JPH10134796A - Battery electrode and secondary battery using the same - Google Patents
Battery electrode and secondary battery using the sameInfo
- Publication number
- JPH10134796A JPH10134796A JP8286541A JP28654196A JPH10134796A JP H10134796 A JPH10134796 A JP H10134796A JP 8286541 A JP8286541 A JP 8286541A JP 28654196 A JP28654196 A JP 28654196A JP H10134796 A JPH10134796 A JP H10134796A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- carbon
- carbon body
- battery
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Carbon And Carbon Compounds (AREA)
- Inorganic Fibers (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はリチウムを吸蔵放出
する炭素体を用いた電池用電極、及びそれを用いた二次
電池に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a battery using a carbon body that stores and releases lithium, and a secondary battery using the same.
【0002】[0002]
【従来の技術】炭素体へのリチウムのインターカレーシ
ョンを利用した二次電池は、金属リチウムを用いた二次
電池の安全性の問題を克服でき、かつ高容量二次電池と
なることから、新型高性能電池として注目されている。2. Description of the Related Art A secondary battery using lithium intercalation in a carbon body can overcome the safety problem of a secondary battery using metallic lithium and is a high capacity secondary battery. It is attracting attention as a new high-performance battery.
【0003】このような二次電池に用いられる炭素体と
しては、グラファイト層状構造が発達し、平均面間距離
が狭い結晶性炭素体と、層状構造が発達しておらず、平
均面間距離の広い非晶性炭素体に大きく分けることがで
きる。As a carbon body used in such a secondary battery, a crystalline carbon body having a graphite layered structure developed and having a small average interplanar distance, and a crystalline carbon body having a small layered structure and having an average interplanar distance having a small average plane distance have been developed. It can be broadly divided into broad amorphous carbon bodies.
【0004】結晶性炭素体を用いた場合には、充放電に
伴い、炭素体が大きく膨張収縮を繰り返すため、電極の
劣化が起こりサイクル特性が悪いという課題がある。When a crystalline carbon body is used, the carbon body repeatedly undergoes expansion and contraction during charging and discharging, which causes a problem that the electrode is deteriorated and the cycle characteristics are poor.
【0005】一方、近年、有機物の焼成体のような(0
02)面の面間距離(d)の大きな非晶性炭素体にもイ
ンターカレーションが可能なことが判明し、そのような
有機物焼成体へのインターカレーションを利用した高性
能二次電池が実現している。しかし、非晶性炭素体を用
いた場合には、炭素体の膨張収縮は押さえられサイクル
特性はよいものの、一般に面間距離が広いため、一般に
密度が小さく、電池缶への充填量が少なくなるという問
題がある。On the other hand, in recent years, (0)
It has been found that intercalation is possible even in an amorphous carbon body having a large interplanar distance (d) between planes 02), and a high-performance secondary battery utilizing such intercalation into an organic fired body has been developed. Has been realized. However, when an amorphous carbon body is used, although the expansion and contraction of the carbon body is suppressed and the cycle characteristics are good, since the face-to-face distance is generally large, the density is generally small and the filling amount in the battery can is reduced. There is a problem.
【0006】[0006]
【発明が解決しようとする課題】本発明は、かかる従来
技術の欠点を解消しようというものであり、膨張収縮率
が小さく、かつ面間距離の小さな炭素体を用いた2次電
池、及びそのための電池用電極を提供することを目的と
する。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art, and it is an object of the present invention to provide a secondary battery using a carbon body having a small expansion / shrinkage ratio and a small distance between planes. An object is to provide an electrode for a battery.
【0007】[0007]
【課題を解決するための手段】本発明は、上記課題を解
決するために以下の構成を有するものである。SUMMARY OF THE INVENTION The present invention has the following arrangement to solve the above-mentioned problems.
【0008】(1)充放電においてLiイオンが吸蔵放出
される炭素体を用いた電極において、放電時の該炭素体
の(002)面の面間距離が0.365nm以下であ
り、かつ該炭素体からなる電極の、充放電に伴う電極厚
みの膨張収縮率が8.0%以下であることを特徴とする
電池用電極。(1) In an electrode using a carbon body in which Li ions are inserted and extracted during charging and discharging, the distance between the (002) planes of the carbon body during discharge is 0.365 nm or less, and An electrode for a battery, wherein a rate of expansion and contraction of an electrode thickness due to charge and discharge of the body electrode is 8.0% or less.
【0009】(2)上記(1)記載の電極を用いたこと
を特徴とする二次電池。(2) A secondary battery using the electrode according to (1).
