[go: up one dir, main page]

JPH10140271A - Copper alloy pipe for steam piping - Google Patents

Copper alloy pipe for steam piping

Info

Publication number
JPH10140271A
JPH10140271A JP31017796A JP31017796A JPH10140271A JP H10140271 A JPH10140271 A JP H10140271A JP 31017796 A JP31017796 A JP 31017796A JP 31017796 A JP31017796 A JP 31017796A JP H10140271 A JPH10140271 A JP H10140271A
Authority
JP
Japan
Prior art keywords
copper alloy
pipe
coating layer
steam
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31017796A
Other languages
Japanese (ja)
Inventor
Taro Kuroda
太郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP31017796A priority Critical patent/JPH10140271A/en
Publication of JPH10140271A publication Critical patent/JPH10140271A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/08Coatings characterised by the materials used by metal

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a copper alloy pipe for steam piping, excellent in corrosion resistance to steam, by forming a pipe by the use of a Zn-containing copper alloy, specifying P content in the copper alloy, forming Sn and Cu-Sn alloy layers on the internal surface of the pipe, and specifying the roughness of the internal surface. SOLUTION: This copper alloy pipe for steam piping is composed of a copper alloy containing, by weight, 0.01-10% Zn and having <=0.04% P content, and a protective coating layer of 0.1-3μ, composed of Sn or/and Cu-Sn alloy layers, is formed on the internal surface, and also the center line average height (Ra) of the internal surface is <=1.2μ. Although the velocity of the diffusion of Zn in a base material through the coating layer is very high and Zn is diffused into the surface layer part of the coating layer soon after the formation of the coating layer, a compound oxide of Sn-Zn cannot be formed in this state and this compound oxide of Sn-Zn can be formed only when this pipe is used as a steam pipe and brought into contact with steam, and as a result, excellent corrosion resistance can be produced. When the above Ra exceeds 1.2μ, peeling of the protective coating layer becomes liable to occur.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、管内に水蒸気又は
/及びそのドレン水が通る内面被覆蒸気配管用銅合金管
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a copper alloy pipe for an inner surface coated steam pipe through which water vapor and / or its drain water passes.

【0002】[0002]

【従来の技術】従来、蒸気用配管としては、炭素鋼管、
ステンレス管、りん脱酸銅管(JISH3300 C1
220T)などが用いられてきており、特にりん脱酸銅
管は、曲げ加工性が優れることやコストが安価なことか
ら広く用いられてきている。
2. Description of the Related Art Conventionally, carbon steel pipes,
Stainless steel tube, phosphorus deoxidized copper tube (JISH3300 C1
220T) and the like, and in particular, phosphorous deoxidized copper tubes have been widely used because of their excellent bending workability and low cost.

【0003】[0003]

【発明が解決しようとする課題】しかし、りん脱酸銅管
を使用した場合、管内に通す水蒸気による腐食が起こる
ことがあった。この腐食は水蒸気中の酸素濃度が高い場
合や、水蒸気の流れが速い場合に起こることが多い。一
方、給水・給湯用配管として、内面にSnめっきを施し
銅イオン溶出抑制効果をもたせた銅合金管が用いられて
いる(特開平7−118873号公報)。そこで、この
ようなSnめっき銅合金管を蒸気用配管として用い、水
蒸気に対する耐食性をもたせることが当然考えられる
が、給水・給湯が管内を流通する環境と蒸気が流通する
環境では腐食環境が全く異なる、すなわち、前者の環境
では管内面が接するのは液相のみであり、温度も高くと
も100℃まで(通常は60〜80℃)であるが、後者
の環境では温度が高く(100℃以上の場合がほとん
ど)、気相又は気相と液相の混合相が接するという違い
があるため、上記公報のSnめっき銅合金管を用いたと
しても、ほとんど効果がないことが判明した。
However, when a phosphorus deoxidized copper tube is used, corrosion due to water vapor passing through the tube may occur. This corrosion often occurs when the oxygen concentration in the water vapor is high or when the flow of the water vapor is fast. On the other hand, as a water supply / hot water supply pipe, a copper alloy pipe having an inner surface provided with an Sn plating and having a copper ion elution suppressing effect is used (Japanese Patent Application Laid-Open No. Hei 7-118873). Therefore, it is naturally conceivable to use such an Sn-plated copper alloy pipe as a pipe for steam so as to have corrosion resistance to steam. That is, in the former environment, the inner surface of the tube is in contact only with the liquid phase and the temperature is up to 100 ° C. (normally 60 to 80 ° C.), but in the latter environment the temperature is high (100 ° C. or more). In most cases), there is a difference that the gas phase or the mixed phase of the gas phase and the liquid phase is in contact with each other. Therefore, it has been found that the use of the Sn-plated copper alloy tube of the above publication has little effect.

