JPH10132724A - Measuring method for exudation amount oh matrix glass phase in molten refractory - Google Patents
Measuring method for exudation amount oh matrix glass phase in molten refractoryInfo
- Publication number
- JPH10132724A JPH10132724A JP8284458A JP28445896A JPH10132724A JP H10132724 A JPH10132724 A JP H10132724A JP 8284458 A JP8284458 A JP 8284458A JP 28445896 A JP28445896 A JP 28445896A JP H10132724 A JPH10132724 A JP H10132724A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- weight
- exudation
- refractory
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011521 glass Substances 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000011159 matrix material Substances 0.000 title claims abstract description 26
- 238000010438 heat treatment Methods 0.000 claims abstract description 36
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005498 polishing Methods 0.000 claims abstract description 11
- 210000000416 exudates and transudate Anatomy 0.000 claims description 18
- 239000003463 adsorbent Substances 0.000 claims description 11
- 239000000126 substance Substances 0.000 abstract description 8
- 238000011156 evaluation Methods 0.000 abstract description 7
- 239000000463 material Substances 0.000 abstract description 7
- 238000001179 sorption measurement Methods 0.000 abstract description 6
- 238000010521 absorption reaction Methods 0.000 abstract 2
- 238000002386 leaching Methods 0.000 description 14
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 239000012071 phase Substances 0.000 description 11
- 239000011819 refractory material Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 7
- 239000011148 porous material Substances 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000000691 measurement method Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000011451 fired brick Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000006060 molten glass Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002594 sorbent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、マトリックスガラ
ス相を含む溶融耐火物のマトリックスガラス相滲出量の
定量的な測定方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for quantitatively measuring the amount of matrix glass phase exudation of a molten refractory containing a matrix glass phase.
【0002】[0002]
【従来の技術】溶融鋳造耐火物は、化学組成の面から、
アルミナ−ジルコニア−シリカ系、アルミナ系、および
最近では高ジルコニア系等の耐火物に分類できる。これ
らの耐火物は、例えばアーク電気炉中で溶融し、この溶
湯を鋳型中に流し込み、さらに常温まで冷却固化して得
られるため、緻密で、発達した結晶構造を有している。
このため、これらの耐火物は、ガラス溶融槽窯の炉材と
して好んで使用され、通常の結合耐火物に比較し、耐蝕
性および対ガラス汚染性が、優れている。2. Description of the Related Art Refractory cast refractories are characterized by their chemical composition.
Refractories such as alumina-zirconia-silica type, alumina type, and recently high zirconia type can be classified. These refractories are obtained by melting, for example, in an electric arc furnace, pouring the molten metal into a mold, and then cooling and solidifying the molten metal to room temperature, so that it has a dense and developed crystal structure.
For this reason, these refractories are preferably used as furnace materials for glass melting tank kilns, and have excellent corrosion resistance and anti-glass contamination as compared with ordinary combined refractories.
【0003】しかし、これらの溶融耐火物は、鉱物学的
組成上、マトリックスガラスを含有する。アルミナ−ジ
ルコニア−シリカ系、あるいは一部の高ジルコニア系の
耐火物は、相対的に、多量のマトリックスガラス相を有
する。マトリックスガラス相は、各の耐火物にとって不
可欠な成分であるが、高温下で、それ自身あるいはその
反応生成物が、滲出する。この現象は、溶融ガラスに対
し、直接的にあるいは間接的に、ノット、ストーン、お
よびブリスター等のガラス欠点をもたらし、溶融ガラス
の生産性を低下させる。特に、アルミナ−ジルコニア−
シリカ系耐火物で顕著である。[0003] However, these refractories contain a matrix glass due to their mineralogical composition. Alumina-zirconia-silica or some high zirconia refractories have a relatively large amount of matrix glass phase. The matrix glass phase is an indispensable component for each refractory, but at high temperatures, itself or its reaction product oozes out. This phenomenon causes glass defects such as knots, stones and blisters, directly or indirectly, to the molten glass, and reduces the productivity of the molten glass. In particular, alumina-zirconia-
This is remarkable for silica-based refractories.