【0010】[0010]
【発明の実施の形態】一般に充放電に伴う膨張収縮率の
大きい電極は、サイクル劣化が大きく、膨張収縮率を考
慮して電池缶に入れる必要があるため、体積あたりの容
量は小さくなってしまう。また膨張収縮率の小さな炭素
体は一般に(002)面の面間距離が大きく、密度が小
さいため電池での充填密度が小さくなるという課題があ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, an electrode having a large expansion and contraction rate due to charge and discharge has a large cycle deterioration, and it is necessary to put the electrode in a battery can in consideration of the expansion and contraction rate. . In addition, a carbon body having a small expansion and contraction rate generally has a large inter-plane distance of the (002) plane and a small density, and thus has a problem that the packing density in a battery is reduced.
【0011】本発明においては適度な結晶化度の炭素体
を用いることにより、体積あたりの容量が高く、かつ膨
張収縮率の低減と不可逆容量の低減を達成できることを
見いだした。In the present invention, it has been found that by using a carbon body having an appropriate degree of crystallinity, a capacity per volume is high, and a reduction in expansion / shrinkage rate and a reduction in irreversible capacity can be achieved.
【0012】本発明における充放電に伴う膨張収縮率の
変化とは、電極の厚みを、充電状態と放電状態でそれぞ
れ不活性ガス中にて測定し、電極厚みから集電体の厚み
を引いた厚みの変化率を求めることで得られる。In the present invention, the change in expansion / shrinkage rate due to charging / discharging means that the thickness of an electrode is measured in an inert gas in a charged state and in a discharged state, and the thickness of the current collector is subtracted from the electrode thickness. It can be obtained by determining the rate of change in thickness.
【0013】本発明では炭素体としては、(002)面
の面間距離(d)が0.365nm以下である炭素体が
用いられる。dは吸収補正、偏光補正、原子散乱因子に
関する補正を行った後、(002)回折線ピーク位置よ
り以下の式を用いて求めることができる。In the present invention, a carbon body having a distance (d) between planes (002) of 0.365 nm or less is used as the carbon body. d can be obtained from the (002) diffraction line peak position using the following equation after performing absorption correction, polarization correction, and correction for the atomic scattering factor.
【0014】d=λ/2sin θ ただしλ;X線の波長(CuKα線の場合、0.154
nm)、θ;ブラッグ角である。本発明でいうdは、充
電前、または放電終了時の値である。また粉砕処理をし
ていない炭素繊維で測定した場合と粉砕処理を施した粉
末状炭素繊維とではdの値は若干異なるが、本発明でい
うdとは、粉末状にした炭素繊維のX線回折結果から求
められる値である。D = λ / 2 sin θ where λ; wavelength of X-ray (0.154 in case of CuKα ray)
nm), θ; Bragg angle. D in the present invention is a value before charging or at the end of discharging. In addition, the value of d is slightly different between the case of measuring the carbon fiber that has not been pulverized and the powdered carbon fiber that has been subjected to the pulverization treatment. However, d in the present invention refers to the X-ray of the powdered carbon fiber. This is a value obtained from the diffraction result.
【0015】本発明における炭素質材料としては、特に
限定されるものではなく、一般に有機物を焼成したもの
が用いられ、例えば、ポリアクリロニトリル(PA
N)、石炭もしくは石油などのピッチ、セルロース、ポ
リビニルアルコール、リグニン、ポリ塩化ビニル、ポリ
アミド、ポリイミド、フェノール樹脂、フルフリルアル
コールなどを焼成したものがあげられる。また、上記有
機物との共重合体、例えば、アクリロニトリルとスチレ
ン類、マレイミド類との共重合体から得られる炭素体も
好ましく用いられる。また炭素体の形態としては、粉
末、繊維状等のいずれでもよい。これらの炭素体の中で
電極及び電池の特性に応じて、その特性を満たす炭素体
が適宣選択される。上記炭素体の中でアルカリ金属塩を
含む非水電解液を用いた二次電池の負極に使用する場合
には、PAN系炭素繊維、PAN共重合体系炭素繊維、
ピッチ系炭素繊維などが好ましく用いられる。[0015] The carbonaceous material in the present invention is not particularly limited, and a material obtained by baking an organic substance is generally used, for example, polyacrylonitrile (PA).
N), fired pitch such as coal or petroleum, cellulose, polyvinyl alcohol, lignin, polyvinyl chloride, polyamide, polyimide, phenol resin, and furfuryl alcohol. Further, a carbon body obtained from a copolymer with the above organic substance, for example, a copolymer of acrylonitrile with styrenes and maleimides is also preferably used. Further, the form of the carbon body may be any of powder, fiber, and the like. Among these carbon bodies, a carbon body satisfying the characteristics is appropriately selected according to the characteristics of the electrode and the battery. When used for a negative electrode of a secondary battery using a non-aqueous electrolyte containing an alkali metal salt in the carbon body, a PAN-based carbon fiber, a PAN copolymer-based carbon fiber,
Pitch-based carbon fibers and the like are preferably used.