【0004】本発明は、上記従来の問題点に鑑みてなさ
れたもので、水蒸気に対する耐食性に優れた蒸気配管用
銅合金管を得ることを目的とする。
[0004] The present invention has been made in view of the above-mentioned conventional problems, and has as its object to obtain a copper alloy pipe for steam piping having excellent corrosion resistance to steam.

【0005】[0005]

【課題を解決するための手段】上記の目的のもと、本発
明者が種々研究を行った結果、Znを含有する銅合金か
ら管を形成するとともにその銅合金中のPの含有量を規
制し、さらに、管の内面にSn又は/及びCu−Sn合
金層を形成し、かつ、その内表面の中心線平均粗度(R
a)を規制することにより、水蒸気に対して耐食性が大
きく向上することを見い出し、本発明を完成するに至っ
た。
Based on the above-mentioned object, the present inventor has conducted various studies, and as a result, formed a tube from a copper alloy containing Zn and regulated the P content in the copper alloy. Further, a Sn or / and Cu-Sn alloy layer is formed on the inner surface of the tube, and the center line average roughness (R
By controlling a), it was found that the corrosion resistance against water vapor was greatly improved, and the present invention was completed.

【0006】すなわち、本発明に関わる蒸気配管用銅合
金管は、Znを0.01〜10wt%含有し、P含有量
が0.04%以下の銅合金管からなり、その内面に0.
1〜3μmのSn又は/及びCu−Sn合金層からなる
保護被覆層を有し、かつ、その内表面の中心線平均粗度
(Ra)が1.2μm以下であることを特徴とする。
That is, the copper alloy tube for steam piping according to the present invention comprises a copper alloy tube containing 0.01 to 10% by weight of Zn and having a P content of 0.04% or less.
It has a protective coating layer made of a Sn or / and Cu-Sn alloy layer of 1 to 3 µm, and the center line average roughness (Ra) of its inner surface is 1.2 µm or less.

【0007】[0007]

【発明の実施の形態】本発明における耐食性向上のメカ
ニズムは、銅合金管母材に含まれるZnが、被覆層であ
るSn又は/及びCu−Sn合金層中を拡散して被覆層
表面に達し、被覆層表層部で安定なSn−Znの複合酸
化物の保護被覆を形成し、これが耐食性を向上させると
いうものである。母材中のZnが被覆層中を拡散する速
度は非常に速く、被覆層形成後間もなく被覆層表層部に
Znが拡散してくる。しかしそのままではSn−Znの
複合酸化物は形成されず、蒸気配管として使用し水蒸気
に触れて初めてSn−Znの複合酸化物が形成され、抜
群の耐食性を示すようになる。従って、Zn含有銅合金
のみで被覆層を有しない管を用いても効果はなく、Sn
又は/及びCu−Sn合金層以外の被覆層を用いても効
果がなく、また、Znを含有しない銅合金を管母材とし
て使用しても効果がない。
BEST MODE FOR CARRYING OUT THE INVENTION The mechanism of the improvement of corrosion resistance in the present invention is that Zn contained in a copper alloy pipe base material diffuses in the coating layer Sn and / or Cu-Sn alloy layer to reach the coating layer surface. A protective coating of a stable Sn—Zn composite oxide is formed on the surface layer of the coating layer, and this improves the corrosion resistance. The rate at which Zn in the base material diffuses in the coating layer is very fast, and Zn diffuses into the surface layer of the coating layer soon after the formation of the coating layer. However, the composite oxide of Sn-Zn is not formed as it is, and the composite oxide of Sn-Zn is formed only when it is used as a steam pipe and comes into contact with water vapor, and exhibits excellent corrosion resistance. Therefore, there is no effect even when a tube containing only the Zn-containing copper alloy and having no coating layer has no effect.
And / or using a coating layer other than the Cu-Sn alloy layer has no effect, and using a copper alloy containing no Zn as a tube base has no effect.

