坦度を演算する手段とを備える。本発
明の平坦度の測定方法によれば、測定対象面の任意の測
定点における基準位置からの凹凸量に基づき、平坦度を
求めることができる。すなわち、従来のような干渉縞を
形成する必要がないので、測定対象面の平坦度を表面状
態に拘らず正確に測定できる。本発明の平坦度の測定装
置によれば、本発明の平坦度の測定方法を実施できる。
さらに、本発明の平坦度の測定装置が、その焦点の自動
調節機構を備えることで、人手によらず迅速に焦点調節
を行うことができる。また、本発明の平坦度の測定装置
が、その測定点の自動変更機構を備えることで、その平
坦度の測定の迅速化を図ることができる。
According to the flatness measuring method of the present invention, inspection light is condensed in a spot shape at a plurality of measurement points on a surface to be measured, and reflected light of the converged inspection light is used. The image of each measurement point is formed by an optical system, and the unevenness from a fixed reference position at each measurement point on the measurement target surface is determined based on the focal position adjustment amount for forming the image of each measurement point at a set position. The amount is obtained, and the flatness of the surface to be measured is calculated based on the obtained amount of unevenness from the reference position.
The flatness can be obtained from the difference between the maximum value and the minimum value of the unevenness amount from the reference position at each measurement point. The flatness measuring device of the present invention is a light source that emits inspection light,
Means for converging the inspection light in a spot shape on the measurement point on the measurement target surface, an optical system for forming an image of the measurement point by reflected light of the collected inspection light, and an image of the measurement point. Means for adjusting the focal position of the optical system so that an image can be formed at a set position, and the amount of unevenness from a fixed reference position at a measurement point on the surface to be measured based on the adjustment amount of the focal position. Means for changing the measurement points, and means for calculating the flatness of the surface to be measured based on the amount of unevenness from the reference position at the plurality of measurement points. According to the flatness measuring method of the present invention, the flatness can be obtained based on the amount of unevenness from a reference position at an arbitrary measurement point on the measurement target surface. That is, since there is no need to form interference fringes as in the related art, the flatness of the surface to be measured can be accurately measured regardless of the surface state. According to the flatness measuring device of the present invention, the flatness measuring method of the present invention can be implemented.
Furthermore, since the flatness measuring device of the present invention includes the automatic focus adjustment mechanism, the focus can be quickly adjusted without manual operation. In addition, since the flatness measuring apparatus of the present invention includes an automatic change mechanism of the measurement point, the measurement of the flatness can be speeded up.

【0007】本発明の平坦度の測定方法において、その
測定点の像を撮像し、その撮像された測定点の像の明瞭
性に基づき前記焦点位置調節を行うのが好ましい。この
場合、本発明の平坦度の測定装置は、その測定点の像の
撮像手段と、その撮像された測定点の像の表示手段とを
備えるようにする。これにより、その焦点調節を容易に
行える。
In the flatness measuring method according to the present invention, it is preferable that an image of the measurement point is taken, and the focus position is adjusted based on the clarity of the image of the taken measurement point. In this case, the flatness measuring apparatus according to the present invention includes an image capturing unit for the image of the measurement point and a display unit for displaying the image of the captured measurement point. Thereby, the focus adjustment can be easily performed.

【0008】本発明の平坦度の測定方法において、その
光学系を構成する対物レンズの測定点からの距離調節に
より焦点位置を調節し、その光学系と測定対象面とを測
定対象面に沿う方向に相対移動させることで測定点を変
更し、各測定点における対物レンズの調節距離を基準位
置からの凹凸量に対応させるのが好ましい。この場合、
本発明の平坦度の測定装置における光学系は対物レンズ
と接眼レンズとを有し、その対物レンズの測定点からの
距離調節により焦点位置が調節され、その光学系と測定
対象面とを測定対象面に沿う方向に相対移動させること
で測定点が変更可能とされ、その焦点位置調節のための
対物レンズの測定点からの調節距離が、測定点における
基準位置からの凹凸量に対応するものとされる。これに
より、その焦点調節機構を簡単に構成できる。
In the method for measuring flatness according to the present invention, the focal position is adjusted by adjusting the distance from the measurement point of the objective lens constituting the optical system, and the optical system and the surface to be measured are oriented along the surface to be measured. It is preferable that the measurement points are changed by relatively moving the measurement points, and the adjustment distance of the objective lens at each measurement point corresponds to the amount of unevenness from the reference position. in this case,
The optical system in the flatness measuring apparatus of the present invention has an objective lens and an eyepiece, the focal position is adjusted by adjusting the distance from the measurement point of the objective lens, and the optical system and the measurement target surface are measured. The measurement point can be changed by relative movement in the direction along the surface, and the adjustment distance from the measurement point of the objective lens for the focal position adjustment corresponds to the unevenness amount from the reference position at the measurement point. Is done. Thereby, the focus adjusting mechanism can be easily configured.

【0009】本発明方法において、その検査光の光量を
測定対象面の反射率に応じて変更するのが好ましい。こ
れにより、反射率が低い場合は検査光の光量を多くして
反射光による像が明瞭に形成されるようにし、反射率が
高い場合は検査光の光量を少なくして反射光による像の
輝度が過剰になるのを防止できる。この場合、本発明の
平坦度の測定装置は、その測定対象面の反射率を求める
手段と、その求めた反射率に応じて検査光の光量を設定
量に調節する手段とを備えるようにする。
In the method of the present invention, it is preferable to change the amount of the inspection light according to the reflectance of the surface to be measured. Thus, when the reflectance is low, the amount of the inspection light is increased so that the image by the reflected light is clearly formed, and when the reflectance is high, the amount of the inspection light is reduced and the brightness of the image by the reflected light is reduced. Can be prevented from becoming excessive. In this case, the flatness measuring apparatus of the present invention includes means for determining the reflectance of the surface to be measured, and means for adjusting the light amount of the inspection light to a set amount according to the determined reflectance. .

【0010】本発明の平坦度の測定方法において、その
測定点に集光される検査光のスポット径を要求精度や測
定対象面の粗さに応じて変更するのが好ましい。これに
より、要求精度が低い場合や測定対象面が粗い場合は検
査光のスポット径を大きくし、平坦度の算出に必要のな
い微小な凹凸の影響を無くすことができる。一方、要求
精度が高い場合や測定対象面の粗度が小さい場合は検査
光のスポット径を小さくすることで、平坦度に影響する
凹凸量を確実に求めることができる。この場合、本発明
の平坦度の測定装置は、その測定点に集光される検査光
のスポット径を変更可能なものとされる。
In the flatness measuring method of the present invention, it is preferable to change the spot diameter of the inspection light focused on the measuring point in accordance with required accuracy and roughness of the surface to be measured. Accordingly, when the required accuracy is low or when the surface to be measured is rough, the spot diameter of the inspection light can be increased, and the influence of minute unevenness that is not necessary for calculating the flatness can be eliminated. On the other hand, when the required accuracy is high or the roughness of the surface to be measured is small, the spot diameter of the inspection light is reduced, so that the amount of unevenness that affects the flatness can be reliably obtained. In this case, the flatness measuring device of the present invention can change the spot diameter of the inspection light focused on the measurement point.