【0004】したがって、これらの耐火物の対ガラス汚
染性を評価するために、マトリックスガラスの滲出量を
測定するのが、良い方法である。Therefore, it is a good method to measure the amount of matrix glass leached in order to evaluate the refractory properties against glass contamination.
【0005】しかし、現在、マトリックスガラス滲出量
の測定方法に関し、定量的方法が用いられるとは言い難
い。一般には、加熱による体積変化によって、滲出量を
評価している(例えば、Ceram. Eng. Sci. Proc. 10 p3
38-347 1989 )。この方法の中で、例えば、以下の方法
が用いられている。耐火物鋳塊から直径30mm、高さ
30mmの試料を採取し、アルキメデス法によって、体
積を測定する。ついで試料を白金板上に載せ1500℃
にて16時間電気炉を用いて加熱し、冷却後再びアルキ
メデス法によって体積を測定する。滲出は、加熱による
体積変化によって評価し、次の式によって求める。[0005] However, at present, it is hard to say that a quantitative method is used for the method of measuring the amount of matrix glass exudation. In general, the amount of exudation is evaluated by a change in volume due to heating (for example, Ceram. Eng. Sci. Proc. 10 p3
38-347 1989). In this method, for example, the following method is used. A sample having a diameter of 30 mm and a height of 30 mm is collected from the refractory ingot, and the volume is measured by the Archimedes method. Then, place the sample on a platinum plate at 1500 ° C.
For 16 hours using an electric furnace, and after cooling, measure the volume again by the Archimedes method. The exudation is evaluated by a change in volume due to heating, and is determined by the following equation.
【0006】[0006]
【数1】 (Equation 1)
【0007】ここで、W3 ;加熱前試料の水中重量。W
4 ;加熱前試料の乾燥重量。W1 ;加熱後試料の水中重
量。W2 ;加熱後試料の乾燥重量。なお、ここでいう体
積とは、固相成分と閉気孔との体積の和を示す。Here, W 3 : weight of the sample before heating in water. W
4 : Dry weight of sample before heating. W 1 : weight of the sample in water after heating. W 2 : dry weight of the sample after heating. Here, the volume refers to the sum of the volumes of the solid phase component and the closed pores.
【0008】ここにおいて、滲出量は、正の値で示さ
れ、この値、すなわち体積増加が大きい程、滲出量が多
いことを示す。[0008] Here, the amount of exudation is indicated by a positive value, and this value, that is, a larger volume increase indicates a larger amount of exudation.
【0009】しかし、この評価方法には、大きく二つの
問題点がある。まず一つには、現象的には、滲出が進行
し、滲出物が耐火物外に移動すれば、体積はその分だけ
減少する。しかし、実際の評価は、逆の評価、つまり滲
出が進行すれば体積増加は大きい、である。これらは、
明らかに矛盾する。二つめは、滲出の対象とすべきでは
ない閉気孔(気相)の増減を体積の対象とし、滲出量に
含んでおり、測定を曖昧ものとする原因である。さら
に、加熱中に、加熱前の閉気孔は開気孔へ変化したり、
あるいは加熱前の開気孔は閉気孔へ変化しうるので、体
積変化をより曖昧なものとしている。これらの他に、ジ
ルコニアを含む場合には、その変態による体積変化が測
定に対し、無視しえない場合がある。以上のような理由
から、加熱による体積変化によって、マトリックスガラ
スの滲出量を評価する方法は、定量的であるとはいえな
い。However, this evaluation method has two major problems. For one thing, phenomenologically, exudation proceeds, and as exudate moves out of the refractory, the volume is reduced accordingly. However, the actual evaluation is the reverse evaluation, that is, the volume increase is large as the bleeding proceeds. They are,
Obviously inconsistent. The second is that the increase or decrease of closed pores (gas phase), which should not be the target of exudation, is the target of volume and is included in the amount of exudation, which causes the measurement to be ambiguous. Furthermore, during heating, closed pores before heating change to open pores,
Alternatively, since the open pores before heating can change to closed pores, the volume change is made more ambiguous. In addition, when zirconia is included, the volume change due to the transformation may not be negligible for the measurement. For the reasons described above, the method of evaluating the amount of matrix glass exuding by the change in volume due to heating cannot be said to be quantitative.