【0008】そして、銅合金母材中のZn濃度が0.0
1%以下では明確な効果がなく、10%を超えて含有す
ると管そのものの応力腐食割れが起こるため、Zn含有
量は0.01〜10%の範囲内に規制する必要がある。
また、Sn又は/及びCu−Sn合金層の厚さが0.1
μm以下では明確な効果がなく、3μmを越えると効果
が飽和してコスト高となるだけであるので、被覆層の厚
さは0.1〜3μmとする。さらに、被覆層の中心線平
均粗度(Ra)が1.2μmを超えると、生成したSn
−Znの複合酸化物の保護皮膜が物理的に剥げやすくな
り、効果が薄れるため、中心線平均粗度(Ra)は1.
2 μm以下とする必要がある。
When the Zn concentration in the copper alloy base material is 0.0
If the content is less than 1%, there is no clear effect, and if the content exceeds 10%, stress corrosion cracking of the tube itself occurs. Therefore, it is necessary to regulate the Zn content within the range of 0.01 to 10%.
Further, the thickness of the Sn or / and Cu-Sn alloy layer is 0.1
When the thickness is less than μm, no clear effect is obtained. When the thickness exceeds 3 μm, the effect is saturated and only the cost is increased. Further, when the center line average roughness (Ra) of the coating layer exceeds 1.2 μm, the generated Sn
Since the protective film of the composite oxide of -Zn is easily peeled off physically and the effect is reduced, the center line average roughness (Ra) is 1.
It needs to be 2 μm or less.

【0009】本発明の銅合金管の被覆層は、Sn又は/
及びCu−Sn合金層である必要があるが、これは、S
n層、Cu−Sn合金層、あるいはSnとCu−Sn合
金の混合層のいずれかを意味するものである。使用当初
はSnのみあるいはSnとCu−Sn合金の混合層であ
っても、使用に伴い被覆層全体がCu−Sn合金層へと
変化する。銅合金管の内面に被覆層を形成する方法とし
ては、例えば、無電解Snめっき液をZn含有銅合金管
内に流通して被覆する方法や、溶融SnをZn含有銅合
金管内に通す方法などが考えられる。この際、被覆後の
管内面の中心線平均粗度Raを1.2μm以下とするこ
とが重要となるが、そのためには、被覆前の銅合金管内
面の中心線表面粗度Raを1.2μm以下としておく必
要がある。
[0009] The coating layer of the copper alloy tube of the present invention is made of Sn or /
And Cu—Sn alloy layer, which is
It means any of an n layer, a Cu-Sn alloy layer, and a mixed layer of Sn and a Cu-Sn alloy. At the beginning of use, even if only Sn or a mixed layer of Sn and Cu-Sn alloy is used, the entire coating layer changes to a Cu-Sn alloy layer with use. As a method of forming a coating layer on the inner surface of the copper alloy tube, for example, a method of flowing an electroless Sn plating solution through the Zn-containing copper alloy tube to coat the same, a method of passing molten Sn through the Zn-containing copper alloy tube, and the like. Conceivable. At this time, it is important that the center line average roughness Ra of the inner surface of the tube after coating is 1.2 μm or less. For this purpose, the center line surface roughness Ra of the inner surface of the copper alloy tube before coating is set to 1. It is necessary to keep it at 2 μm or less.

【0010】本発明の銅合金管母材は、Znを所定量含
有しておれば効果を発揮し、Znとともに他の成分が何
種類共存しても問題はない。従って、本発明銅合金管を
製造する際に、母材の製造過程でZn含有銅合金中の脱
酸素剤としてP、Si、Mg、Bなどを添加することが
できる。但し、P量が0.04%を超えると、Sn−Z
nの複合酸化物の形成には何ら問題はないものの、被覆
層と母材の間で剥離が起こりやすくなるため、P量は
0.04%以下でなければならない。なお、Si、Mg
は0.1%を超えると加工が難しくなるため、合計で
0.1%以下が好ましい。また、母材の強度向上のた
め、Ni、Sn、Fe、Mn、Cr、Co、Tiなども
合計で2%以下添加することができる。合計で2%を超
えると加工性が低下する。
[0010] The copper alloy tube base material of the present invention exhibits an effect as long as it contains a predetermined amount of Zn, and there is no problem even if several types of other components coexist with Zn. Therefore, when manufacturing the copper alloy tube of the present invention, P, Si, Mg, B, etc. can be added as a deoxidizing agent in the Zn-containing copper alloy during the manufacturing process of the base material. However, if the P content exceeds 0.04%, Sn-Z
Although there is no problem in the formation of the composite oxide of n, the amount of P must be 0.04% or less because separation easily occurs between the coating layer and the base material. Note that Si, Mg
If the content exceeds 0.1%, processing becomes difficult, so the total content is preferably 0.1% or less. Further, in order to improve the strength of the base material, Ni, Sn, Fe, Mn, Cr, Co, Ti and the like can be added in a total of 2% or less. If it exceeds 2% in total, the workability is reduced.