【0016】本発明では、上述の通り炭素繊維が好まし
く用いられるが、より好ましくは、これらの炭素繊維を
粉末化した炭素体が使用される。このような炭素体とし
ては平均長さが1mm以下、より好ましくは50μm以
下が用いられる。繊維長さが1mmを越えると、スラリ
ー化してシート状の電極を形成する場合に塗工性が不十
分となる場合があり、また電極とした場合には正負極間
の短絡が発生しやすくなる傾向がある。In the present invention, carbon fibers are preferably used as described above, and more preferably, carbon bodies obtained by pulverizing these carbon fibers are used. As such a carbon body, an average length of 1 mm or less, more preferably 50 μm or less is used. If the fiber length exceeds 1 mm, the coating properties may be insufficient when the slurry is formed to form a sheet-like electrode, and when the electrode is used, a short circuit between the positive and negative electrodes is likely to occur. Tend.
【0017】繊維の平均長さは、例えば,SEM等の顕
微鏡観察によって20個以上の炭素体の繊維方向の長さ
を測定することにより求められる。炭素繊維を1mm以
下に切断または粉砕するには種々の微粉砕機を使用する
ことができる。The average length of the fiber can be determined, for example, by measuring the length in the fiber direction of 20 or more carbon bodies by microscopic observation such as SEM. Various pulverizers can be used to cut or pulverize the carbon fiber to 1 mm or less.
【0018】また、本発明で炭素繊維を用いる場合、炭
素繊維表面の酸素原子濃度が高いと不可逆容量が増加す
る。これは炭素繊維表面での副反応によると考えられ
る。このため、炭素繊維表面における炭素原子に対する
酸素原子の割合を6%以下にする事が望ましい。When carbon fibers are used in the present invention, the irreversible capacity increases when the concentration of oxygen atoms on the surface of the carbon fibers is high. This is considered to be due to a side reaction on the carbon fiber surface. For this reason, it is desirable that the ratio of oxygen atoms to carbon atoms on the carbon fiber surface be 6% or less.
【0019】本発明における表面付近における炭素原子
に対する酸素原子の割合は、X線電子分光法によって求
めることが出来る。より具体的には、X線源として例え
ばマグネシウムのKα線を試料に照射し、試料表面から
出た光電子をアナライザーでエネルギー分割して検出す
る。物質中の束縛電子の結合エネルギーがスペクトルと
して得られ、原子軌道のエネルギー値から表面付近の構
成元素に関する情報が得られる。In the present invention, the ratio of oxygen atoms to carbon atoms near the surface can be determined by X-ray electron spectroscopy. More specifically, a sample is irradiated with, for example, magnesium Kα ray as an X-ray source, and photoelectrons emitted from the sample surface are energy-divided and detected by an analyzer. The binding energy of bound electrons in a substance is obtained as a spectrum, and information on constituent elements near the surface can be obtained from the energy value of atomic orbitals.
【0020】本発明の炭素体を用いた電極には、集電効
果を高めるために金属を集電体として用いることが可能
である。この金属集電体としては、箔状、繊維状、メッ
シュ状など、特に限定されるものではないが、例えば、
箔状金属集電体を用いる場合、金属箔状にスラリを塗布
することによりシート状電極が作製される。シート状電
極には集電効果をさらに高めるため、導電材として、炭
素粉末、金属粉末などの導電性粉末を添加することも望
ましい。In the electrode using the carbon body of the present invention, a metal can be used as the current collector to enhance the current collecting effect. The metal current collector is not particularly limited, such as a foil shape, a fiber shape, and a mesh shape.
When a foil-like metal current collector is used, a sheet-like electrode is produced by applying a slurry to a metal foil. It is also desirable to add a conductive powder such as a carbon powder and a metal powder as a conductive material to the sheet-shaped electrode to further enhance the current collecting effect.
【0021】また本発明の炭素体を用いた電極における
炭素体の嵩密度は、0.8g/cm3 以上、1.6g/
cm3 以下が望ましい。0.8g/cm3 未満の場合、
体積あたりの電池容量が低下し、1.6g/cm3 を越
えると電解液がしみ込みにくく、また、膨張率も増加す
る傾向がある。かかる嵩密度は、加圧整形により、好ま
しく調整することができる。The bulk density of the carbon body in the electrode using the carbon body of the present invention is 0.8 g / cm 3 or more and 1.6 g / cm 3.
cm 3 or less is desirable. If less than 0.8 g / cm 3 ,
When the battery capacity per volume decreases, and exceeds 1.6 g / cm 3 , the electrolyte does not easily permeate, and the expansion coefficient tends to increase. Such bulk density can be preferably adjusted by pressure shaping.