【0011】本発明の平坦度の測定方法において、その
光学系の焦点深度を要求精度や測定対象面の粗さに応じ
て変更するのが好ましい。これにより、要求精度が低い
場合や測定対象面が粗い場合は焦点深度を深くし、平坦
度の算出に必要のない微小な凹凸の影響を無くすことが
できる。一方、要求精度が高い場合や測定対象面の粗度
が小さい場合は焦点深度を浅くすることで、平坦度に影
響する凹凸量を確実に求めることができる。この場合、
本発明の平坦度の測定装置は、光学系として交換可能な
対物レンズを備える、その対物レンズの交換により焦点
深度を変更するものとされる。
In the flatness measuring method of the present invention, it is preferable to change the depth of focus of the optical system in accordance with the required accuracy and the roughness of the surface to be measured. This makes it possible to increase the depth of focus when the required accuracy is low or when the surface to be measured is rough, and to eliminate the influence of minute irregularities that are not necessary for calculating the flatness. On the other hand, when the required accuracy is high or the roughness of the surface to be measured is small, the depth of focus is made shallow, so that the unevenness amount that affects the flatness can be reliably obtained. in this case,
The flatness measuring apparatus of the present invention includes an interchangeable objective lens as an optical system, and changes the depth of focus by exchanging the objective lens.

【0012】本発明の平坦度の測定方法において、各測
定点における基準位置からの凹凸量の、隣接する測定点
における基準位置からの凹凸量に対する変化が、予め設
定した値以上である場合は、その測定点における基準位
置からの凹凸量を平坦度の演算の基礎から除外するのが
好ましい。これにより、測定対象面に局所的に急激に凹
凸量が変化する測定点があっても、全体の平坦度を正確
に求めることができる。
In the method of measuring flatness according to the present invention, when a change in the amount of unevenness from the reference position at each measurement point with respect to the amount of unevenness from the reference position at an adjacent measurement point is equal to or greater than a preset value, It is preferable to exclude the unevenness amount from the reference position at the measurement point from the basis of the calculation of the flatness. Thereby, even if there is a measurement point where the amount of unevenness rapidly changes locally on the measurement target surface, the entire flatness can be accurately obtained.

【0013】本発明の平坦度の測定方法において、被検
物の測定対象面と反対側の面を下面として被検物支持部
材に載置し、各測定点における基準位置からの凹凸量に
基づき、被検物支持部材の載置面に対する測定対象面の
傾きを求め、その傾きが零になるように各測定点におけ
る基準位置からの凹凸量を補正し、その補正値に基づい
て測定対象面の平坦度を演算するのが好ましい。これに
より、被検物の厚みむら、測定対象面の反対側の面の平
坦度、その被検物支持部材の載置面の平坦度に基づく誤
差が平坦度の算出に影響するのを防止できる。
In the method of measuring flatness according to the present invention, the surface of the object to be measured is placed on the object supporting member with the surface opposite to the surface to be measured as the lower surface, and based on the amount of irregularities from the reference position at each measurement point. The inclination of the measurement target surface with respect to the mounting surface of the test object support member is obtained, and the amount of unevenness from the reference position at each measurement point is corrected so that the inclination becomes zero, and the measurement target surface is determined based on the correction value. Is preferably calculated. Thus, it is possible to prevent the thickness unevenness of the test object, the flatness of the surface opposite to the measurement target surface, and the error based on the flatness of the mounting surface of the test object support member from affecting the calculation of the flatness. .

【0014】本発明の平坦度の測定方法において、被検
物を測定対象面を下面として被検物支持部材に載置し、
その支持部材の下方に光学系を配置し、その支持部材に
形成した通孔を光学系と測定点との間の光の通路とする
のが好ましい。これにより、被検物の厚みむら、被検物
における測定対象面と反対側の面の平坦度の誤差が、平
坦度の測定精度に影響するのを防止できる。この場合、
本発明の平坦度の測定装置は、光学系の上方に支持部材
が配置され、その支持部材の上面に被検物が測定対象面
を下面として載置可能とされ、その支持部材に光学系と
測定点との間の光の通路となる通孔が形成されるものと
される。
In the method of measuring flatness according to the present invention, the test object is placed on the test object support member with the surface to be measured facing downward.
Preferably, an optical system is arranged below the support member, and a through hole formed in the support member is used as a light path between the optical system and the measurement point. Accordingly, it is possible to prevent the thickness unevenness of the test object and the flatness error of the surface of the test object on the side opposite to the measurement target surface from affecting the flatness measurement accuracy. in this case,
In the flatness measuring apparatus of the present invention, a support member is disposed above the optical system, and a test object can be placed on the upper surface of the support member with the surface to be measured as the lower surface. A through hole serving as a light path between the measurement point and the measurement point is formed.

【0015】本発明の平坦度の測定方法において、測定
対象面の端部から予め設定した範囲内にある測定点の基
準位置からの凹凸量を平坦度の演算の基礎から除外する
のが好ましい。これにより、有限な大きさの被検物の測
定対象面の端部における急激な凹凸量の変化が、平坦度
の算出に影響するのを防止できる。
In the method for measuring flatness according to the present invention, it is preferable that the amount of unevenness from a reference position of a measurement point within a preset range from the end of the surface to be measured is excluded from the basis of the flatness calculation. Thus, it is possible to prevent a sudden change in the amount of unevenness at the end of the measurement target surface of the test object having a finite size from affecting the calculation of the flatness.

【0016】[0016]

【発明の実施の形態】以下、図1〜図4を参照して本発
明の第1実施形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.

【0017】図1に示す平坦度測定装置1は、取り付け
ベース2に第1移動機構3を介して取り付けられる光学
系4と、その光学系4に検査光を出射する光源装置5
と、その光学系4を介して平坦度の測定点を撮影する撮
像装置6と、その取り付けベース2に第2移動機構7と
第3移動機構8とを介して取り付けられる被検物支持部
材9とを備える。その被検物支持部材9は光学系4の下
方に配置され、その上面に被検物10が載置され、本第
1実施形態では、その被検物10の上面が測定対象面1
1とされる。
The flatness measuring device 1 shown in FIG. 1 has an optical system 4 mounted on a mounting base 2 via a first moving mechanism 3, and a light source device 5 for emitting inspection light to the optical system 4.
An imaging device 6 for photographing a flatness measurement point via the optical system 4; and a test object support member 9 attached to the attachment base 2 via a second moving mechanism 7 and a third moving mechanism 8. And The test object support member 9 is disposed below the optical system 4, and a test object 10 is placed on the upper surface of the test object support member 9.
It is set to 1.