【0011】[0011]

【実施例】次に、本発明に係る銅合金管について、蒸気
に対する腐食試験を行った結果を比較例と比較して説明
する。
Next, the results of a corrosion test performed on steam for a copper alloy tube according to the present invention will be described in comparison with a comparative example.

【0012】表1に示す各種成分の銅合金の鋳塊(外径
300mm、長さ500mmの円柱)を製造して、押出
→圧延→抽伸の工程で外径15mm×肉厚1mm×長さ
5mの管寸法に仕上げた。この時、最終抽伸時にダイス
とプラグを選定して、管内表面の平均表面粗度をそれぞ
れ変化させた。これらの管を用い、下記に示す無電解め
っき工程で管内面に様々なめっき厚さのSnめっきを施
し、供試材とした。 <無電解めっき工程> 脱脂→水洗→酸洗→水洗→めっき→水洗→乾燥 脱脂:アルカリ脱脂液を管内に流通させる。 水洗:水道水を管内に流通させる。 酸洗:希釈酸を管内に流通させる。 めっき:無電解Snめっき液(メルテックス社製、エン
プレートTIN−421スペシャル)を管内に流通させ
る。 乾燥:常温風を管内に流通させる。
Ingots of copper alloys of various components shown in Table 1 (cylinders having an outer diameter of 300 mm and a length of 500 mm) were manufactured and subjected to the steps of extrusion → rolling → drawing to have an outer diameter of 15 mm × wall thickness 1 mm × length 5 m. Finished with tube dimensions of At this time, a die and a plug were selected at the time of the final drawing, and the average surface roughness of the inner surface of the tube was changed. Using these tubes, Sn plating of various plating thicknesses was applied to the inner surfaces of the tubes in an electroless plating process described below to obtain test materials. <Electroless plating process> Degreasing → washing with water → pickling → washing with water → plating → washing with water → drying Degreasing: flowing an alkaline degreasing solution through the tube. Rinsing: Tap water is distributed in the pipe. Pickling: Dilute acid is passed through the tube. Plating: An electroless Sn plating solution (Enplate TIN-421 Special, manufactured by Meltex Co., Ltd.) is passed through the tube. Drying: Normal temperature air is passed through the tube.

【0013】この供試材の管の両端からそれぞれ50c
mを切り出し、半割りにして、Snめっき膜厚、内表面
の中心線平均粗度を測定した。なお、Snめっき膜厚は
蛍光X線膜厚測定装置(セイコー電子工業株式会社製、
SFT−156A)を用い、内表面の中心線平均粗度は
タリサーフ6(ランクテーラーボブソン社製)を用い測
定し、いずれも両端任意10点の合計20点を測定し、
その平均値をその試験材のSnめっき膜厚、内表面の中
心線平均粗度とした。その結果を表1に示す。
[0013] From each end of the tube of this test material 50c
m was cut out and divided in half, and the Sn plating film thickness and the center line average roughness of the inner surface were measured. In addition, the Sn plating film thickness is measured by a fluorescent X-ray film thickness measuring device (manufactured by Seiko Electronics Industries,
Using SFT-156A), the center line average roughness of the inner surface was measured using Talysurf 6 (manufactured by Rank Taylor Bobson), and a total of 20 points were measured at any 10 points on both ends,
The average value was defined as the Sn plating film thickness of the test material and the center line average roughness of the inner surface. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】また、各供試材とも残りの4mは1m×4
本に切断し、下記に示す蒸気環境で、期間について4水
準の腐食試験に供した。 <蒸気腐食試験>電気伝導度が4〜6μS/cm、pH
6.5〜7.5のイオン交換水を加熱して温度180
℃、酸素濃度1000ppmの蒸気を発生させ、蒸気流
量4000リットル/時間の流量で3カ月間、6カ月
間、1年間、2年間、供試管内を流通させ腐食試験を実
施した。腐食試験の模式図を図1に示す(イオン交換水
を加熱炉1で加熱して蒸気を発生させ、その蒸気をヘッ
ダー2を通して各供試管Sに分配し、弁3を介して大気
へ排気)。
The remaining 4 m of each test material is 1 m × 4.
It was cut into a book and subjected to a corrosion test of four levels for a period in the steam environment shown below. <Steam corrosion test> Electric conductivity is 4 to 6 μS / cm, pH
Heat the deionized water of 6.5 to 7.5 to a temperature of 180
A steam was generated at a flow rate of 4000 liters / hour at a flow rate of 4000 liters / hour at a temperature of 1000 ° C. for 3 months, 6 months, 1 year, 2 years, and a corrosion test was conducted. A schematic diagram of the corrosion test is shown in FIG. 1 (ion-exchanged water is heated in a heating furnace 1 to generate steam, and the steam is distributed to each test tube S through a header 2 and exhausted to the atmosphere via a valve 3). .