【0010】[0010]
【発明が解決しようとする課題】本発明の目的は、マト
リックスガラス相を含む溶融耐火物に関し、この対ガラ
ス汚染性等の性能を調べるのに最適な一方法である、マ
トリックスガラス相滲出量の定量的な測定方法を提供す
ることである。SUMMARY OF THE INVENTION An object of the present invention is to provide a molten refractory containing a matrix glass phase, which is one of the most suitable methods for examining performance such as anti-glass contamination. The purpose is to provide a quantitative measurement method.
【0011】[0011]
【課題を解決するための手段】本発明は、上述の課題を
達成すべくなされたものであり、マトリックスガラス相
を含む溶融耐火物の加熱によるマトリックスガラス相滲
出量の測定方法であり、加熱による耐火物の重量変化に
よって滲出量を定量する方法を提供するものである。SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is a method for measuring the amount of matrix glass phase exudation by heating a molten refractory containing a matrix glass phase. An object of the present invention is to provide a method for quantifying the amount of exudation by changing the weight of a refractory.
【0012】マトリックスガラスの滲出現象は、一般に
は、漠然と「マトリックスガラスが煉瓦外に移動するこ
と」として扱われている。このことは、現行の測定方法
が定量的でない一つの原因である。そこで、以下のよう
に滲出現象を定義する。マトリックスガラスの滲出現象
とは、「耐火物を構成するマトリックスガラスあるいは
その反応生成物が、耐火物の設置された場所において、
何らかの化学的および物理的作用によって、嵩容積外あ
るいは見掛け容積に移動する現象」をいう。The leaching phenomenon of the matrix glass is generally vaguely treated as “movement of the matrix glass out of the brick”. This is one reason that current measurement methods are not quantitative. Therefore, the exudation phenomenon is defined as follows. The leaching phenomenon of the matrix glass is, `` Matrix glass constituting the refractory or its reaction product, at the place where the refractory is installed,
Movement to the outside of the bulk volume or to the apparent volume by some chemical and physical action. "
【0013】前述現行の測定方法の問題点を鑑み、さら
に上記の定義に基づくと、滲出量は加熱による試料の重
量変化による方法が最適であることがわかる。In view of the problems of the above-mentioned current measurement method, based on the above definition, it can be seen that the amount of leaching is optimally determined by the change in weight of the sample due to heating.
【0014】滲出量は、加熱による重量変化即ち、加熱
により滲出したマトリックスガラスを除去した耐火物の
重量変化として、以下の二つの方法で好ましくは定量で
きる。この方法を適用して、滲出量を測定できるのは、
アルミナ−ジルコニア−シリカ系、あるいは一部の高ジ
ルコニア系(ZrO2 含量80〜90wt%)の耐火物
であるが、これに限定されるものではない。The amount of leaching can be preferably determined by the following two methods as a change in weight due to heating, that is, a change in weight of the refractory from which the matrix glass exuded by heating has been removed. By applying this method, the amount of exudation can be measured
Alumina - Zirconia - is a refractory silica-based, or a part of the high zirconia (ZrO 2 content 80~90wt%), but is not limited thereto.
【0015】一つには、あらかじめ重量を測定した試料
をこれと反応しない物質、例えばアルミナ板に載せ加熱
し、試料に付着した滲出物を除去好ましくは研磨剤を用
い研磨除去し、その後乾燥させ重量を再び測定し、加熱
による重量変化を定量する方法である。評価は次の式に
よって行う。[0015] First, a sample whose weight has been measured in advance is placed on a substance which does not react with the sample, such as an alumina plate, and heated to remove exudates attached to the sample, preferably by polishing using an abrasive, and then drying. This is a method of measuring the weight again and quantifying the weight change due to heating. The evaluation is performed by the following equation.