【0018】その光学系4は、その光源装置5から出射
される検査光を図中2点鎖線で示すように測定対象面1
1上の測定点にスポット状に集光させると共に、その測
定対象面11の測定点における反射光により測定点の像
を設定位置において結像させる。本実施形態では、その
測定点の像を撮像装置6の受光部において結像させるよ
うにする。この光学系4は、例えば、ハーフミラー4a
と、対物レンズ4bと、接眼レンズ4cとを有する微分
干渉型金属顕微鏡(例えば、Nikon製オプチフォト
100S)等の光学顕微鏡により構成できる。すなわ
ち、その光源装置5から出射される検査光の光路をハー
フミラー4aにより変更し、対物レンズ4bにより集光
し、その反射光を対物レンズ4b、ハーフミラー4a、
接眼レンズ4cを介して撮像装置6に導いて測定点の拡
大像を結像させる。その拡大倍率は任意に選定すればよ
く、例えば1000倍程度とすることができる。
The optical system 4 transmits the inspection light emitted from the light source device 5 to the surface 1 to be measured as shown by a two-dot chain line in FIG.
The light is condensed in a spot shape on the measurement point 1 and an image of the measurement point is formed at a set position by reflected light at the measurement point on the measurement target surface 11. In the present embodiment, the image at the measurement point is formed on the light receiving unit of the imaging device 6. The optical system 4 includes, for example, a half mirror 4a
And an optical microscope such as a differential interference metal microscope (for example, Nikon Optiphoto 100S) having an objective lens 4b and an eyepiece 4c. That is, the optical path of the inspection light emitted from the light source device 5 is changed by the half mirror 4a, condensed by the objective lens 4b, and the reflected light is reflected by the objective lens 4b, the half mirror 4a,
The image is guided to the imaging device 6 via the eyepiece 4c to form an enlarged image of the measurement point. The magnification may be arbitrarily selected, and may be, for example, about 1000 times.

【0019】その対物レンズ4bは交換可能とされてい
る。これにより、要求精度が低い場合や測定対象面11
が粗い場合は、対物レンズ4bとして開口数(NA)の
小さなものを用いて焦点深度を深くし、平坦度の算出に
必要のない微小な凹凸の影響を無くすことができる。一
方、要求精度が高い場合や測定対象面11の粗度が小さ
い場合は、対物レンズ4bとして開口数(NA)の大き
なものを用いて焦点深度を浅くすることで、平坦度に影
響する凹凸量を確実に求めることができる。その焦点深
度が平坦度の測定精度になる。例えば、その対物レンズ
4bとして倍率が100倍、NAが0.9のものを使用
する場合、その焦点深度を1μmとすることができる。
The objective lens 4b is replaceable. Accordingly, when the required accuracy is low or when the measurement target surface 11
When is small, the depth of focus can be increased by using an objective lens 4b having a small numerical aperture (NA) to eliminate the influence of minute irregularities that are not necessary for calculating the flatness. On the other hand, if the required accuracy is high or the roughness of the measurement target surface 11 is small, the depth of focus is reduced by using a large numerical aperture (NA) as the objective lens 4b to reduce the depth of focus. Can be reliably obtained. The depth of focus becomes the measurement accuracy of the flatness. For example, when a lens having a magnification of 100 and an NA of 0.9 is used as the objective lens 4b, the depth of focus can be 1 μm.

【0020】その光源装置5は、印加電力に応じた光量
の検査光を出射するもので、例えば50W程度の高輝度
ハロゲンランプ等を用いることができ、その検査光の光
量調節装置5aに接続される。また、その検査光の出射
口の口径が変更可能とされ、その検査光の測定点におけ
るスポット径は任意に設定可能とされている。例えば要
求精度が低い場合や測定対象面11が粗い場合は検査光
のスポット径を大きくし、平坦度の算出に必要のない微
小な凹凸の影響を無くすことができる。一方、要求精度
が高い場合や測定対象面11の粗度が小さい場合は検査
光のスポット径を小さくすることで、平坦度に影響する
凹凸量を確実に求めることができる。
The light source device 5 emits inspection light of a light amount corresponding to the applied power. For example, a high-intensity halogen lamp of about 50 W or the like can be used, and is connected to the light amount adjusting device 5a of the inspection light. You. The diameter of the exit of the inspection light can be changed, and the spot diameter at the measurement point of the inspection light can be set arbitrarily. For example, when the required accuracy is low or when the measurement target surface 11 is rough, the spot diameter of the inspection light can be increased to eliminate the influence of minute irregularities that are not necessary for calculating the flatness. On the other hand, when the required accuracy is high or when the roughness of the measurement target surface 11 is small, the amount of unevenness affecting the flatness can be reliably obtained by reducing the spot diameter of the inspection light.

【0021】その撮像装置6は、2次元CCDカメラ
(例えばSONY製XC‐75CE)等であって、その
撮影画像の映像信号をTVモニタ15に送るものにより
構成できる。この撮像装置6に入射する反射光の光量を
検知するセンサ6aが設けられている。
The imaging device 6 is a two-dimensional CCD camera (for example, XC-75CE manufactured by SONY) or the like, and can be configured to send a video signal of the captured image to the TV monitor 15. A sensor 6a for detecting the amount of reflected light incident on the imaging device 6 is provided.

【0022】その第1移動機構3は、光学系4を測定対
象面11に直交するZ軸方向に変位させるもので、その
変位は本実施形態ではオペレータの手動操作によるもの
とされ、そのZ軸方向は上下方向とされる。この光学系
4のZ軸方向の変位により、前記測定点の像を撮像装置
6の受光部に結像させるための焦点調節が行われる。そ
の光学系4のZ軸方向の変位量が、測定対象面11の測
定点における予め定めた一定の基準位置からの凹凸量に
対応する。この第1移動機構3による光学系4のZ軸方
向の変位量を検知するZ軸変位量センサ3aが設けられ
ている。
The first moving mechanism 3 displaces the optical system 4 in the Z-axis direction orthogonal to the surface 11 to be measured. In this embodiment, the displacement is determined by manual operation by an operator. The direction is the vertical direction. Due to the displacement of the optical system 4 in the Z-axis direction, focus adjustment for forming an image of the measurement point on the light receiving unit of the imaging device 6 is performed. The amount of displacement of the optical system 4 in the Z-axis direction corresponds to the amount of unevenness from a predetermined fixed reference position at a measurement point on the measurement target surface 11. A Z-axis displacement sensor 3a for detecting the displacement of the optical system 4 in the Z-axis direction by the first moving mechanism 3 is provided.

【0023】その第2移動機構7は、光学系4に対して
被検物支持部材9を測定対象面11に平行なX軸方向に
変位させることで、測定点をX軸方向に変更させるもの
で、その変位は本実施形態ではオペレータの手動操作に
よるものとされ、そのX軸方向は水平方向とされてい
る。この第2移動機構7による被検物支持部材9のX軸
方向の変位量を検知するX軸変位量センサ7aが設けら
れている。
The second moving mechanism 7 changes the measurement point in the X-axis direction by displacing the test object supporting member 9 in the X-axis direction parallel to the measurement target surface 11 with respect to the optical system 4. In this embodiment, the displacement is caused by the manual operation of the operator, and the X-axis direction is the horizontal direction. An X-axis displacement sensor 7a for detecting the displacement of the object support member 9 in the X-axis direction by the second moving mechanism 7 is provided.

【0024】その第3移動機構8は、光学系4に対して
被検物支持部材9と第2移動機構7を測定対象面11に
平行なY軸方向に変位させ、測定点をY軸方向に変更さ
せるもので、その変位は本実施形態ではオペレータの手
動操作によるものとされ、そのY軸方向はX軸方向に直
交する水平方向とされている。この第3移動機構8によ
る被検物支持部材9のY軸方向の変位量を検知するY軸
変位量センサ8aが設けられている。
The third moving mechanism 8 displaces the object support member 9 and the second moving mechanism 7 with respect to the optical system 4 in the Y-axis direction parallel to the surface 11 to be measured. In this embodiment, the displacement is made by a manual operation of an operator, and the Y-axis direction is a horizontal direction orthogonal to the X-axis direction. A Y-axis displacement sensor 8a for detecting a displacement of the test object support member 9 in the Y-axis direction by the third moving mechanism 8 is provided.