【0016】評価は所定時間蒸気を流通させた供試管を
半割りにして、目視により被覆層の状態を見るとともに
最大腐食深さを測定した。その結果を表2に示す。
In the evaluation, the test tube through which steam was circulated for a predetermined time was halved, the state of the coating layer was visually observed, and the maximum corrosion depth was measured. Table 2 shows the results.

【0017】[0017]

【表2】 [Table 2]

【0018】表2から明らかなように、母材に所定量の
Znを含有し、Pが所定量以下に規制され、所定のめっ
き厚さを有し、さらに、所定の内表面中心線平均粗度を
有している実施例1〜10はいずれも、2年の腐食試験
においても全く剥離は見られず、腐食も全く見られな
い。
As apparent from Table 2, the base material contains a predetermined amount of Zn, P is regulated to a predetermined amount or less, has a predetermined plating thickness, and has a predetermined inner surface center line average roughness. In all of Examples 1 to 10 having a degree, no peeling was observed at all in the two-year corrosion test, and no corrosion was observed at all.

【0019】一方、Znを含有していない比較例11、
12は、Pが0.04%以下で所定のめっき厚さと内表
面中心線平均粗度を有していても、皮膜の剥離及び腐食
が進行している。また、Znを含有していても0.01
%に満たない比較例13や、めっき厚さが0.1μmに
満たない比較例14では、3カ月間では皮膜の剥離が見
られないものの、6カ月間では皮膜の剥離及び腐食が見
られるようになる。さらに、所定のZn、P含有量や、
めっき厚さを有していても内表面中心線平均粗度が1.
2μmを超える比較材15では、皮膜の剥離及び腐食が
見られる。所定のZn含有量、めっき厚さ、内表面中心
線平均粗度を有していてもP含有量が0.04%を超え
る供試材16では、皮膜の剥離及び腐食が見られる。被
覆層を全く有しない供試材17では、やはり腐食が起こ
っている。
On the other hand, Comparative Example 11 containing no Zn,
In No. 12, even if P is 0.04% or less and has a predetermined plating thickness and an inner surface center line average roughness, peeling and corrosion of the film are progressing. Further, even if Zn is contained, 0.01
% In Comparative Example 13 and Comparative Example 14 in which the plating thickness is less than 0.1 μm, although no peeling of the film was observed in 3 months, peeling and corrosion of the film were observed in 6 months. become. Furthermore, predetermined Zn and P contents,
The inner surface center line average roughness is 1.
In the case of the comparative material 15 exceeding 2 μm, peeling and corrosion of the film are observed. Even though the Zn content, the plating thickness, and the inner surface center line average roughness are predetermined, the specimen 16 having a P content exceeding 0.04% exhibits peeling and corrosion of the coating. In the test material 17 having no coating layer, corrosion has occurred.

