[go: up one dir, main page]

JPH10123137A - Highly sensitive immunoassay method - Google Patents

Highly sensitive immunoassay method

Info

Publication number
JPH10123137A
JPH10123137A JP8273451A JP27345196A JPH10123137A JP H10123137 A JPH10123137 A JP H10123137A JP 8273451 A JP8273451 A JP 8273451A JP 27345196 A JP27345196 A JP 27345196A JP H10123137 A JPH10123137 A JP H10123137A
Authority
JP
Japan
Prior art keywords
antigen
cea
insoluble carrier
antibody
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8273451A
Other languages
Japanese (ja)
Other versions
JP3652029B2 (en
Inventor
Yoshie Matsumoto
美枝 松本
Hiroshi Kuroda
広志 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP27345196A priority Critical patent/JP3652029B2/en
Publication of JPH10123137A publication Critical patent/JPH10123137A/en
Application granted granted Critical
Publication of JP3652029B2 publication Critical patent/JP3652029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an immunoassay method for determining an antigen substance accurately by allowing antigens or antibodies that are related to a reaction to exist as much as possible in an antigen antibody reaction system without causing agglutination inhibition due to the steric hindrance of an insoluble carrier and without conjuring up a non-specific agglutination. SOLUTION: In the immunoassay method, at least two types of different monoclonal antibodies for a specific antigen are carried by an insoluble carrier, are reacted with the antigen in a water-soluble medium, and at least two types of carries with different average particle diameters are used as the insoluble carrier when aggregating the combined substance of the insoluble carrier and the antigen selectively, and the insoluble caries carry each monoclonal antibody. A preferable insoluble carrier is a latex particle. At least two types of latex particles whose average particle diameter ranges from 0.05 to 0.500μm are preferably combined so that the ratio of the average particle diameter of other particle species to that of the minimum particle seed ranges from 3 to 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定の抗原に対す
るモノクローナル抗体を不溶性担体に担持させ、水溶媒
中で該抗原と反応させ、不溶性担体と抗原の結合物を選
択的に凝集反応させる高感度免疫測定法に関する。
TECHNICAL FIELD The present invention relates to a high-sensitivity method in which a monoclonal antibody against a specific antigen is supported on an insoluble carrier, reacted with the antigen in an aqueous solvent, and agglutination reaction between the insoluble carrier and the antigen is performed. It relates to an immunoassay.

【0002】[0002]

【従来の技術】近年、病院、検査センター等において
は、省力化、コスト削減、多量検体処理等の要請から、
臨床検査等の諸検査の自動化、および測定時間の短縮化
が図られてきた。このような自動化に適した方法とし
て、不溶性担体粒子の凝集反応を利用して抗原性物質を
定性ないし定量する凝集法が知られている(特公昭58
−11575号公報参照)。
2. Description of the Related Art In recent years, hospitals and testing centers have been demanding labor saving, cost reduction, and processing of a large number of samples.
Various tests such as clinical tests have been automated and the measurement time has been shortened. As a method suitable for such automation, an agglutination method for qualitatively or quantitatively determining an antigenic substance by utilizing an agglutination reaction of insoluble carrier particles is known (Japanese Patent Publication No. Sho 58).
-11575).

【0003】この凝集法は、被検試料中における抗原性
物質を測定するに当たり、該被検試料と、該抗原性物質
に特異的に結合する抗体もしくはそのフラグメントを担
持させた不溶性担体とを反応させ、不溶性担体の凝集の
程度を測定することにより、前記抗原性物質を検出また
は定量するものである。この場合、上記抗体としては、
通常、ポリクローナル抗体またはモノクローナル抗体が
適宜選択される。モノクローナル抗体は抗原分子上の特
定のエピトープのみと反応するため、該抗原性物質は多
価抗原である場合でも特定のエピトープに関しては多価
であるとは限らない。従って、上記抗体としてモノクロ
ーナル抗体を用いた場合は、その抗原は、特定のモノク
ローナル抗体に対応するエピトープに関しては、一価抗
原となる可能性が高くなる。測定の対象とする抗原物質
が一価抗原である場合、不溶性担体に担持された1種類
のモノクローナル抗体と被検試料中の該抗原性物質とが
反応もしくは結合しても、通常、凝集は起こらない。こ
のため、凝集の起こり易さという観点から、通常、ポリ
クローナル抗体が多用されている。
In the agglutination method, when measuring an antigenic substance in a test sample, the test sample is reacted with an insoluble carrier carrying an antibody or a fragment thereof that specifically binds to the antigenic substance. The antigenic substance is detected or quantified by measuring the degree of aggregation of the insoluble carrier. In this case, as the antibody,
Usually, a polyclonal antibody or a monoclonal antibody is appropriately selected. Since a monoclonal antibody reacts only with a specific epitope on an antigen molecule, even if the antigenic substance is a polyvalent antigen, the antigenic substance is not always polyvalent with respect to the specific epitope. Therefore, when a monoclonal antibody is used as the above antibody, the antigen is more likely to be a monovalent antigen with respect to the epitope corresponding to the specific monoclonal antibody. When the antigen substance to be measured is a monovalent antigen, aggregation usually occurs even when one kind of monoclonal antibody supported on an insoluble carrier reacts or binds with the antigenic substance in the test sample. Absent. For this reason, polyclonal antibodies are generally used frequently from the viewpoint of easy aggregation.