【0016】[0016]
【数2】 (Equation 2)
【0017】ここで、W5 ;加熱研磨前試料の乾燥重
量。;W6 加熱研磨後試料の乾燥重量。Here, W 5 : dry weight of the sample before heat polishing. ; W 6 heating the dry weight of the polishing after the sample.
【0018】この方法において、試料の形状は、研磨し
やすいように、直方体あるいは立方体が好ましい。さら
に、試料の大きさは、測定の目的によるが、取り扱い上
一辺30〜100mmが好ましい。試料を載せる物質
は、試料と化学的に反応せず、かつ特に滲出量が多いと
きは、試料の下方からの滲出を妨げることのないように
緻密なものであってはならない。In this method, the shape of the sample is preferably a rectangular parallelepiped or a cube so as to facilitate polishing. Further, the size of the sample depends on the purpose of the measurement, but is preferably 30 to 100 mm on a side for handling. The material on which the sample is mounted must not be so dense that it does not chemically react with the sample and, especially when the amount of leaching is large, does not impede leaching from below the sample.
【0019】両者を考慮すると多孔質アルミナ耐火物が
望ましい。また、滲出物の研磨について、滲出物はガラ
スあるいはガラス状物質であり、研磨しやすいが、これ
以外すなわち試料自体を研磨しないように注意深く行う
必要があり、研磨剤としてはアルミナあるいは炭化ケイ
素を用い、研磨後試料を超音波洗浄器等を用い、洗浄す
る必要がある。Considering both, a porous alumina refractory is desirable. In addition, regarding polishing of exudates, exudates are glass or glassy substances, and are easy to polish. However, it is necessary to be careful not to polish the sample, that is, not to polish the sample itself, and use alumina or silicon carbide as an abrasive. After polishing, it is necessary to clean the sample using an ultrasonic cleaner or the like.
【0020】二つめは、あらかじめ重量を測定した試料
をこれと反応しない物質、例えば多孔質アルミナ板で被
覆し、これを滲出物の吸着材とし、加熱し、冷却後吸着
材を除去し、試料の重量を再び測定し、加熱による重量
変化を定量する方法である。評価は次の式によって行
う。The second is that a sample whose weight has been measured in advance is coated with a substance that does not react with the sample, for example, a porous alumina plate, which is used as an adsorbent for exudate, heated, cooled, and the adsorbent is removed. Is measured again to determine the change in weight due to heating. The evaluation is performed by the following equation.
【0021】[0021]
【数3】 (Equation 3)
【0022】ここで、W7 ;加熱吸着前試料の乾燥重
量。;W8 加熱吸着後試料の乾燥重量。Here, W 7 : the dry weight of the sample before heat adsorption. ; W 8 heating the dry weight of the post-adsorption sample.
【0023】この方法において、試料の形状は、直方体
あるいは立方体が好ましいが、円柱でも問題ない。さら
に、試料の大きさは、測定の目的によるが、取り扱い上
一辺(直径あるいは高さ)30〜100mmが好まし
い。吸着材は、試料と化学的に反応してはならないだけ
でなく、滲出性に影響(すなわち滲出を促進および抑
制)してはならい。特に、嵩比重1.5程度の多孔質ア
ルミナ焼成耐火物が望ましい。これは、市販されている
ので、入手しやすい。吸着材が緻密であると吸着材とし
ての役目をなさない。逆に、ファイバーやウール状のも
のは、試料と反応しやすい。In this method, the shape of the sample is preferably a rectangular parallelepiped or a cube, but there is no problem even if it is a cylinder. Further, the size of the sample depends on the purpose of measurement, but is preferably 30 to 100 mm on one side (diameter or height) for handling. The sorbent must not only chemically react with the sample, but must also affect leachability (ie promote and inhibit leachability). In particular, a porous alumina fired refractory having a bulk specific gravity of about 1.5 is desirable. It is readily available because it is commercially available. If the adsorbent is dense, it does not serve as an adsorbent. Conversely, fibers and wool-like materials tend to react with the sample.