【0025】上記光量調節装置5a、光量センサ6a、
Z軸方向変位量センサ3a、X軸方向変位量センサ7
a、およびY軸方向変位量センサ8aは、制御装置20
に接続されている。その制御装置20はコンピュータに
より構成され、下記のように、各測定点における基準位
置からの凹凸量を記憶すると共に、予め記憶したプログ
ラムに基づき複数の測定点における基準位置からの凹凸
量に基づき測定対象面11の平坦度を演算し、その演算
結果を出力装置21に出力する。その出力装置21は、
CRTディスプレイやプリンター等により構成できる。
The light amount adjusting device 5a, the light amount sensor 6a,
Z-axis displacement sensor 3a, X-axis displacement sensor 7
a and the Y-axis direction displacement amount sensor 8a
It is connected to the. The control device 20 is constituted by a computer, and stores the amount of unevenness from the reference position at each measurement point and measures the amount of unevenness from the reference position at a plurality of measurement points based on a previously stored program, as described below. The flatness of the target surface 11 is calculated, and the calculation result is output to the output device 21. The output device 21 is
It can be constituted by a CRT display, a printer, or the like.

【0026】上記構成により平坦度を求めるには、ま
ず、第2移動機構7と第3移動機構8とにより、被検物
10を載置した被検物支持部材9を予め設定した基準位
置からX、Y軸方向に変位させ、測定対象面11上の第
1の測定点に光源装置5から出射される検査光を光学系
4を介して集光させる。この際、制御装置20はX軸変
位量センサ7aとY軸変位量センサ8aとからの信号に
より、その測定点のX、Y座標を記憶する。また、その
測定点に集光された検査光おける反射光により、その測
定点の拡大像が形成され、その像が撮像装置6により撮
影されてモニタ15に表示される。
In order to obtain the flatness by the above configuration, first, the second moving mechanism 7 and the third moving mechanism 8 move the test object supporting member 9 on which the test object 10 is mounted from a preset reference position. The inspection light emitted from the light source device 5 is condensed via the optical system 4 at the first measurement point on the measurement target surface 11 by being displaced in the X and Y axis directions. At this time, the control device 20 stores the X and Y coordinates of the measurement point based on signals from the X-axis displacement amount sensor 7a and the Y-axis displacement amount sensor 8a. In addition, an enlarged image of the measurement point is formed by the reflected light of the inspection light condensed at the measurement point, and the image is captured by the imaging device 6 and displayed on the monitor 15.

【0027】次に、第1移動機構3により光学系4を予
め設定した基準位置からZ軸方向に変位させ、そのモニ
タ15に表示された像を明瞭に視認できるように焦点調
節を行う。この際、制御装置20はZ軸変位量センサ3
aからの信号により、その測定点のZ座標、すなわち、
測定対象面11の測定点における基準位置からの凹凸量
を記憶する。
Next, the optical system 4 is displaced in the Z-axis direction from a preset reference position by the first moving mechanism 3, and focus adjustment is performed so that the image displayed on the monitor 15 can be clearly recognized. At this time, the controller 20 controls the Z-axis displacement sensor 3
From the signal from a, the Z coordinate of the measurement point, ie,
The amount of unevenness from the reference position at the measurement point on the measurement target surface 11 is stored.

【0028】次に、被検物支持部材9をX、Y軸方向に
変位させ、測定対象面11上の第2の測定点に光源装置
5から出射される検査光を光学系4を介して集光させ、
上記操作を繰り返す。
Next, the test object support member 9 is displaced in the X and Y axis directions, and the inspection light emitted from the light source device 5 is emitted to the second measurement point on the measurement target surface 11 via the optical system 4. Focus,
Repeat the above operation.

【0029】上記測定点のZ座標を求める過程におい
て、光量検知センサ6aにより検知される測定対象面1
1からの反射光の光量の検出値が制御装置20に入力さ
れる。制御装置20は、その入力値に応じて測定対象面
11の反射率を演算し、その反射率に応じて光量調節装
置5aを制御することで、光源装置5から出射される検
査光の光量の最適化を図っている。すなわち、その検査
光の光量に対する測定対象面11の反射率が予め設定し
た値よりも低い場合は、その出射光量を多くして反射光
による像が明瞭に形成されるようにし、反射率が予め設
定した値よりも高い場合は、その出射光量を少なくして
反射光による像の輝度が過剰になるのを防止する。
In the process of obtaining the Z coordinate of the measurement point, the measurement target surface 1 detected by the light amount detection sensor 6a
The detected value of the amount of reflected light from 1 is input to the control device 20. The control device 20 calculates the reflectance of the measurement target surface 11 according to the input value, and controls the light amount adjusting device 5a according to the reflectance, thereby controlling the light amount of the inspection light emitted from the light source device 5. We are trying to optimize. That is, when the reflectance of the measurement target surface 11 with respect to the amount of the inspection light is lower than a preset value, the amount of the emitted light is increased so that an image by the reflected light is clearly formed, and the reflectance is set in advance. If the value is higher than the set value, the amount of the emitted light is reduced to prevent the luminance of the image due to the reflected light from becoming excessive.

【0030】全ての測定点におけるZ座標を求めたなら
ば、制御装置20によりフィルタ処理を行う。すなわ
ち、測定対象面11の一部の測定点における基準位置か
らの凹凸量が、隣接する測定点における基準位置からの
凹凸量に対して急激に変化する場合、全体の平坦度を正
確に求めることができない。そのような急激な凹凸量の
変化が平坦度の算出に影響しないように、そのような測
定点のZ座標すなわち凹凸量を平坦度の算出の基礎から
除外する。例えば図2は、中心孔を有する円板形状の被
検物10の測定対象面11における各測定点(図におい
て黒点で示す)のY座標とZ座標との関係を示す。な
お、ここでは各測定点はY座標上にのみあるものとさ
れ、また、Z座標は零点が基準位置とされている。この
図において、隣接する測定点における基準位置からの凹
凸量に対して急激に凹凸量が変化する測定点AのZ座標
を、平坦度の算出の基礎から除外する。なお、急激に凹
凸量が変化しているか否かは、各測定点における傾きを
求め、その傾きが予め設定した傾き以上である場合は急
激に凹凸量が変化していると判断する。なお、図2にお
ける被検物10は、直径1.89″のハードディスク用
の未研磨のカーボンブランクであって、熱硬化製樹脂を
硬化して炭化することにより得られたもので、内径1
1.4mm、外径48.5mm、厚み1.46mm、4
00〜800nmの検査光の反射率20%以下、表面粗
さが1μm以下、平坦度が200μm以下のものであ
る。
When the Z coordinates at all the measurement points have been obtained, the control device 20 performs a filtering process. That is, when the amount of unevenness from a reference position at a part of the measurement points of the measurement target surface 11 rapidly changes with respect to the amount of unevenness from a reference position at an adjacent measurement point, the entire flatness is accurately obtained. Can not. The Z coordinate of such a measurement point, that is, the amount of unevenness is excluded from the basis of flatness calculation so that such a sudden change in the amount of unevenness does not affect the calculation of flatness. For example, FIG. 2 shows the relationship between the Y coordinate and the Z coordinate of each measurement point (shown by a black point in the figure) on the measurement target surface 11 of the disk-shaped test object 10 having a center hole. Here, each measurement point is located only on the Y coordinate, and the zero point of the Z coordinate is a reference position. In this figure, the Z coordinate of the measurement point A where the amount of unevenness rapidly changes with respect to the amount of unevenness from a reference position at an adjacent measurement point is excluded from the basis of flatness calculation. It is to be noted that the inclination at each measurement point is determined as to whether or not the amount of unevenness is suddenly changed. If the inclination is equal to or greater than a preset inclination, it is determined that the amount of unevenness is suddenly changed. The test object 10 in FIG. 2 is an unpolished carbon blank for a hard disk having a diameter of 1.89 ″, which is obtained by curing a thermosetting resin and carbonizing the same.
1.4 mm, outer diameter 48.5 mm, thickness 1.46 mm, 4
The reflectance of the inspection light of 00 to 800 nm is 20% or less, the surface roughness is 1 μm or less, and the flatness is 200 μm or less.