【0022】本発明の炭素体から構成される電極は、各
種電池の活電極として利用可能であり、一次電池、二次
電池など、どのような電池に利用されるかは特に限定さ
れない。この中で、二次電池の負極に好ましく用いられ
る。特に好ましい二次電池としては過塩素酸リチウム、
硼フッ化リチウム、6フッ化リン・リチウムのようにア
ルカリ金属塩を含む非水電解液を用いた二次電池をあげ
ることができる。The electrode composed of the carbon body of the present invention can be used as an active electrode of various batteries, and there is no particular limitation on what kind of battery such as a primary battery or a secondary battery is used. Among them, it is preferably used for a negative electrode of a secondary battery. Particularly preferred secondary batteries are lithium perchlorate,
A secondary battery using a non-aqueous electrolyte containing an alkali metal salt such as lithium borofluoride and phosphorus / lithium hexafluoride can be given.
【0023】本発明の電極を負極に用いた場合、正極活
物質としては、人工あるいは天然の黒鉛粉末、フッ化カ
ーボン、金属酸化物などの無機化合物や有機高分子化合
物などが挙げられる。具体的には、アルカリ金属を含む
遷移金属酸化物や遷移金属カルコゲンなどの無機化合
物、ポリパラフェニレン、ポリフェニレンビニレン、ポ
リアニリン、ポリピロール、ポリチオフェンなどの共役
系高分子、ジスルフィド結合を有する高分子など、通常
の二次電池において用いられる正極を挙げることができ
る。これらの中で、リチウム塩を含む非水電解液を用い
た二次電池の場合には、コバルト、マンガン、モリブデ
ン、バナジウム、クロム、鉄、銅、チタンなどの遷移金
属酸化物や遷移金属カルコゲンが好ましく用いられる。
特にLiXCoO2 (0<x≦1.0)、LiX NiO
2 (0<x≦1.0)およびLiXCoY Ni1-Y O2
(0<x≦1.0、0<y≦1.0)などが、高電位、
安定性、長寿命という点から好ましい。When the electrode of the present invention is used for a negative electrode, examples of the positive electrode active material include artificial or natural graphite powder, inorganic compounds such as carbon fluoride and metal oxides, and organic polymer compounds. Specifically, inorganic compounds such as transition metal oxides and transition metal chalcogens containing alkali metals, conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polyaniline, polypyrrole, and polythiophene, and polymers having a disulfide bond are usually used. The positive electrode used in the secondary battery described above can be mentioned. Among these, in the case of a secondary battery using a non-aqueous electrolyte containing a lithium salt, a transition metal oxide or a transition metal chalcogen such as cobalt, manganese, molybdenum, vanadium, chromium, iron, copper, and titanium is used. It is preferably used.
Particularly, Li x CoO 2 (0 <x ≦ 1.0), Li x NiO
2 (0 <x ≦ 1.0) and Li x Co Y Ni 1-Y O 2
(0 <x ≦ 1.0, 0 <y ≦ 1.0), etc.
It is preferable in terms of stability and long life.
【0024】本発明の電極を用いた二次電池の電解液と
しては、特に限定されることなく従来の電解液が用いら
れ、例えば酸あるいはアルカリ水溶液、または非水溶媒
などが挙げられる。この中で、上述のアルカリ金属塩を
含む非水電解液からなる二次電池の電解液としては、プ
ロピレンカーボネート(PC)、エチレンカーボネート
(EC)、γ- ブチロラクトン(BL)、N- メチルピ
ロリドン(MP)、アセトニトリル(AN)、N,N−
ジメチルホルムアミド、ジメチルスルフォキシド、テト
ラヒドロフラン(THF)、1,3−ジオキソラン、ギ
酸メチル、スルホラン(SL)、オキサゾリドン、塩化
チオニル、1,2−ジメトキシエタン(DME)、ジエ
チレンカーボネート(DEC)、ジメチルカーボネート
(DMC)や、これらの誘導体や混合物などが好ましく
用いられる。The electrolytic solution of the secondary battery using the electrode of the present invention is not particularly limited, and a conventional electrolytic solution is used, and examples thereof include an acid or alkali aqueous solution and a non-aqueous solvent. Among these, propylene carbonate (PC), ethylene carbonate (EC), γ-butyrolactone (BL), N-methylpyrrolidone ( MP), acetonitrile (AN), N, N-
Dimethylformamide, dimethylsulfoxide, tetrahydrofuran (THF), 1,3-dioxolane, methyl formate, sulfolane (SL), oxazolidone, thionyl chloride, 1,2-dimethoxyethane (DME), diethylene carbonate (DEC), dimethyl carbonate (DMC), derivatives and mixtures thereof, and the like are preferably used.