【0024】また、材料として、試料との反応性および
入手性からして、アルミナが最適である。吸着材は、5
〜10mmの厚さが好ましく、これが試料から剥離しな
いように、吸着材の上から白金線などを用い固定する必
要がある。Alumina is the most suitable material from the viewpoint of reactivity with a sample and availability. Adsorbent is 5
The thickness is preferably 10 mm to 10 mm, and it is necessary to fix the adsorbent on the adsorbent using a platinum wire or the like so as not to peel off from the sample.
【0025】また、ZrO2 含量80〜90wt%の高
ジルコニア系の耐火物では、相対的にマトリックスガラ
スを多く含むことや高温におけるクリープ特性の点か
ら、マトリックスガラスの滲出量を荷重下で測定する必
要がある場合があるが、上記の方法で、荷重下加熱前後
の重量変化で測定すればよい。特に好ましくは、後者の
方法によって滲出物を吸着させる方法がよい。In the case of a high zirconia refractory having a ZrO 2 content of 80 to 90 wt%, the amount of matrix glass leached under a load is measured from the viewpoint of relatively high content of matrix glass and creep characteristics at high temperatures. In some cases, it is necessary to measure the change in weight before and after heating under load by the above method. Particularly preferred is a method of adsorbing exudates by the latter method.
【0026】以上の本発明の測定における加熱方法、加
熱温度、および加熱時間は、耐火物の使用用途によって
設定すればよい。The heating method, heating temperature, and heating time in the measurement of the present invention described above may be set according to the use of the refractory.
【0027】[0027]
【実施例】以下、本発明の実施例を比較例とともに具体
的に説明するが、本発明はこれらの実施例によってなん
ら限定されるものではない。EXAMPLES Examples of the present invention will be specifically described below along with comparative examples, but the present invention is not limited to these examples.
【0028】本発明の測定に用いた試料の作製方法の例
を以下に示す。まず、脱珪酸ジルコン、バイヤーアルミ
ナ、珪砂、および炭酸ナトリウムを所定量秤取、混合
後、これを黒鉛電極を用いる500kVAの単相アーク
電気炉にて、1900〜2300℃にて、完全に溶融し
た。この溶湯をシリカ・アルミナボールあるいはバイヤ
ーアルミナに埋めてある内寸160mm×200mm×
350mmの砂型あるいは黒鉛型に出湯し、室温まで放
冷した。以上のようにして、鋳塊A、B、C、D、E、
F、およびGの計7点を得た。An example of a method for preparing a sample used for the measurement of the present invention is described below. First, a predetermined amount of zircon desilicated, Bayer alumina, silica sand, and sodium carbonate were weighed and mixed, and then completely melted at 1900 to 2300 ° C. in a 500 kVA single-phase electric arc furnace using a graphite electrode. . This molten metal is embedded in silica / alumina balls or Bayer Alumina.
Hot water was poured into a 350 mm sand mold or graphite mold and allowed to cool to room temperature. As described above, ingots A, B, C, D, E,
A total of 7 points of F and G were obtained.
【0029】なお、鋳塊A、B、およびCについては、
溶融後期に30ml/minの割合で、1分間酸素を溶
湯に吹き込んだものである。ついで、鋳塊の表皮から2
0mmを含まない部位から一辺30mmの立方体状(あ
るいは直径30mm、高さ30mmの円柱状)の試料を
切断、研磨によって、それぞれ試料A、B、C、D、
E、F、およびGを得た。得られた試料の化学組成(重
量%)および比重を表1に示す。これらを実施例1〜3
および比較例に供試したが、それぞれなるべく近い部位
で試料を採取した。The ingots A, B and C are as follows:
Oxygen was blown into the molten metal at a rate of 30 ml / min for 1 minute in the latter stage of melting. Then, from the skin of the ingot,
Samples A, B, C, D, and D are cut and polished by cutting and polishing a cubic sample (or a cylindrical shape having a diameter of 30 mm and a height of 30 mm) having a side of 30 mm from a portion not including 0 mm.