【0004】しかしながら、ポリクローナル抗体とモノ
クローナル抗体を比較してみれば、抗原に対する特異性
の点では、モノクローナル抗体の方が断然優れている。
また、ポリクローナル抗体は動物の個体差や採血の時期
により異なるため、常に同じ品質のものを得ることは難
しく、特異抗体に精製する段階での該抗体の量および活
性損失も大きい。これに対し、モノクローナル抗体は品
質の一定した抗体を大量生産するのに向いている。
However, when a polyclonal antibody and a monoclonal antibody are compared, the monoclonal antibody is by far the best in terms of antigen specificity.
In addition, since polyclonal antibodies differ depending on the individual differences between animals and the time of blood sampling, it is difficult to always obtain the same quality, and the amount and activity of the antibody during purification to a specific antibody are large. In contrast, monoclonal antibodies are suitable for mass-producing antibodies of constant quality.

【0005】このような点を考慮して、特定の抗原に対
する異なる2種または3種のモノクローナル抗体を不溶
性担体に担持させ、該抗原と反応させて、不溶性担体の
凝集の程度を測定することにより、前記抗原性物質を検
出または定量する方法が提案されている(特公平3−4
0341号公報参照)。
In view of the above, two or three different monoclonal antibodies against a specific antigen are supported on an insoluble carrier, reacted with the antigen, and the degree of aggregation of the insoluble carrier is measured. There has been proposed a method for detecting or quantifying the antigenic substance (Japanese Patent Publication No. 3-4 / 1991).
0341).

【0006】また、近年、免疫診断では尿、血清、血漿
等に含まれる微量物質、たとえば癌マーカーであるα−
フェトプロテイン(AFP)や、カルテイノエンブリオ
イックアンテイジエン(CEA)などは1ng/mlと
いった低濃度まで定量することが望まれている。このよ
うな物質を測定するために、平均粒径の異なる2種以上
のラテックス粒子を混合することによって低濃度から高
濃度までの広範囲濃度の抗原又は抗体の測定を可能にす
る方法も提案されている(特開昭63−65369号公
報参照)。
In recent years, in immunodiagnosis, trace substances contained in urine, serum, plasma, etc., for example, α-
It is desired that quantification of fetoprotein (AFP), carteinoembryoic antigeneene (CEA) and the like be performed down to a concentration as low as 1 ng / ml. In order to measure such a substance, a method has been proposed that enables measurement of antigens or antibodies in a wide range of concentrations from low to high by mixing two or more types of latex particles having different average particle sizes. (See JP-A-63-65369).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、すべて
のモノクローナル抗体を同一平均粒径の不溶性担体に担
持させる方法では、不溶性担体による立体的障害のため
に、抗体と測定しようとする抗原物質との間の抗原抗体
反応およびそれに続く凝集反応が阻害される可能性があ
る。すなわち、抗原性物質が、1種類のモノクローナル
抗体と、少なくとももう1種類のモノクローナル抗体と
に同時に結合することによって、不溶性担体の凝集が生
じるわけであるが、すべてのモノクローナル抗体が不溶
性担体に担持されていると、2種のモノクローナル抗体
の認識する抗原のエピトープが構造的に互いに近接した
部位にある場合、不溶性担体間の立体的障害によって、
異なる2種または3種のモノクローナル抗体が1つの抗
原物質に対し同時に結合することが阻害される場合があ
る。また、この2種あるいは3種のモノクローナル抗体
の間で抗原と抗原との親和定数が大きく乖離している場
合も上記と同様に該親和定数の高いモノクローナル抗体
が優先的に抗原と結合し、他のモノクローナル抗体との
結合およびそれに続く凝集を阻害する場合がある。これ
らの理由により、モノクローナル抗体を同一平均粒径の
不溶性担体に担持させる方法では、抗原性物質を正確に
定量できない可能性がある。
However, in the method in which all the monoclonal antibodies are supported on an insoluble carrier having the same average particle size, steric hindrance caused by the insoluble carrier causes a problem between the antibody and the antigenic substance to be measured. May inhibit the antigen-antibody reaction and subsequent agglutination. That is, when the antigenic substance simultaneously binds to one type of monoclonal antibody and at least another type of monoclonal antibody, aggregation of the insoluble carrier occurs, but all the monoclonal antibodies are supported on the insoluble carrier. When the epitopes of the antigens recognized by the two types of monoclonal antibodies are located at sites that are structurally close to each other, steric hindrance between the insoluble carriers causes
The simultaneous binding of two or three different monoclonal antibodies to one antigenic substance may be inhibited. Also, when the affinity constant between the antigen and the antigen is greatly different between the two or three types of monoclonal antibodies, the monoclonal antibody having the higher affinity constant preferentially binds to the antigen, as described above. May interfere with binding to the monoclonal antibody and subsequent aggregation. For these reasons, there is a possibility that antigenic substances cannot be accurately quantified by a method in which a monoclonal antibody is supported on an insoluble carrier having the same average particle size.