【0031】また、全ての測定点におけるZ座標を求め
たならば、制御装置20により傾き補正処理を行う。す
なわち、被検物10を測定対象面11と反対側の面1
1′を下面として被検物支持部材9に載置する場合、各
測定点におけるZ座標は、その被検物10の厚みむら、
その反対側の面11′の平坦度、その被検物支持部材9
の載置面9′の平坦度に基づく誤差を含む。そのような
誤差が平坦度の算出に影響しないようにZ座標の補正を
行う。例えば図2における破線Bは、上記のように最小
二乗法等によって求めた測定点のY座標とZ座標の一次
関係式に対応する。その関係式における傾きは、被検物
支持部材9の載置面9′に対する測定対象面11の傾き
に対応し、上記誤差がなければ零となる。よって、図3
に示すように、その関係式が図中破線Cで示されるよう
に傾きが零になるように、そのZ座標を補正する。
When the Z coordinates at all the measurement points have been obtained, the controller 20 performs a tilt correction process. That is, the test object 10 is placed on the surface 1 on the side opposite to the measurement target surface 11.
When 1 ′ is placed on the test object support member 9 with the lower surface, the Z coordinate at each measurement point indicates the thickness unevenness of the test object 10,
The flatness of the surface 11 'on the opposite side, the test object support member 9
Includes an error based on the flatness of the mounting surface 9 '. The Z coordinate is corrected so that such an error does not affect the calculation of the flatness. For example, the broken line B in FIG. 2 corresponds to a linear relational expression of the Y coordinate and the Z coordinate of the measurement point obtained by the least square method or the like as described above. The inclination in the relational expression corresponds to the inclination of the measurement target surface 11 with respect to the mounting surface 9 'of the test object support member 9, and becomes zero if there is no error. Therefore, FIG.
As shown in (2), the Z coordinate is corrected so that the slope becomes zero as shown by the broken line C in the figure.

【0032】さらに、全ての測定点におけるZ座標を求
めたならば、制御装置20により端部マスク処理を行
う。すなわち、被検物10の大きさは有限であることか
ら、その測定対象面11の端部においては急激に凹凸量
が変化する。そのような急激な凹凸量の変化があると、
全体の平坦度を正確に求めることができない。そのよう
な急激な凹凸量の変化が平坦度の算出に影響しないよう
に、そのような端部のZ座標すなわち凹凸量を平坦度の
算出の基礎から除外する。例えば上記図3におけるD、
E、F、G点は、被検物10の端部から予め設定寸法だ
け内方の位置のY座標を示す。そのD点とE点との間の
測定点とF点とG点との間の測定点を除く測定点のZ座
標を、平坦度の算出の基礎から除外する。
When the Z coordinates at all the measurement points have been obtained, the control unit 20 performs an end mask process. That is, since the size of the test object 10 is finite, the amount of unevenness rapidly changes at the end of the measurement target surface 11. With such a sudden change in the amount of unevenness,
The entire flatness cannot be determined accurately. In order to prevent such a sudden change in the amount of unevenness from affecting the calculation of the flatness, the Z coordinate of the end, that is, the amount of unevenness is excluded from the basis of the calculation of the flatness. For example, D in FIG.
Points E, F, and G indicate the Y coordinate of a position inward from the end of the test object 10 by a predetermined dimension in advance. The Z coordinates of the measurement points excluding the measurement point between the points D and E and the measurement point between the points F and G are excluded from the basis of the flatness calculation.

【0033】上記フィルタ処理、傾き補正処理、端部マ
スク処理を行ったならば、その処理後のZ座標に基づ
き、制御装置20により平坦度を算出する。その算出
は、Z座標の最大値と最小値との差、すなわち、測定対
象面11における凹凸の最高点と最低点との差により求
められる。
After performing the above-described filtering, inclination correction, and edge masking, the control unit 20 calculates the flatness based on the processed Z coordinates. The calculation is performed based on the difference between the maximum value and the minimum value of the Z coordinate, that is, the difference between the highest point and the lowest point of the unevenness on the measurement target surface 11.

【0034】上記構成によれば、測定対象面11の任意
の測定点における基準位置からの凹凸量に基づき、従来
のような干渉縞を形成することなく、平坦度を求めるこ
とができる。これにより、測定対象面11の平坦度を表
面状態に拘らず正確に測定できる。例えば、ハードディ
スクの素材となるカーボン製基板のような、測定対象面
における凹部と凸部との高さの差が局所的に約10μm
以上あり、反射むらがあり、反射率が低いため光沢がな
く、従来のレーザー干渉方式では平坦度を測定できない
劣悪な表面状態でも、測定精度±1μm程度で平坦度を
求めることができる。また、そのようなカーボン基板
に、テクスチャ形成、研削、研磨、薄膜形成、エッチン
グ、パターン形成などの表面加工処理を行なった場合で
も平坦度の測定が可能である。もちろん、鏡面状態の測
定対象面でも高精度に平坦度を測定できる。さらに、測
定対象面11の凹凸状態に応じて焦点深度、有効スポッ
ト径、検査光の光量を最適にし、フィルタ処理、傾き補
正処理、端部マスク処理を行うことで、従来方法では測
定できなかった表面における平坦度を、従来と同様の精
度で測定できる。
According to the above-described configuration, the flatness can be obtained without forming interference fringes as in the related art, based on the amount of unevenness from a reference position at an arbitrary measurement point on the measurement target surface 11. Thereby, the flatness of the measurement target surface 11 can be accurately measured regardless of the surface state. For example, a difference in height between a concave portion and a convex portion on a measurement target surface such as a carbon substrate used as a material of a hard disk is locally about 10 μm.
As described above, there is uneven reflection, low reflectivity, no gloss, and even in a poor surface state where the flatness cannot be measured by the conventional laser interference method, the flatness can be obtained with a measurement accuracy of about ± 1 μm. Further, even when such a carbon substrate is subjected to surface processing such as texture formation, grinding, polishing, thin film formation, etching, and pattern formation, the flatness can be measured. Of course, the flatness can be measured with high accuracy even on a mirror-finished surface to be measured. Furthermore, the depth of focus, the effective spot diameter, and the amount of inspection light are optimized in accordance with the unevenness of the measurement target surface 11, and the filtering, tilt correction, and edge mask processing are performed. The flatness on the surface can be measured with the same accuracy as before.