E, F, and G were obtained. Table 1 shows the chemical composition (% by weight) and the specific gravity of the obtained sample. These are described in Examples 1 to 3.
The samples were taken at sites as close as possible to each other.
【0030】(実施例1)あらかじめ重量を測定した一
辺30mmの立方体状の試料A、B、C、D、およびE
を、40mm×40mm×5mmに加工した多孔質アル
ミナ焼成煉瓦の板に載せ、抵抗加熱式電気炉にて、15
00℃および1600℃にて48時間加熱し、室温まで
冷却した。ついで、炭化珪素(#1000 )を研磨剤とし
て、滲出物を除去し、超音波洗浄した。さらに、110
℃にて、24時間乾燥した後、重量を測定した。滲出量
(重量%)は数2によって求めた。滲出量を表2に示
す。(Example 1) Cube-shaped samples A, B, C, D and E each having a side of 30 mm whose weight was measured in advance
Was placed on a porous alumina fired brick plate processed to 40 mm × 40 mm × 5 mm, and 15
Heat at 00 ° C. and 1600 ° C. for 48 hours and cool to room temperature. Next, exudates were removed by using silicon carbide (# 1000) as an abrasive, and ultrasonic cleaning was performed. In addition, 110
After drying at 24 ° C. for 24 hours, the weight was measured. The amount of leaching (% by weight) was determined by Equation 2. Table 2 shows the amount of exudation.
【0031】(実施例2)あらかじめ重量を測定した一
辺30mmの立方体状の試料A、B、C、D、およびE
を、30mm×40mm×5mmに加工した多孔質アル
ミナ焼成煉瓦の板で滲出物の吸着材となるように全面被
覆し、側方を白金線で固定した。被覆した試料を実施例
1と同じように、加熱、冷却した。ついで、被覆を取り
外し、重量を測定した。滲出量(重量%)は数3によっ
て求めた。滲出量を表2に示す。(Example 2) Cube-shaped samples A, B, C, D and E each having a side of 30 mm whose weight was measured in advance
Was covered with a porous alumina fired brick plate processed to 30 mm × 40 mm × 5 mm so as to be an adsorbent for exudates, and the sides were fixed with platinum wires. The coated sample was heated and cooled as in Example 1. Then, the coating was removed and the weight was measured. The amount of leaching (% by weight) was determined by Equation 3. Table 2 shows the amount of exudation.
【0032】(実施例3)あらかじめ重量を測定した円
柱状の試料A、F、およびGについて、側面に内径30
mm、高さ40mm、上面および下面に直径30mm、
厚さ5mmに加工した多孔質アルミナ焼成煉瓦の板で滲
出物の吸着材となるように被覆し、被覆した試料を、荷
重を付加させることのできる抵抗加熱式電気炉にて、2
kgf/cm2 の荷重をかけつつ16時間加熱し、室温
まで冷却した。加熱、冷却した。ついで、被覆を取り外
し、重量を測定した。滲出量(重量%)は数3によって
求めた。滲出量を表2に示す。(Example 3) For cylindrical samples A, F and G whose weights were measured in advance, an inner diameter of 30
mm, height 40 mm, diameter 30 mm on top and bottom,
A porous alumina fired brick plate processed to a thickness of 5 mm is coated so as to serve as an adsorbent for exudate, and the coated sample is subjected to a resistance heating electric furnace to which a load can be applied.
The mixture was heated for 16 hours while applying a load of kgf / cm 2 and cooled to room temperature. Heated and cooled. Then, the coating was removed and the weight was measured. The amount of leaching (% by weight) was determined by Equation 3. Table 2 shows the amount of exudation.