【0008】特開昭63−65369号公報は、上述し
たように、低濃度の抗原物質の検出を実現するために、
平均粒径の異なる2種以上のラテックス粒子を混合する
方法を開示しているが、この方法で用いられている抗体
はポリクローナル抗体であり、かつこの公報記載の発明
は抗原抗体反応系中に反応に関与する抗原または抗体を
できるだけ多く存在させることを企図したものである。
従って低濃度での反応量は増大するが、同時にバックグ
ラウンドおよび抗原物質以外の物質に由来する非特異凝
集が多いという欠点がある。
As described above, Japanese Patent Application Laid-Open No. 63-65369 discloses a method for detecting a low concentration of an antigenic substance.
Although a method of mixing two or more types of latex particles having different average particle sizes is disclosed, the antibody used in this method is a polyclonal antibody, and the invention described in this publication discloses the reaction in an antigen-antibody reaction system. It is intended that as many antigens or antibodies as possible are present as much as possible.
Therefore, the reaction amount at low concentration increases, but at the same time, there is a disadvantage that non-specific agglutination derived from substances other than the background and the antigenic substance is large.

【0009】本発明の目的は、上記のごとき実情に鑑
み、不溶性担体の立体的障害による凝集阻害がなく、非
特異凝集を惹起することなく、抗原抗体反応系中に反応
に関与する抗原または抗体をできるだけ多く存在させる
ことができ、その結果、抗原性物質を正確に定量できる
高感度免疫測定法を提供することにある。
In view of the circumstances as described above, an object of the present invention is to prevent an insoluble carrier from being inhibited by aggregation due to steric hindrance, not causing nonspecific aggregation, and causing an antigen or antibody involved in a reaction in an antigen-antibody reaction system. The present invention is to provide a highly sensitive immunoassay method in which antigens can be accurately quantified as much as possible.

【0010】[0010]

【課題を解決するための手段】本発明による高感度免疫
測定法は、特定の抗原に対する異なる2種以上のモノク
ローナル抗体を不溶性担体に担持させ、水溶媒中で抗原
と反応させ、不溶性担体と抗原の結合物を選択的に凝集
させるに当たり、不溶性担体として平均粒径の異なる2
種以上の担体を用い、これら不溶性担体に各モノクロー
ナル抗体をそれぞれ担持させることを特徴とする方法で
ある。
Means for Solving the Problems A highly sensitive immunoassay according to the present invention comprises the steps of: loading two or more different monoclonal antibodies against a specific antigen on an insoluble carrier, reacting the antigen with the antigen in an aqueous solvent; In selectively aggregating the conjugates, two particles having different average particle sizes are used as insoluble carriers.
This method is characterized by using at least one kind of carrier and carrying each monoclonal antibody on each of these insoluble carriers.