【0035】図4において、縦軸は上記本発明の実施形
態の測定方法により求めた平坦度を示し、横軸は従来の
斜入式レーザー干渉法により求めた平坦度を示し、図中
黒点が本発明の実施形態の測定方法による測定点に対応
し、図中実線が従来法による測定位置に対応する。本発
明によれば、従来法のように連続した位置での測定を行
なうのとは異なり、測定位置は不連続になるが、その測
定結果は従来法と相関があり、従来と同様の精度で正確
に平坦度を測定できることが確認される。なお、図4に
おける測定対象面は、本発明方法と従来法の比較ができ
る範囲で可及的に劣悪な表面状態となるように、熱硬化
性樹脂を硬化したものを炭化処理して得たカーボンブラ
ンクであって、反射率むらと約10μm以上の凹凸を極
力低減したものを用いた。
In FIG. 4, the vertical axis indicates the flatness obtained by the measuring method according to the embodiment of the present invention, and the horizontal axis indicates the flatness obtained by the conventional oblique laser interferometry. The points correspond to the measurement points according to the measurement method of the embodiment of the present invention, and the solid lines in the figure correspond to the measurement positions according to the conventional method. According to the present invention, the measurement position becomes discontinuous, unlike the case where measurement is performed at a continuous position as in the conventional method, but the measurement result is correlated with the conventional method, and with the same accuracy as the conventional method. It is confirmed that the flatness can be measured accurately. The surface to be measured in FIG. 4 was obtained by carbonizing a cured thermosetting resin so that the surface state was as poor as possible within a range where the method of the present invention and the conventional method could be compared. A carbon blank having reduced reflectance unevenness and irregularities of about 10 μm or more was used as much as possible.

【0036】図5は本発明の第2実施形態を示す。上記
第1実施形態においてはオペレータにより手動操作され
る第1〜第3移動機構3、7、8に代えて、制御装置2
0からの信号により駆動される第1〜第3駆動機構
3′、7′、8′が設けられ、また、その第1駆動機構
3′とで自動焦点調節機構を構成する焦点検知センサ3
0が制御装置20に接続されている。各駆動機構3′、
7′、8′は公知の機構により構成できる。その制御装
置20は、予め定められた複数の測定点に、光源装置5
から出射される検査光が順次集光されるように、その第
2駆動機構7′と第3駆動機構8により被検物支持部材
9をX、Y軸方向に駆動させ、測定点を自動変更する。
その第2駆動機構7′と第3駆動機構8′による被検物
支持部材9のX、Y軸方向変位がX軸変位量センサ7a
とY軸変位量センサ8aにより検知され、各測定点のX
座標とY座標が求められる。その焦点検知センサ30
は、焦点はずれ量に対応する量を検知するもので、例え
ば、撮像装置6による撮影像の尖鋭度を検知するセンサ
等により構成できる。制御装置20は、その焦点検知セ
ンサ30からの入力値に応じて焦点はずれ量を演算し、
その演算結果に応じて第1駆動機構3′により光学系4
をZ軸方向に駆動させて自動焦点調節を行う。この際、
モニタ15に表示される画像により、その自動焦点調節
が適正に行われているか否かを監視できるが、モニタ1
5による監視は必須ではない。その第1駆動機構3′に
よる光学系4のZ軸方向変位がZ軸変位量センサ3aに
より検知され、各測定点のZ座標が求められる。他は上
記実施形態と同様で、同一部分は同一符号で示す。
FIG. 5 shows a second embodiment of the present invention. In the first embodiment, instead of the first to third moving mechanisms 3, 7, 8 manually operated by an operator, a control device 2
First to third drive mechanisms 3 ', 7', 8 'driven by a signal from 0 are provided, and a focus detection sensor 3 which forms an automatic focus adjustment mechanism with the first drive mechanism 3'.
0 is connected to the control device 20. Each drive mechanism 3 ',
7 'and 8' can be constituted by a known mechanism. The control device 20 transmits the light source device 5 to a plurality of predetermined measurement points.
The test object support member 9 is driven in the X and Y axis directions by the second drive mechanism 7 'and the third drive mechanism 8 so that the inspection light emitted from the light source is sequentially collected, and the measurement point is automatically changed. I do.
The X- and Y-axis displacements of the object support member 9 by the second drive mechanism 7 'and the third drive mechanism 8' are measured by an X-axis displacement sensor 7a.
Is detected by the Y-axis displacement amount sensor 8a.
A coordinate and a Y coordinate are obtained. The focus detection sensor 30
Is for detecting an amount corresponding to the amount of defocus, and may be constituted by, for example, a sensor for detecting the sharpness of an image captured by the imaging device 6. The control device 20 calculates the amount of defocus according to the input value from the focus detection sensor 30,
The optical system 4 is driven by the first drive mechanism 3 'according to the calculation result.
Is driven in the Z-axis direction to perform automatic focus adjustment. On this occasion,
The image displayed on the monitor 15 can be used to monitor whether the automatic focus adjustment is properly performed.
Monitoring by 5 is not mandatory. The displacement of the optical system 4 in the Z-axis direction by the first drive mechanism 3 'is detected by the Z-axis displacement amount sensor 3a, and the Z coordinate of each measurement point is obtained. Other parts are the same as those of the above embodiment, and the same parts are denoted by the same reference numerals.

【0037】図6は本発明の第3実施形態を示す。第1
実施形態との相違は、被検物支持部材9が光学系4の上
方に配置され、その上面に載置される被検物10の下面
が測定対象面11となる。また、その被検物支持部材9
に光学系4と測定点との間の光の通路となる通孔9aが
形成され、図示の例では測定点が図中黒点で示されるよ
うに十字に沿って並列されることから十字形状の通孔9
aが形成される。他の構成は第1実施形態と同様で、同
一部分は同一符号で示す。この第3実施形態によれば、
各測定点におけるZ座標は、その被検物10の厚みむ
ら、被検物10における測定対象面11と反対側の面1
1′の平坦度に基づく誤差を含むことはないので、平坦
度の測定精度を向上することができる。
FIG. 6 shows a third embodiment of the present invention. First
The difference from the embodiment is that the test object support member 9 is disposed above the optical system 4, and the lower surface of the test object 10 placed on the upper surface thereof is the measurement target surface 11. In addition, the test object support member 9
Is formed with a through-hole 9a serving as a light passage between the optical system 4 and the measurement point. In the example shown in the figure, the measurement points are arranged in parallel along the cross as indicated by the black dots in the figure, so that a cross-shaped Through hole 9
a is formed. Other configurations are the same as those of the first embodiment, and the same portions are denoted by the same reference numerals. According to the third embodiment,
The Z coordinate at each measurement point is determined by the thickness unevenness of the test object 10,
Since no error based on the flatness of 1 'is included, the accuracy of measuring the flatness can be improved.