【0033】(比較例)あらかじめ乾燥および水中重量
を測定した一辺30mmの立方体状の試料A、B、C、
D、およびE、F、およびGを、白金板に載せ、抵抗加
熱式電気炉にて、1500℃にて16時間加熱し、室温
まで冷却した。試料の水中および乾燥重量を測定した。
滲出量は式1によって求めた。滲出量(体積%)を表2
に示す。(Comparative Example) Cube-shaped samples A, B, C, 30 mm on a side, which were previously dried and weighed in water,
D, E, F, and G were placed on a platinum plate, heated in a resistance heating type electric furnace at 1500 ° C. for 16 hours, and cooled to room temperature. The water and dry weight of the samples were measured.
The amount of exudation was determined by Equation 1. Table 2 shows the amount of leaching (% by volume)
Shown in
【0034】表1から、実施例1および実施例2は、ほ
ぼ等しい値を示しているが、実施例1滲出量が実施例2
のそれに比べ、特に1500℃にて、やや低い値を示し
ている。これは、実施例1においては、滲出物が試料に
付着し、さらに滲出物が試料から押し出される場合、先
に付着した滲出物に、その滲出を抑制されるからであ
る。一方、実施例2においては、新たに発生する滲出
が、先の滲出に影響されることなく、つまり滲出物の吸
着が逐次選択的に生じているからである。しかし、これ
らは、滲出現象を滲出物が、嵩容積外に移動するのか、
見掛け容積外に移動するのかのいずれに解釈するかの問
題であり、滲出の定量性に影響するものではない。滲出
量を滲出のポテンシャルととらえるなら、実施例2の方
がより優れていると考えられる。From Table 1, it can be seen that Examples 1 and 2 show substantially the same values, but Example 1 shows that
In particular, at 1500 ° C., a slightly lower value is shown. This is because, in Example 1, when exudates adhere to the sample and the exudates are pushed out of the sample, the exudates attached to the exudates are suppressed from exuding. On the other hand, in the second embodiment, newly generated exudation is not affected by the previous exudation, that is, adsorption of exudate is sequentially and selectively generated. However, these are exudation phenomena, whether the exudate moves out of the bulk volume,
It is a matter of interpretation as to whether it moves out of the apparent volume or not, and it does not affect the quantitativeness of exudation. If the amount of oozing is regarded as the oozing potential, the second embodiment is considered to be more excellent.
【0035】しかし、実施例1および実施例2に比べ、
再現性が不安定で比較例は定量性に乏しいことがわか
る。However, as compared with the first and second embodiments,
It can be seen that the reproducibility is unstable and the comparative example has poor quantitative performance.
【0036】実施例3から、荷重下での滲出量の測定に
も、本発明は特に高ジルコニア系においても好ましく適
用できることがわかる。From Example 3, it can be seen that the present invention can be preferably applied to the measurement of the amount of leaching under a load, especially in a high zirconia system.
【0037】(実施例4)種瓦サイズのZrO2 含量3
3wt%品について、15cm以内の部位から、一辺3
0mmの立方体状の試料を調製し、実施例2によって滲
出量を測定したところ、1500℃で48時間および1
600℃で48時間の滲出量は、それぞれ、平均1.2
2wt%(n=8、標準偏差=0.16)および平均
4.68wt%(n=8、標準偏差=0.50)であっ
た。このことから、本発明は、再現性よくマトリックス
ガラスの滲出量を定量できることがわかる。Example 4 ZrO 2 content of seed tile size 3
For 3 wt% products, 3 sides per side from within 15 cm
A 0 mm cubic sample was prepared and the amount of leaching was measured according to Example 2.
The amount of leaching at 600 ° C. for 48 hours was 1.2 on average, respectively.
It was 2 wt% (n = 8, standard deviation = 0.16) and the average was 4.68 wt% (n = 8, standard deviation = 0.50). This indicates that the present invention can quantify the amount of matrix glass leaching with good reproducibility.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 [Table 2]
【0040】[0040]
【発明の効果】本発明の測定方法は、マトリックスガラ
ス相を含む溶融耐火物のマトリックスガラス相滲出量
を、定量的かつ再現性よく測定できる。これによって、
これらの耐火物の性能、特に対ガラス汚染性を正確に評
価できるようになる。According to the measurement method of the present invention, the amount of matrix glass phase exudation of a molten refractory containing a matrix glass phase can be quantitatively and reproducibly measured. by this,
It will be possible to accurately evaluate the performance of these refractories, in particular, the pollution resistance to glass.