【0011】本発明により検出するのに適した抗原性物
質は、生体試料中に含まれる生理活性物質で、かつ該抗
原性物質に対応するモノクローナル抗体の作成ないし入
手が可能である限り特に限定されないが、一価の抗原で
かつ1種類のモノクローナル抗体では検出不可能なもの
が特に望ましい。また、抗原性物質を検出する試験項目
としては、臨床検査上重要な項目であり、かつ従来の凝
集法では検出感度が不足であるとされていた項目が特に
有用である。
The antigenic substance suitable for detection according to the present invention is not particularly limited as long as it is a physiologically active substance contained in a biological sample and a monoclonal antibody corresponding to the antigenic substance can be prepared or obtained. However, a monovalent antigen which is undetectable with one type of monoclonal antibody is particularly desirable. Further, as a test item for detecting an antigenic substance, an item that is important in a clinical test and is considered to be insufficient in detection sensitivity by the conventional agglutination method is particularly useful.

【0012】例えば、癌検診のスクリーニングにおいて
測定される、CEA、CA19−9などの1ng/ml
まで検出感度が要求される項目などである。
For example, 1 ng / ml of CEA, CA19-9 or the like, which is measured in screening for cancer screening
Items that require detection sensitivity up to this point.

【0013】本発明で使用するモノクローナル抗体は特
定の抗原に対する異なる2種以上(例えば2種または3
種、好ましくは2種)のモノクローナル抗体である。モ
ノクローナル抗体は、細胞融合技術分野において、それ
自体公知の手法を適宜に選択し、またそれらを組み合わ
せてモノクローナル抗体産生融合細胞株を形成し、該細
胞株を利用して産生、取得することができる(「単クロ
ーン抗体・ハイブリドーマとELISA」岩崎辰夫ら
著、講談社)。
The monoclonal antibody used in the present invention may be composed of two or more different antibodies against a specific antigen (for example, two or three different antibodies).
(Preferably two). Monoclonal antibodies can be produced and obtained using the cell line, by appropriately selecting a technique known per se in the cell fusion technical field, and combining them to form a monoclonal antibody-producing fusion cell line. ("Monoclonal antibodies, hybridomas and ELISA", Tatsuo Iwasaki et al., Kodansha).

【0014】細胞融合の一態様によれば、ある特定の完
全抗原を用いて、これを適当な動物、例えばマウス、ラ
ット、ウサギ、ヤギ、ヒツジ、ウマ、ウシなどの動物
に、例えば、アジュバントとともに皮下注射するといっ
た手法を用いて投与し、該動物を免疫した後、この免疫
動物、例えば免疫マウスの該抗原に対する抗体産生細
胞、例えば脾細胞、胸腺細胞、リンパ節細胞および/ま
たは末梢血細胞などの細胞を採取し、該細胞と自己増殖
性を有するが抗体産生能を実質的に有しない適当な株化
細胞、例えばマウス骨髄腫(ミエローマ)株化細胞と
を、それ自体公知の手法により細胞融合処理する。
According to one embodiment of cell fusion, a certain complete antigen is used and is transferred to a suitable animal, such as a mouse, rat, rabbit, goat, sheep, horse, cow, etc., together with an adjuvant, for example. After administration using a technique such as subcutaneous injection to immunize the animal, the immunized animal, for example, antibody-producing cells against the antigen of the immunized mouse, such as spleen cells, thymocytes, lymph node cells and / or peripheral blood cells The cells are collected, and the cells are fused with a suitable cell line having self-proliferation but substantially no antibody-producing ability, for example, a mouse myeloma (myeloma) cell line by a method known per se. To process.

【0015】モノクローナル抗体を得るためのミエロー
マ細胞と抗体産生細胞との組み合わせは、各細胞が融合
して増殖しつつ抗体を産生することが可能であれば、そ
れぞれの細胞の由来する動物の種類は限定されず、任意
の組み合わせでよい。
[0015] The combination of myeloma cells and antibody-producing cells to obtain a monoclonal antibody is based on the type of animal from which each cell is derived, as long as the cells can fuse and proliferate to produce the antibody. There is no limitation, and any combination may be used.