【0025】電解液に含まれる電解質としては、アルカ
リ金属、特にリチウムのハロゲン化物、過塩素酸塩、チ
オシアン塩、ホウフッ化塩、リンフッ化塩、砒素フッ化
塩、アルミニウムフッ化塩、トリフルオロメチル硫酸塩
などが好ましく用いられる。本発明の電極を用いた二次
電池の用途としては、軽量かつ高容量で高エネルギー密
度の特徴を利用して、ビデオカメラ、パソコン、ワープ
ロ、ラジカセ、携帯電話などの携帯用小型電子機器に広
く利用可能である。The electrolyte contained in the electrolyte may be an alkali metal, especially lithium halide, perchlorate, thiocyanate, borofluoride, phosphorus fluoride, arsenic fluoride, aluminum fluoride, trifluoromethyl. Sulfates and the like are preferably used. The secondary battery using the electrode of the present invention is widely used in portable electronic devices such as a video camera, a personal computer, a word processor, a radio-cassette, a mobile phone, etc. by utilizing the features of light weight, high capacity, and high energy density. Available.
【0026】[0026]
【実施例】本発明の具体的実施態様を以下に実施例を持
って述べるが、本発明はこれに限定されるものではな
い。EXAMPLES Specific embodiments of the present invention will be described below with reference to examples, but the present invention is not limited thereto.
【0027】実施例1 炭素繊維(東レ製”トレカ”T-300 )を粉砕器を用いて
粉末化し、平均長さ30μmの粉末状炭素繊維を得た。
次に該粉末状炭素繊維を真空下で4時間,1400℃で
熱処理した。該炭素体の広角X線回折(カウンター法)
結果から求めた(002)面の面間距離は0.352n
mであった。表面付近の炭素原子に対する酸素原子の割
合は3%であった。Example 1 A carbon fiber ("Torayca" T-300 manufactured by Toray Industries, Inc.) was pulverized using a pulverizer to obtain a powdery carbon fiber having an average length of 30 μm.
Next, the powdered carbon fiber was heat-treated at 1400 ° C. for 4 hours under vacuum. Wide-angle X-ray diffraction of the carbon body (counter method)
The inter-plane distance of the (002) plane obtained from the result is 0.352 n
m. The ratio of oxygen atoms to carbon atoms near the surface was 3%.
【0028】次に上記粉末状炭素繊維を負極活物質とし
て用い、導電剤としてアセチレンブラック、結着剤とし
てポリフッ化ビニリデンを使用した。負極活物質:導電
剤:結着剤の重量比率を80:5:15とした負極合剤
にN−メチルピロリドンを加えて混練し、スラリ化した
後、該スラリを銅箔状に塗布し、乾燥した後、ローラー
プレスして銅箔に圧着し、負極電極を作製した。負極電
極において、炭素繊維の嵩密度は、1.2g/cm3 で
あった。電解液には6フッ化リンリチウムを含むプロピ
レンカーボネートとジメチルカーボネートの混合溶液
(1モル濃度)を用い対極及び参照極には金属リチウム
箔を用い、3極式セルで評価した。放電容量は炭素繊維
重量あたりの電流密度61.5mA/gの定電流で、0
V(vs.Li+ /Li)まで充電した後、307mA
/gの定電流で1.5V(vs.Li+ /Li)まで放
電したときの容量とした。該炭素繊維電極の放電容量は
315mAh/gであった。初回充放電における不可逆
容量は83mAh/gであった。このときの膨張収縮率
は1.4%であった。サイクル100回目の容量保持率
は95%であった。Next, the above-mentioned powdered carbon fiber was used as a negative electrode active material, acetylene black was used as a conductive agent, and polyvinylidene fluoride was used as a binder. N-methylpyrrolidone was added to the negative electrode mixture having a weight ratio of the negative electrode active material: conductive agent: binder of 80: 5: 15, kneaded and slurried, and the slurry was applied in a copper foil form. After drying, it was pressed with a roller and pressed against a copper foil to produce a negative electrode. In the negative electrode, the bulk density of the carbon fibers was 1.2 g / cm 3 . A mixed solution (1 molar concentration) of propylene carbonate and dimethyl carbonate containing lithium phosphate hexafluoride was used as the electrolytic solution, and metallic lithium foil was used as the counter electrode and the reference electrode. The discharge capacity is a constant current with a current density of 61.5 mA / g per carbon fiber weight.
V (vs. Li + / Li) and then 307 mA
/ G at a constant current of 1.5 V (vs. Li + / Li). The discharge capacity of the carbon fiber electrode was 315 mAh / g. The irreversible capacity in the first charge / discharge was 83 mAh / g. The expansion / contraction rate at this time was 1.4%. The capacity retention at the 100th cycle was 95%.