【0020】[0020]

【発明の効果】本発明によれば、Zn含有銅合金管内面
に所定のSn又は/及びCu−Sn合金被覆を施し、そ
の内表面中心線平均粗度を規定することにより、管内に
水蒸気又は/及びそのドレン水が通る蒸気配管として格
段に耐食性が向上し、その寿命と信頼性を大きく増大す
ることができる。
According to the present invention, a predetermined Sn or / and Cu-Sn alloy coating is applied to the inner surface of a Zn-containing copper alloy tube, and the center line average roughness of the inner surface is defined, whereby steam or water is introduced into the tube. And / or as a steam pipe through which the drain water passes, the corrosion resistance is remarkably improved, and the life and reliability thereof can be greatly increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】腐食試験の模式図である。FIG. 1 is a schematic diagram of a corrosion test.

【符号の説明】[Explanation of symbols]

1 加熱炉 2 ヘッダー 3 弁 S 供試管 DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Header 3 Valve S Test tube

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Znを0.01〜10wt%含有し、P
含有量が0.04%以下の銅合金管からなり、その内面
に0.1〜3μmのSn又は/及びCu−Sn合金層か
らなる保護被覆層を有し、かつ、その内表面の中心線平
均粗度(Ra)が1.2μm以下であることを特徴とす
る蒸気配管用銅合金管。
1. The method according to claim 1, wherein Zn is contained in an amount of 0.01 to 10 wt%.
A copper alloy tube having a content of 0.04% or less, a protective coating layer of 0.1 to 3 μm of Sn or / and Cu—Sn alloy layer on the inner surface, and a center line of the inner surface. A copper alloy pipe for steam piping, wherein the average roughness (Ra) is 1.2 μm or less.
JP31017796A 1996-11-05 1996-11-05 Copper alloy pipe for steam piping Pending JPH10140271A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31017796A JPH10140271A (en) 1996-11-05 1996-11-05 Copper alloy pipe for steam piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31017796A JPH10140271A (en) 1996-11-05 1996-11-05 Copper alloy pipe for steam piping

Publications (1)

Publication Number Publication Date
JPH10140271A true JPH10140271A (en) 1998-05-26

Family

ID=18002107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31017796A Pending JPH10140271A (en) 1996-11-05 1996-11-05 Copper alloy pipe for steam piping

Country Status (1)

Country Link
JP (1) JPH10140271A (en)

Similar Documents

Publication Publication Date Title
JPS61186164A (en) Production of aluminum heat exchanger
JP2517727B2 (en) Method for manufacturing stainless steel member for semiconductor manufacturing equipment
JP2001247923A (en) Pitting corrosion resistant copper base alloy pipe material
JP2009235428A (en) Copper alloy member and heat-exchanger
EP3269841A1 (en) Plated steel sheet and method for manufacturing same
KR940010772B1 (en) Oxidized inner tube and its manufacturing method
JPH10140271A (en) Copper alloy pipe for steam piping
US4351678A (en) Method of making corrosion resistant phosphorous copper or phosphorous copper alloy pipes
JPS621856A (en) Corrosion resistant copper-base member and its manufacture
SE449110B (en) PROCEDURE FOR MANUFACTURING NUCLEAR FIREPLACES OF COPPER BARRIER TYPE
JP2001140081A (en) Copper or copper alloy tube with corrosion resistant film
JP2954555B2 (en) Heat and corrosion resistant multi-layer plated steel
JP3341242B2 (en) Corrosion resistant copper tube and its manufacturing method
JP3379769B2 (en) Manufacturing method of corrosion resistant joints
WO1996028686A1 (en) Copper alloy pipe for water/hot water supply equipped with protective film on its inner surface, production thereof, and heat-exchanger for hot water supply
JPH0517292B2 (en)
JP2818543B2 (en) Inner surface Sn-plated soft copper tube and method of manufacturing the same
JP2835271B2 (en) Copper alloy tube with inner protective film for hot and cold water supply and method for producing the same
EP1192295B1 (en) Article exhibiting improved resistance to formicary corrosion
JP2998924B2 (en) Inner surface coated copper or copper alloy tube and method for producing the same
JP2001183089A (en) Anti-corrosion copper or copper alloy pipe having bent segment, its manufacturing method and water supplying and hot water supplying device
JP2017110246A (en) Copper pipe
JP3265140B2 (en) Inner surface coated copper or copper alloy tube and method for producing the same
JP2003293153A (en) Copper or copper alloy member, methods for producing them, copper or copper alloy member coated with ceramic film, and heat exchanger for hot water supply
JP2016044345A (en) Conductive material for connection part excellent in minute slide abrasion resistance