【0016】使用されるミエローマ細胞は特に限定はな
く、多くのマウス、ラット、ウサギ、ヒトなどの動物の
細胞体を使用することができる。好ましい株化細胞は薬
剤抵抗性のものであり、かつ未融合のミエローマ細胞が
選択培地で生存せず、一方融合細胞のみが生存するよう
なものである。通常用いられるものは、8−アザグアニ
ジン抵抗性の株化細胞で、これはヒポキサンチン・グア
ニン・ホスホリボシルトランスフェラーゼを欠損し、ヒ
ポキサンチン・アミンプテリン・チミジン(HAT)培
地に生育できない性質を有している。さらに使用する株
化細胞は「非分泌型」のものであることが好ましい。例
えばマウスミエローマMOPC−21株由来のP3 /X
63−Ag8U1 (P3 1 )、P3 /X63−Ag8
・6・5・3、P3 /NSI−1−Ag4−1、Sp2
/O−Ag14、ラットミエローマ210・RCY3・
Ag1・2・3などが好適に用いられる。
The myeloma cells used are not particularly limited, and cell bodies of many animals such as mice, rats, rabbits and humans can be used. Preferred cell lines are drug resistant and are such that unfused myeloma cells do not survive in the selective medium, while only fused cells survive. A commonly used cell line is an 8-azaguanidine-resistant cell line, which is deficient in hypoxanthine / guanine / phosphoribosyltransferase and cannot grow on hypoxanthine / aminpterin / thymidine (HAT) medium. ing. Further, it is preferable that the cell line to be used is "non-secretory". For example, P 3 / X derived from mouse myeloma MOPC-21 strain
63-Ag8U 1 (P 3 U 1), P 3 / X63-Ag8
・ 6.5-3, P 3 / NSI-1-Ag4-1, Sp2
/ O-Ag14, Rat Myeloma 210 ・ RCY3 ・
Ag1, 2, 3, etc. are preferably used.

【0017】該細胞融合処理は、例えば、通常イーグル
最小基本(MEM)培地、RPMI−1640培地など
の培地中で上記免疫マウスの脾細胞1×108 〜5×1
8個と、上記マウス骨髄腫株化細胞1×107 〜5×
107 個とを、混合して行うことができる。融合促進剤
としては、平均分子量1,000〜6,000のポリエ
チレングリコール(PEG)が好ましく、他の融合促進
剤、例えば、ポリビニルアルコール、ウイルスなども使
用することができる。PEGの使用濃度は好ましくは約
30〜50%である。
The cell fusion treatment is carried out, for example, usually in a medium such as Eagle's minimal basic (MEM) medium or RPMI-1640 medium, from 1 × 10 8 to 5 × 1 spleen cells of the immunized mouse.
0 8 and, the mouse myeloma cell line 1 × 10 7 ~5 ×
10 7 can be mixed and performed. As the fusion promoter, polyethylene glycol (PEG) having an average molecular weight of 1,000 to 6,000 is preferable, and other fusion promoters, for example, polyvinyl alcohol, virus and the like can also be used. The working concentration of PEG is preferably about 30-50%.

【0018】上述のようにして得ることのできる融合細
胞含有系から融合細胞を、それ自体公知の手法を利用し
て、選別処理、抗体活性スクリーニング処理およびクロ
ーニング処理して、免疫マウスの形成に用いた完全抗原
に対するモノクローナル抗体産生能を有し、かつ自己増
殖能を持つ融合細胞株を取得することができる。
The fused cells obtained from the fused cell-containing system obtained as described above are subjected to selection, antibody activity screening, and cloning using known methods to form immunized mice. Thus, a fused cell line having the ability to produce a monoclonal antibody against the complete antigen and the ability to self-proliferate can be obtained.