【0038】なお、本発明は上記実施形態に限定されな
い。例えば、測定点は測定対象面において直線に沿って
並列されるものに限定されず、曲線に沿って並列されて
もよいし、ランダムに配列されてもよい。光学系4をX
軸、Y軸方向に移動させ、被検物支持部材9をZ軸方向
に移動させるようにしてもよい、光学系4と被検物支持
部材9の双方をX軸、Y軸、Z軸方向に移動させるよう
にしてもよい。また、被検物はカーボン基板に限らず、
磁気ディスク用基板、半導体ウェハー、液晶用基板、光
学式ディスク、スタンパー、磁気テープ、フロッピーデ
ィスク、金属基板、セラミック基板、プラスチック基
板、フィルムなどの表面にある程度平滑性を有し、かつ
表面反射率が白色光または単一光または特定の波長領域
で数%以上あれば、平坦度を測定できる。
The present invention is not limited to the above embodiment. For example, the measurement points are not limited to those arranged along a straight line on the measurement target surface, and may be arranged along a curve or randomly arranged. Optical system 4
The object support member 9 may be moved in the Z-axis direction by moving the object support member 9 in the X-axis, Y-axis, and Z-axis directions. May be moved. In addition, the test object is not limited to the carbon substrate,
It has a certain degree of smoothness on the surface of magnetic disk substrates, semiconductor wafers, liquid crystal substrates, optical disks, stampers, magnetic tapes, floppy disks, metal substrates, ceramic substrates, plastic substrates, films, etc. The flatness can be measured if it is several percent or more in white light, single light, or a specific wavelength region.

【0039】[0039]

【発明の効果】本発明方法によれば、測定対象面の平坦
度を表面状態に拘らず正確に測定でき、本発明装置によ
れば本発明方法を実施できる。
According to the method of the present invention, the flatness of the surface to be measured can be accurately measured regardless of the surface condition, and the apparatus of the present invention can implement the method of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の平坦度の測定装置の構
成説明図
FIG. 1 is a configuration explanatory view of a flatness measuring apparatus according to a first embodiment of the present invention;

【図2】その平坦度の測定装置により測定された各測定
点の位置と測定対象面の凹凸量との、傾き補正処理前の
関係を示す図
FIG. 2 is a diagram showing the relationship between the position of each measurement point measured by the flatness measuring device and the amount of unevenness of a measurement target surface before a tilt correction process.

【図3】その平坦度の測定装置により測定された各測定
点の位置と測定対象面の凹凸量との、傾き補正処理後の
関係を示す図
FIG. 3 is a diagram showing the relationship between the position of each measurement point measured by the flatness measuring device and the amount of unevenness of the measurement target surface after the inclination correction processing.

【図4】その実施形態の平坦度の測定装置により測定さ
れた平坦度と従来の測定装置により測定された平坦度と
の関係を示す図
FIG. 4 is a diagram showing a relationship between flatness measured by a flatness measuring device of the embodiment and flatness measured by a conventional measuring device.

【図5】本発明の第2実施形態の平坦度の測定装置の構
成説明図
FIG. 5 is a configuration explanatory view of a flatness measuring device according to a second embodiment of the present invention.

【図6】本発明の第3実施形態の平坦度の測定装置の構
成説明図
FIG. 6 is a configuration explanatory view of a flatness measuring device according to a third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

3 第1移動機構 4 光学系 5 光源装置 6 撮像装置 7 第2移動機構 8 第3移動機構 11 測定対象面 20 制御装置 Reference Signs List 3 First moving mechanism 4 Optical system 5 Light source device 6 Imaging device 7 Second moving mechanism 8 Third moving mechanism 11 Measurement target surface 20 Control device