【0029】実施例2 アクリロニトリル91.5モル%、スチレン5モル%、
N−フェニルマレイミド2モル%、およびイタコン酸
1.5モル%からなる共重合体原糸を180〜250℃
で耐炎化し、続いて1300℃で5分間焼成することに
よって、炭素繊維を作製した。該炭素繊維を粉砕器を用
いて粉末化し、平均長さ40μmの粉末状炭素繊維を得
た。次に該粉末状炭素繊維を真空下で3時間,1000
℃で熱処理した。該炭素体の広角X線回折(カウンター
法)結果から求めた(002)面の面間距離は0.35
5nmであった。表面付近の炭素原子に対する酸素原子
の割合は4%であった。この粉末状炭素繊維を用いて実
施例1と同様の方法で電極を作製し(負極電極におけ
る、炭素繊維の嵩密度は、1.0g/cm3 であっ
た)、電極評価を行った。このときの放電容量は391
mAh/g、初回充放電における不可逆容量は130m
Ah/gであった。このときの膨張収縮率は1.8%で
あった。サイクル100回目の容量保持率は93%であ
った。Example 2 91.5 mol% of acrylonitrile, 5 mol% of styrene,
A copolymer fiber consisting of 2 mol% of N-phenylmaleimide and 1.5 mol% of itaconic acid was heated at 180 to 250 ° C.
, And then baked at 1300 ° C. for 5 minutes to produce carbon fibers. The carbon fiber was pulverized using a pulverizer to obtain a powdery carbon fiber having an average length of 40 μm. Next, the powdered carbon fiber was crushed under vacuum for 3 hours at 1000
Heat treated at ℃. The inter-plane distance of the (002) plane obtained from the result of wide-angle X-ray diffraction (counter method) of the carbon body was 0.35.
It was 5 nm. The ratio of oxygen atoms to carbon atoms near the surface was 4%. An electrode was produced using the powdered carbon fiber in the same manner as in Example 1 (the bulk density of the carbon fiber in the negative electrode was 1.0 g / cm 3 ), and the electrode was evaluated. The discharge capacity at this time was 391
mAh / g, irreversible capacity in initial charge / discharge is 130 m
Ah / g. The expansion / contraction rate at this time was 1.8%. The capacity retention at the 100th cycle was 93%.
【0030】比較例1 2800℃で熱処理した球状の結晶性炭素体を用いて実
施例1と同様の方法で電極を作製し(負極電極におけ
る、炭素繊維の嵩密度は、1.7g/cm3 であっ
た)、電極評価を行った。このときの放電容量は302
mAh/g、初回充放電における不可逆容量は48mA
h/gであった。このときの膨張収縮率は8.9%であ
った。サイクル100回目の容量保持率は85%であっ
た。該炭素体の広角X線回折(カウンター法)結果から
求めた(002)面の面間距離は0.338nmであっ
た。Comparative Example 1 An electrode was prepared in the same manner as in Example 1 using a spherical crystalline carbon body heat-treated at 2800 ° C. (The bulk density of carbon fibers in the negative electrode was 1.7 g / cm 3. ), And the electrode was evaluated. The discharge capacity at this time is 302
mAh / g, irreversible capacity at first charge / discharge is 48 mA
h / g. The expansion / contraction rate at this time was 8.9%. The capacity retention at the 100th cycle was 85%. The inter-plane distance of the (002) plane of the carbon body determined from the result of wide-angle X-ray diffraction (counter method) was 0.338 nm.
【0031】実施例3 炭素繊維粉末の熱処理を行わなかった以外は実施例1と
全く同様の方法で炭素繊維粉末の電極評価を行った。該
炭素体の(002)面の面間距離は0.353nmで、
表面付近の炭素原子に対する酸素原子の割合は12%で
あった。負極電極における、炭素繊維の嵩密度は、1.
2g/cm3 であった。Example 3 The electrode evaluation of the carbon fiber powder was performed in the same manner as in Example 1 except that the heat treatment of the carbon fiber powder was not performed. The inter-plane distance of the (002) plane of the carbon body is 0.353 nm,
The ratio of oxygen atoms to carbon atoms near the surface was 12%. The bulk density of the carbon fibers in the negative electrode is 1.
It was 2 g / cm 3 .
【0032】この場合には、放電容量は400mAh/
gで初回充放電における不可逆容量は220mAh/g
であり、サイクル100回目の保持率は70%であっ
た。In this case, the discharge capacity is 400 mAh /
g, the irreversible capacity in the first charge / discharge is 220 mAh / g
And the retention at the 100th cycle was 70%.
【0033】このときの膨張収縮率は2%であった。The expansion and contraction rate at this time was 2%.