【0019】上記融合細胞の選別処理は、例えば、20
%ウシ胎児血清含有RPMI−1640培地などで細胞
融合を終えた細胞を適当に希釈し、96穴マイクロプレ
ートに105 〜106 個/ウェル程度に分注し、各ウェ
ルに選択培地(例えばHAT培地)を加え、以後選択培
地交換を行いながら、5%CO2 培養器(37℃)で培
養を続けることにより行うことができる。ミエローマ細
胞として8−アザグアニン抵抗性株を用いれば、未融合
のミエローマ細胞はHAT培地で死滅し、また抗体産生
細胞は正常細胞なので試験管内(in vitro)培養では長
期間生育できない。したがって培養後10〜14日ぐら
いから生育してくる細胞はすべて融合細胞である。
The above-mentioned process for selecting fused cells is carried out, for example, in the step of
% Fetal bovine serum-containing RPMI-1640 medium cells having been subjected to the cell fusion, etc. were appropriately diluted, aliquoted into 105 to about 106 cells / well in 96-well microplate min, selective medium (e.g., HAT to each well Medium), and the culture is continued in a 5% CO 2 incubator (37 ° C.) while replacing the selective medium. If an 8-azaguanine-resistant strain is used as the myeloma cell, the unfused myeloma cell is killed in the HAT medium, and the antibody-producing cell is a normal cell and cannot be grown for a long time in an in vitro (in vitro) culture. Therefore, cells that grow from about 10 to 14 days after culture are all fusion cells.

【0020】上述のようにして得ることのできる融合細
胞株の抗体活性スクリーニング処理およびクローニング
処理は、例えば以下のようにして常法により行うことが
できる。
The antibody activity screening and cloning of the fusion cell strain obtained as described above can be carried out, for example, by a conventional method as follows.

【0021】融合細胞の生育したウェルの培養上清の一
部を採取し、一定量の標識抗原とインキュベーション
し、標識抗原との結合能を測定することにより目的とす
る抗体を分泌しているウェルを検索することができる。
すなわち、 125I、 131Iなどのラジオアイソトープあ
るいは酵素などで標識した抗原と培養上清を反応させた
後、各反応液について抗原−抗体結合物を分離し、標識
量を測定することにより、目的とする抗体の存在および
結合能を検索することができる。
A part of the culture supernatant in the well in which the fused cells have grown is collected, incubated with a fixed amount of a labeled antigen, and measured for its ability to bind to the labeled antigen, thereby determining the well secreting the desired antibody. Can be searched.
That is, after reacting the culture supernatant with an antigen labeled with a radioisotope or an enzyme such as 125 I or 131 I, the antigen-antibody conjugate is separated from each reaction solution, and the amount of the label is measured, whereby the target amount is determined. The presence and binding ability of the antibody can be searched.

【0022】目的とする抗体活性の認められる各ウェル
中には2種以上の融合細胞が生育している可能性がある
ので、限界希釈法や軟寒天によるコロニー形成法により
クローニングを行い、モノクローナル抗体産生融合細胞
株を得ることができる。
Since there is a possibility that two or more types of fused cells may grow in each well in which the desired antibody activity is observed, cloning is performed by limiting dilution or colony formation with soft agar, and monoclonal antibodies are cloned. A production fusion cell line can be obtained.

【0023】上述のようにして得ることのできるモノク
ローナル抗体産生細胞株を用いて、前記免疫動物の形成
に用いた完全抗原に対するモノクローナル抗体を取得す
るには、該モノクローナル抗体産生細胞株を、例えば適
当な培地に培養し、培地からモノクローナル抗体を採取
する方法、ミエローマ細胞由来動物と同系の動物に該細
胞株を移植し腹水中のモノクローナル抗体を採取する方
法など、それ自体公知の手法を利用することができる。
In order to obtain a monoclonal antibody against the complete antigen used to form the immunized animal by using the monoclonal antibody-producing cell line obtained as described above, the monoclonal antibody-producing cell line is used, for example, Using a method known per se, such as a method of culturing the cells in a suitable medium and collecting the monoclonal antibody from the medium, and a method of transplanting the cell line into an animal of the same strain as the myeloma cell-derived animal and collecting the monoclonal antibody in ascites fluid. Can be.

【0024】上記前者の方法によれば、例えば、モノク
ローナル抗体産生融合細胞株を10%ウシ胎児血清含有
RPMI−1640培地などの培養液で培養し、その培
養上清液を硫安分画や、抗原を結合させたセファロース
4Bなどのアフィニティークロマトグラフィーなどによ
って精製することにより目的とするモノクローナル抗体
を採取することができる。
According to the former method, for example, a monoclonal antibody-producing fusion cell line is cultured in a culture medium such as RPMI-1640 medium containing 10% fetal bovine serum, and the culture supernatant is subjected to ammonium sulfate fractionation or antigen extraction. The target monoclonal antibody can be collected by purification by affinity chromatography or the like such as Sepharose 4B to which is bound.