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 測定対象面上の複数の測定点において検
査光をスポット状に集光し、 その集光された検査光の反射光により、各測定点の像を
光学系により結像させ、 各測定点の像を設定位置に結像させるための焦点位置調
節量に基づき、測定対象面の各測定点における一定の基
準位置からの凹凸量を求め、 その求めた基準位置からの凹凸量に基づき測定対象面の
平坦度を演算することを特徴とする平坦度の測定方法。
An inspection light is condensed in a spot shape at a plurality of measurement points on a measurement target surface, and an image of each measurement point is formed by an optical system by reflected light of the collected inspection light. Based on the focus position adjustment amount for forming the image of each measurement point at the set position, the amount of unevenness from a fixed reference position at each measurement point on the measurement target surface is calculated, and the amount of unevenness from the determined reference position is calculated. A flatness measurement method, wherein a flatness of a measurement target surface is calculated based on the flatness.
【請求項2】 その測定点の像を撮像し、 その撮像された測定点の像の明瞭性に基づき前記焦点位
置調節を行う請求項1に記載の平坦度の測定方法。
2. The flatness measurement method according to claim 1, wherein an image of the measurement point is captured, and the focus position is adjusted based on clarity of the captured image of the measurement point.
【請求項3】 その光学系を構成する対物レンズの測定
点からの距離調節により焦点位置を調節し、その光学系
と測定対象面とを測定対象面に沿う方向に相対移動させ
ることで測定点を変更し、各測定点における対物レンズ
の調節距離を基準位置からの凹凸量に対応させる請求項
1または2に記載の平坦度の測定方法。
3. A focal point is adjusted by adjusting a distance from a measurement point of an objective lens constituting the optical system, and the optical system and the measurement target surface are relatively moved in a direction along the measurement target surface to thereby measure the measurement point. The flatness measurement method according to claim 1 or 2, wherein the distance of adjustment of the objective lens at each measurement point is made to correspond to the amount of unevenness from the reference position.
【請求項4】 その検査光の光量を測定対象面の反射率
に応じて変更する請求項1〜3の何れかに記載の平坦度
の測定方法。
4. The method for measuring flatness according to claim 1, wherein the light amount of the inspection light is changed according to the reflectance of the surface to be measured.
【請求項5】 その測定点に集光される検査光のスポッ
ト径を測定対象面の粗さに応じて変更する請求項1〜4
の何れかに記載の平坦度の測定方法。
5. The method according to claim 1, wherein the spot diameter of the inspection light focused on the measurement point is changed according to the roughness of the surface to be measured.
The method for measuring flatness according to any one of the above.
【請求項6】 その光学系の焦点深度を測定対象面の粗
さに応じて変更する請求項1〜5の何れかに記載の平坦
度の測定方法。
6. The method of measuring flatness according to claim 1, wherein the depth of focus of the optical system is changed according to the roughness of the surface to be measured.
【請求項7】 各測定点における基準位置からの凹凸量
の最大値と最小値との差により平坦度を求る請求項1〜
6の何れかに記載の平坦度の測定方法。
7. The flatness is determined from the difference between the maximum value and the minimum value of the amount of unevenness from each reference point at each measurement point.
7. The method for measuring flatness according to any one of 6.
【請求項8】 各測定点における基準位置からの凹凸量
の、隣接する測定点における基準位置からの凹凸量に対
する変化が、予め設定した値以上である場合は、その測
定点における基準位置からの凹凸量を平坦度の演算の基
礎から除外する請求項1〜7の何れかに記載の平坦度の
測定方法。
8. When the amount of unevenness from the reference position at each measurement point to the amount of unevenness from the reference position at an adjacent measurement point is greater than or equal to a preset value, the difference from the reference position at that measurement point is determined. The method for measuring flatness according to any one of claims 1 to 7, wherein the amount of unevenness is excluded from the basis of the calculation of flatness.
【請求項9】 測定対象面の端部から予め設定した範囲
内にある測定点の基準位置からの凹凸量を平坦度の演算
の基礎から除外する請求項1〜8の何れかに記載の平坦
度の測定方法。
9. The flatness according to claim 1, wherein the amount of unevenness from the reference position of the measurement point within a preset range from the end of the measurement target surface is excluded from the basis of the flatness calculation. How to measure the degree.
【請求項10】 被検物を測定対象面と反対側の面を下
面として被検物支持部材に載置し、各測定点における基
準位置からの凹凸量に基づき、被検物支持部材の載置面
に対する測定対象面の傾きを求め、その傾きが零になる
ように各測定点における基準位置からの凹凸量を補正
し、その補正値に基づいて測定対象面の平坦度を演算す
る請求項1〜9の何れかに記載の平坦度の測定方法。
10. The test object is placed on the test object support member with the surface opposite to the surface to be measured facing downward, and the test object support member is placed on the basis of the amount of irregularities from the reference position at each measurement point. The method according to claim 1, further comprising: calculating an inclination of the measurement target surface with respect to the mounting surface, correcting an amount of unevenness from a reference position at each measurement point so that the inclination becomes zero, and calculating a flatness of the measurement target surface based on the correction value. 10. The method for measuring flatness according to any one of 1 to 9.
【請求項11】 被検物を測定対象面を下面として被検
物支持部材に載置し、その支持部材の下方に光学系を配
置し、その支持部材に形成した通孔を光学系と測定点と
の間の光の通路とする請求項1〜9の何れかに記載の平
坦度の測定方法。
11. A test object is placed on a test object support member with the surface to be measured facing downward, an optical system is disposed below the support member, and a through hole formed in the support member is measured with the optical system. The method for measuring flatness according to claim 1, wherein the path is a light path between the point and the point.
【請求項12】 検査光を出射する光源と、 その検査光を測定対象面上の測定点にスポット状に集光
する手段と、 その集光された検査光の反射光により測定点の像を結像
させる光学系と、 その測定点の像を設定位置に結像させることができるよ
うに、その光学系の焦点位置を調節する手段と、 その焦点位置の調節量に基づき、測定対象面の測定点に
おける一定の基準位置からの凹凸量を記憶する手段と、 その測定点を変更する手段と、 複数の測定点における基準位置からの凹凸量に基づき測
定対象面の平坦度を演算する手段とを備える平坦度の測
定装置。
12. A light source for emitting inspection light, means for condensing the inspection light in a spot shape at a measurement point on a measurement target surface, and an image of the measurement point is formed by reflected light of the collected inspection light. An optical system to form an image, a means for adjusting a focal position of the optical system so that an image of the measurement point can be formed at a set position, and an amount of adjustment of the focal position. Means for storing the amount of unevenness from a fixed reference position at a measurement point, means for changing the measurement point, and means for calculating the flatness of the surface to be measured based on the amount of unevenness from the reference position at a plurality of measurement points. A flatness measuring device comprising:
【請求項13】 その測定点の像の撮像手段と、 その撮像された測定点の像の表示手段とを備える請求項
12に記載の平坦度の測定装置。
13. The flatness measuring apparatus according to claim 12, further comprising: an imaging unit for capturing an image of the measurement point; and a display unit for displaying the captured image of the measurement point.
【請求項14】 その焦点の自動調節機構を備える請求
項12又は13の何れかに記載の平坦度の測定装置。
14. The flatness measuring apparatus according to claim 12, further comprising an automatic focus adjustment mechanism.
【請求項15】 その測定点の自動変更機構を備える請
求項14に記載の平坦度の測定装置。
15. The flatness measuring apparatus according to claim 14, further comprising an automatic change mechanism of the measuring point.
【請求項16】 その光学系の上方に支持部材が配置さ
れ、その支持部材の上面に被検物が測定対象面を下面と
して載置可能とされ、その支持部材に光学系と測定点と
の間の光の通路となる通孔が形成されている請求項12
〜15の何れかに記載の平坦度の測定装置。
16. A support member is disposed above the optical system, and a test object can be placed on the upper surface of the support member with the surface to be measured facing the lower surface. 13. A through hole, which is a light passage between them, is formed.
16. The apparatus for measuring flatness according to any one of claims 15 to 15.
JP31540296A 1996-11-11 1996-11-11 Method and apparatus for measuring flatness Pending JPH10141933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31540296A JPH10141933A (en) 1996-11-11 1996-11-11 Method and apparatus for measuring flatness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31540296A JPH10141933A (en) 1996-11-11 1996-11-11 Method and apparatus for measuring flatness

Publications (1)

Publication Number Publication Date
JPH10141933A true JPH10141933A (en) 1998-05-29

Family

ID=18064966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31540296A Pending JPH10141933A (en) 1996-11-11 1996-11-11 Method and apparatus for measuring flatness

Country Status (1)

Country Link
JP (1) JPH10141933A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908639B1 (en) 2007-11-06 2009-07-21 한국표준과학연구원 Glass wafer shape measuring method and apparatus
KR101137465B1 (en) * 2010-03-29 2012-04-20 주식회사 두정테크 Manifold Flatness Inspection device for silencer.
WO2012057284A1 (en) * 2010-10-27 2012-05-03 株式会社ニコン Three-dimensional shape measurement device, three-dimensional shape measurement method, manufacturing method of structure, and structure manufacturing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100908639B1 (en) 2007-11-06 2009-07-21 한국표준과학연구원 Glass wafer shape measuring method and apparatus
KR101137465B1 (en) * 2010-03-29 2012-04-20 주식회사 두정테크 Manifold Flatness Inspection device for silencer.
WO2012057284A1 (en) * 2010-10-27 2012-05-03 株式会社ニコン Three-dimensional shape measurement device, three-dimensional shape measurement method, manufacturing method of structure, and structure manufacturing system

Similar Documents

Publication Publication Date Title
CN105301865B (en) Automatic focusing system
JP3634068B2 (en) Exposure method and apparatus
JP4130531B2 (en) Apparatus and method for measuring structure on transparent substrate
US7127098B2 (en) Image detection method and its apparatus and defect detection method and its apparatus
US5694214A (en) Surface inspection method and apparatus
CN101652626B (en) Geometry measurement instrument and method for measuring geometry
US5461237A (en) Surface-position setting apparatus
TWI464362B (en) Apparatus for measuring a height and obtaining a focused image of and object and method thereof
JP3477777B2 (en) Projection exposure apparatus and method
JP2002168793A (en) Surface defect inspection device and surface defect inspection method
JP3501672B2 (en) Surface image projection apparatus and method
JP2005070225A (en) Surface image projector and the surface image projection method
JP5096852B2 (en) Line width measuring apparatus and inspection method of line width measuring apparatus
US6768964B2 (en) Method and apparatus for determining dot-mark-forming position of semiconductor wafer
JP2007285953A (en) Depth measuring device
JP2001004491A (en) Apparatus for inspecting light beam
JPH10141933A (en) Method and apparatus for measuring flatness
JP2010243212A (en) Inclination detection method and inclination detection apparatus
JP2002228421A (en) Scanning laser microscope
JP4382315B2 (en) Wafer bump appearance inspection method and wafer bump appearance inspection apparatus
JP4892294B2 (en) Microhole depth measurement method
JPH0697046A (en) Exposing device
JPH05283310A (en) Method and apparatus for exposure
JPH08327327A (en) Method and apparatus for measuring bump height
JP4274868B2 (en) Height measurement method