【0034】実施例4 市販の炭酸リチウム(Li2 CO3 )と塩基性炭酸コバ
ルト(2CoCO3 ・3Co(OH)2 )を、モル比で
Li/Co=1/1となるように秤量、ボールミルにて
混合後、900℃で20時間熱処理してLiCoO2 を
得た。これをボールミルにて粉砕し、導電材としてアセ
チレンブラック、結着剤としてポリフッ化ビニリデン
(PVdF)、溶媒としてN−メチルピロリドンを用
い、重量比でLiCoO2 /アセチレンブラック/PV
dF=91/4/5となるようにとなるように混合し正
極スラリーを調整し、このスラリーをアルミ箔上に塗
布、乾燥、プレスして正極を得た。Example 4 Commercially available lithium carbonate (Li 2 CO 3 ) and basic cobalt carbonate (2CoCO 3 .3Co (OH) 2 ) were weighed so that the molar ratio Li / Co = 1/1, and ball milled. And heat-treated at 900 ° C. for 20 hours to obtain LiCoO 2 . This is pulverized by a ball mill, and acetylene black is used as a conductive material, polyvinylidene fluoride (PVdF) is used as a binder, N-methylpyrrolidone is used as a solvent, and LiCoO 2 / acetylene black / PV is used in a weight ratio.
A positive electrode slurry was prepared by mixing so that dF = 91/4/5, and this slurry was applied on an aluminum foil, dried and pressed to obtain a positive electrode.
【0035】実施例1と同様の負極を用いた。該負極シ
ートの膨張収縮率は1.4%で該炭素体の(002)面
の面間距離は0.352nmであった。該負極を多孔質
ポリプロピレンフィルム(セルガード#2500、ダイ
セル化学(株)製)のセパレーターを介して、上記にて
作製した正極とを重ね合わして、単三型二次電池を作製
した。電解液には1モル濃度の6フッ化リンリチウムを
含むプロピレンカーボネートとジメチルカーボネート混
合溶液を用いて、上記にて作製した二次電池の充放電評
価を行った。充電は400mAの定電流で4.3Vまで
行い、放電は80mAで2.75Vまで行った。このと
きの該二次電池の放電容量は500mAhであった。ま
たサイクル100回目での容量保持率は95%であっ
た。The same negative electrode as in Example 1 was used. The expansion and contraction rate of the negative electrode sheet was 1.4%, and the inter-plane distance of the (002) plane of the carbon body was 0.352 nm. The negative electrode was overlapped with the positive electrode prepared above via a separator made of a porous polypropylene film (Celgard # 2500, manufactured by Daicel Chemical Industries, Ltd.) to produce an AA secondary battery. Using a mixed solution of propylene carbonate and dimethyl carbonate containing 1 molar concentration of lithium hexafluoride as an electrolyte, charge / discharge evaluation of the secondary battery prepared above was performed. Charging was performed at a constant current of 400 mA to 4.3 V, and discharging was performed at 80 mA to 2.75 V. At this time, the discharge capacity of the secondary battery was 500 mAh. The capacity retention at the 100th cycle was 95%.
【0036】比較例2 負極シートとして比較例1の負極シートを用いた以外は
実施例4と同様に単三型二次電池を作製し、充電電位
4.1Vで電池性能を評価した。該負極シートの膨張収
縮率は8.9%で該炭素体の(002)面の面間距離は
0.338nmであった。Comparative Example 2 AA secondary batteries were prepared in the same manner as in Example 4 except that the negative electrode sheet of Comparative Example 1 was used as the negative electrode sheet, and the battery performance was evaluated at a charging potential of 4.1 V. The expansion and contraction rate of the negative electrode sheet was 8.9%, and the inter-plane distance of the (002) plane of the carbon body was 0.338 nm.
【0037】このときの該二次電池の放電容量は650
mAhであった。またサイクル100回目での容量保持
率は70%であった。At this time, the discharge capacity of the secondary battery was 650.
mAh. The capacity retention at the 100th cycle was 70%.
【0038】比較例3 (002)面の面間距離が0.370nmである非晶性
炭素粉末を用いて作製した負極シートを用いた以外は実
施例4と同様に単三型二次電池を作製し、充電電位4.
3Vで電池性能を評価した。負極電極における、炭素繊
維の嵩密度は、1.0g/cm3 であった。該負極シー
トの膨張収縮率は2.3%であった。このときの放電容
量は400mAhであった。サイクル100回目の容量
保持率は90%であった。Comparative Example 3 An AA secondary battery was prepared in the same manner as in Example 4 except that a negative electrode sheet produced using an amorphous carbon powder having a (002) plane-to-plane distance of 0.370 nm was used. 3. Prepare and charge potential
Battery performance was evaluated at 3V. The bulk density of the carbon fibers in the negative electrode was 1.0 g / cm 3 . The expansion and contraction rate of the negative electrode sheet was 2.3%. At this time, the discharge capacity was 400 mAh. The capacity retention at the 100th cycle was 90%.