【0025】また、上記後者の方法によれば、例えば、
同系動物にプリスタン(2,6,10,14−テトラメ
チルペンタデカン)などの鉱物油を腹腔内投与した後、
融合細胞を腹腔内投与することにより生体内(in vivo
)で融合細胞を大量に増殖させる。その結果、形成さ
れる腹水には高濃度のモノクローナル抗体が含まれてい
る。この腹水から硫安分画および必要に応じて前記アフ
ィニティークロマトグラフィーなどにより、目的とする
モノクローナル抗体を取得することができる。
According to the latter method, for example,
After intraperitoneal administration of mineral oil such as pristane (2,6,10,14-tetramethylpentadecane) to syngeneic animals,
In vivo administration of fused cells by intraperitoneal administration
3.) Proliferate the fused cells in large quantities. As a result, the ascites fluid formed contains high concentrations of monoclonal antibodies. The target monoclonal antibody can be obtained from the ascites by ammonium sulfate fractionation and, if necessary, the affinity chromatography.

【0026】上述のようにして取得できるようなモノク
ローナル抗体は市販品として入手することも可能であ
り、本発明方法に利用できる。
A monoclonal antibody which can be obtained as described above can be obtained as a commercial product and can be used in the method of the present invention.

【0027】本発明で使用する不溶性担体としては、従
来より免疫化学的凝集反応および凝集阻止反応において
一般的に用いられている微粒子の担体を使用することが
できる。
As the insoluble carrier used in the present invention, a carrier of fine particles generally used in an immunochemical agglutination reaction and an agglutination inhibition reaction can be used.

【0028】このような不溶性担体としては、工業的に
大量生産可能な有機系微粒子が好ましいが、これに限定
されるものではない。工業的に大量生産可能な有機系微
粒子としては、例えば、スチレン、塩化ビニル、アクリ
ロニトリル、酢酸ビニル、アクリル酸エステル、メタク
リル酸エステルなどのビニル系モノマーの単独重合体お
よび/または共重合体、スチレン−ブタジエン共重合
体、メチルメタクリレート−ブタジエン共重合体などの
ブタジエン系共重合体などの微粒子、および官能基とし
てカルボキシル基、第1級アミノ基、またはカルボアミ
ノ基(−CONH 2 )、水酸基、アルデヒド基などを有
し、かつ基体が前記有機系微粒子からなる反応性有機系
微粒子などが挙げられる。抗体の吸着性に優れており、
かつ生物学的活性を長期間安定に保持できるなどの理由
から、特にポリスチレン系のラテックス粒子が好まし
い。
As such an insoluble carrier, industrially,
Organic particles that can be mass-produced are preferred, but are not limited
It is not something to be done. Organic fines that can be mass-produced industrially
Examples of the particles include styrene, vinyl chloride, and acrylic.
Lonitrile, vinyl acetate, acrylate, methacrylate
Homopolymers and vinyl monomers such as lylic acid esters
And / or copolymer, styrene-butadiene copolymer
Body, methyl methacrylate-butadiene copolymer, etc.
Fine particles such as butadiene copolymer and functional groups
Carboxyl group, primary amino group, or carboxamide group
No group (-CONH Two), Hydroxyl group, aldehyde group, etc.
And a reactive organic system wherein the substrate comprises the organic fine particles.
Fine particles and the like. Excellent antibody adsorption,
And the ability to maintain biological activity stably for a long period of time
And especially polystyrene latex particles are preferred.
No.

【0029】そのほか、動物の赤血球や細菌の細胞など
の生物学的粒子、ベントナイト、コロジオン、コレステ
ロール結晶、シリカ、カオリン、炭素末など非生物学的
粒子が挙げられる。
Other examples include biological particles such as animal red blood cells and bacterial cells, and non-biological particles such as bentonite, collodion, cholesterol crystals, silica, kaolin, and carbon powder.