Claims (5)
加熱によるマトリックスガラス相滲出量の測定方法であ
って、加熱前後の耐火物の重量変化を定量することを特
徴とする測定方法。1. A method for measuring the amount of matrix glass phase exudation due to heating of a molten refractory containing a matrix glass phase, the method comprising quantifying a change in weight of the refractory before and after heating.
物を除去した耐火物の重量変化によって、滲出量を定量
する請求項1記載の方法。2. The method according to claim 1, wherein the amount of exudation is determined by a change in weight of the refractory from which exudates generated from the molten refractory are removed by heating.
物を研磨除去または吸着材に吸着除去させ、耐火物の重
量変化によって、滲出量を定量する請求項2記載の方
法。3. The method according to claim 2, wherein the exudate generated from the molten refractory by heating is removed by polishing or adsorbed and removed by an adsorbent, and the amount of exudate is determined by a change in weight of the refractory.
項3記載の滲出量の測定方法。4. The method according to claim 3, wherein the adsorbent is a porous alumina refractory.
させる請求項1、2、3または4に記載の測定方法。5. The method according to claim 1, wherein the matrix glass is exuded by heating under a load.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8284458A JPH10132724A (en) | 1996-10-25 | 1996-10-25 | Measuring method for exudation amount oh matrix glass phase in molten refractory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8284458A JPH10132724A (en) | 1996-10-25 | 1996-10-25 | Measuring method for exudation amount oh matrix glass phase in molten refractory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10132724A true JPH10132724A (en) | 1998-05-22 |
Family
ID=17678802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8284458A Pending JPH10132724A (en) | 1996-10-25 | 1996-10-25 | Measuring method for exudation amount oh matrix glass phase in molten refractory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10132724A (en) |
-
1996
- 1996-10-25 JP JP8284458A patent/JPH10132724A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kwon et al. | Kinetic analysis of solution‐precipitation during liquid‐phase sintering of alumina | |
Reynaert et al. | Corrosion tests for refractory materials intended for the steel industry—A review | |
JP5774135B2 (en) | Sintered materials based on doped chromium oxide | |
CN105601320B (en) | A kind of porous ceramic prepared by using magnesium-rich metallurgical nickel slag and preparation method thereof | |
JP2002121085A (en) | Cordierite honeycomb structure and method for producing the same | |
CA2244677C (en) | Refractory material consisting of .beta. alumina | |
JP3489588B2 (en) | High alumina cast refractories | |
JP3667403B2 (en) | β-alumina electroformed refractory | |
JP2008513328A (en) | AZS products with reduced leaching | |
JPH10132724A (en) | Measuring method for exudation amount oh matrix glass phase in molten refractory | |
JP4507148B2 (en) | Heat treatment member made of mullite sintered body | |
JPH10218676A (en) | Electrocast refractory based on betha-alumina | |
Li et al. | Corrosion of electrocast AZS refractories by CAS glass–ceramics melting | |
JP7072848B2 (en) | Refractory concrete molding containing zirconia as the main component | |
JP2001181024A (en) | Ceramic member | |
JPS6090867A (en) | Improved alkali-resistant refractory composition | |
JP2002338347A (en) | Zirconia / graphitic refractory material and immersion nozzle for continuous casting using it | |
JPH059610A (en) | Ceramic filter for filtering molten aluminum | |
JPH10316476A (en) | Thermal insulation castable | |
JP2000095576A (en) | Magnesia-alumina-silica monolithic refractory for execution by slip casting | |
JP3602705B2 (en) | Filter media for molten metal | |
CN119757130A (en) | A new method for measuring the diffusion coefficient of substances in steel inclusions | |
Ren et al. | Analysis to mullite bonded corundum purging plug | |
JPS61141667A (en) | Zircon zirconia refractories | |
JP2001140130A (en) | Ceramic fiber for reinforcing heat resistant material |