【0039】[0039]
【発明の効果】本発明により、サイクル特性に優れた二
次電池を提供することができた。According to the present invention, a secondary battery having excellent cycle characteristics can be provided.
Claims (8)
炭素体を用いた電極において、放電時の該炭素体の(0
02)面の面間距離が0.365nm以下であり、かつ
該炭素体からなる電極の、充放電に伴う電極厚みの膨張
収縮率が8.0%以下であることを特徴とする電池用電
極。In an electrode using a carbon body into which Li ions are inserted and discharged during charging and discharging, (0)
02) An electrode for a battery, wherein the distance between planes is 0.365 nm or less, and the rate of expansion and contraction of the electrode thickness of the electrode made of the carbon body during charging and discharging is 8.0% or less. .
/g以上であることを特徴とする請求項1記載の電池用
電極。2. The discharge capacity per carbon body is 300 mAh.
/ G or more.
350nm以上であることを特徴とする請求項1または
2記載の電池用電極。3. The inter-plane distance of the (002) plane of the carbon body is 0.
The battery electrode according to claim 1, wherein the thickness is 350 nm or more.
る請求項1〜3記載の電池用電極。4. The battery electrode according to claim 1, wherein said carbon body is a carbon fiber.
する酸素原子の割合が6%以下であることを特徴とする
請求項1〜4のいずれかに記載の電池用電極。5. The battery electrode according to claim 1, wherein the ratio of oxygen atoms to carbon atoms in the vicinity of the surface of the carbon body is 6% or less.
る請求項4〜5記載の電池用電極。6. The battery electrode according to claim 4, wherein the carbon body is a short fiber.
特徴とする請求項1〜5のいずれかに記載の電池用電
極。7. The battery electrode according to claim 1, wherein the expansion / contraction rate is 3.0% or less.
極を用いたことを特徴とする二次電池。8. A secondary battery using the battery electrode according to any one of claims 1 to 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8286541A JPH10134796A (en) | 1996-10-29 | 1996-10-29 | Battery electrode and secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8286541A JPH10134796A (en) | 1996-10-29 | 1996-10-29 | Battery electrode and secondary battery using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10134796A true JPH10134796A (en) | 1998-05-22 |
Family
ID=17705756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8286541A Pending JPH10134796A (en) | 1996-10-29 | 1996-10-29 | Battery electrode and secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10134796A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015170A (en) * | 1999-06-29 | 2001-01-19 | Sony Corp | Nonaqueous electrolyte battery |
-
1996
- 1996-10-29 JP JP8286541A patent/JPH10134796A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001015170A (en) * | 1999-06-29 | 2001-01-19 | Sony Corp | Nonaqueous electrolyte battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882516B2 (en) | Lithium secondary battery | |
US7029796B2 (en) | Positive active material of a lithium-sulfur battery and method of fabricating same | |
JP4346565B2 (en) | Nonaqueous electrolyte secondary battery | |
JP3619125B2 (en) | Nonaqueous electrolyte secondary battery | |
US5773167A (en) | Amorphous carbon electrode and a secondary battery having such an electrode | |
CN111183538A (en) | Negative active material for lithium secondary battery and lithium secondary battery including the same | |
EP2113957A1 (en) | Positive electrode for lithium secondary cell and lithium secondary cell using the same | |
JP5119662B2 (en) | Negative electrode and battery using the same | |
JP5412843B2 (en) | battery | |
JP2004134207A (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
US20170005361A1 (en) | Nonaqueous electrolyte secondary battery | |
JPH08195199A (en) | Electrode for battery and secondary battery using it | |
JPH11102729A (en) | Manufacture of nonaqueous solvent type secondary battery | |
EP2083463B1 (en) | Lithium primary battery | |
JP2007179956A (en) | Negative electrode and battery using same | |
JP3140880B2 (en) | Lithium secondary battery | |
JPH08138649A (en) | Non-aqueous secondary battery | |
JP3786273B2 (en) | Negative electrode material and battery using the same | |
JPH06215761A (en) | Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it | |
JPH1079252A (en) | Battery electrode and non-aqueous solvent-based secondary battery using thereof | |
WO2020184713A1 (en) | Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery | |
JPH09199112A (en) | Nonaqueous electrolyte secondary cell | |
JP2020149911A (en) | Negative electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2002025626A (en) | Aging treatment method for lithium secondary battery | |
JP5082221B2 (en) | Negative electrode for secondary battery and secondary battery |