【0030】本発明で使用する不溶性担体の平均粒径
は、不溶性担体上の抗体と、測定対象となる抗原物質の
抗原抗体反応により惹起される凝集反応の結果生じた凝
集塊が肉眼または光学的に検出できるに充分な大きさを
呈するものであればよい。特に、平均粒径が0.05〜
0.500μmの範囲にある2種以上の不溶性担体(好
ましくはラテックス粒子)を、最小粒子種(2種以上の
不溶性担体のうち最も平均粒径の小さいもの)の平均粒
径に対する他の粒子種(2種以上の不溶性担体のうち上
記最小粒子種以外の1または2以上のもの)の平均粒径
の比が3〜6の範囲になるように組み合わせて使用する
ことが好ましい。
The average particle size of the insoluble carrier used in the present invention is such that the aggregate on the antibody on the insoluble carrier and the agglutination produced by the antigen-antibody reaction of the antigen substance to be measured are visually or optically. Any size can be used as long as the size is large enough to be detected. In particular, the average particle size is 0.05 to
Two or more insoluble carriers (preferably latex particles) in the range of 0.500 μm are combined with other particle types with respect to the average particle size of the smallest particle type (the smallest average particle size of the two or more insoluble carriers). It is preferable to use them in combination such that the ratio of the average particle size of (one or two or more of the two or more insoluble carriers other than the minimum particle type) is in the range of 3 to 6.

【0031】2種の不溶性担体を混合する際、その容量
の比は1:10〜10:1の範囲で、測定対象物質の必
要な検出下限に合わせて適宜選択される。3種以上の不
溶性担体を混合する際にも上記と同様に混合比を決定す
ればよい。
When mixing two kinds of insoluble carriers, the volume ratio is appropriately selected in the range of 1:10 to 10: 1 according to the required detection lower limit of the substance to be measured. When mixing three or more insoluble carriers, the mixing ratio may be determined in the same manner as described above.

【0032】上記不溶性担体の表面にモノクローナル抗
体を感作させる手法は種々知られており、本発明におい
て適宜利用できる。例えば、このような感作手法として
不溶性担体表面にモノクローナル抗体を物理的に吸着さ
せる手法や、官能基を有する不溶性担体表面に、既知の
方法である化学結合法や共有結合法により、モノクロー
ナル抗体を効率的に感作する手法が挙げられる。
Various techniques for sensitizing the surface of the insoluble carrier with the monoclonal antibody are known and can be appropriately used in the present invention. For example, such a sensitizing method is a method of physically adsorbing a monoclonal antibody on the surface of an insoluble carrier, or a method of chemically binding or covalently bonding a monoclonal antibody to a surface of an insoluble carrier having a functional group by a known method. There is a method of sensitizing efficiently.

【0033】抗体を担持させた不溶性担体と、抗原との
反応は、抗原抗体反応及びそれに伴う凝集反応であり、
該反応が起こりうる条件であれば、その反応条件は特に
限定されないが、反応温度は恒温、特に25℃〜37℃
の範囲内の恒温であることが好ましい。反応時間につい
ても特に限定されないが、5秒〜15分が好ましい。
The reaction between an insoluble carrier carrying an antibody and an antigen is an antigen-antibody reaction and an accompanying agglutination reaction.
The reaction conditions are not particularly limited as long as the reaction can take place, but the reaction temperature is constant, particularly 25 ° C to 37 ° C.
It is preferable that the temperature is within the range described above. The reaction time is not particularly limited, but is preferably 5 seconds to 15 minutes.

【0034】反応液としては、抗原抗体反応が起こりう
る生理的条件を満たす水溶液であればどのようなもので
もよいが、リン酸緩衝液、グリシン緩衝液、トリス塩酸
緩衝液、グッド緩衝液等が好ましい。反応液のpHは、
好ましくは5.5〜8.5、特に好ましくは6.5〜
8.0である。上記反応液に、安定剤として牛血清アル
ブミン、ショ糖、または感度を高める効果が期待される
ポリエチレングリコール、デキストランなどの水溶性多
糖類、防腐剤としてアジ化ナトリウム、および塩濃度調
整のために塩化ナトリウム等の添加剤を適宜溶解させて
もよい。
The reaction solution may be any solution as long as it satisfies physiological conditions under which an antigen-antibody reaction can take place. Phosphate buffer, glycine buffer, Tris-HCl buffer, Good buffer and the like can be used. preferable. The pH of the reaction solution is
Preferably 5.5 to 8.5, particularly preferably 6.5 to 8.5.
8.0. The above reaction solution is prepared by adding bovine serum albumin and sucrose as stabilizers, water-soluble polysaccharides such as polyethylene glycol and dextran, which are expected to enhance sensitivity, sodium azide as a preservative, and chloride for adjusting salt concentration. An additive such as sodium may be appropriately dissolved.

【0035】不溶性担体の凝集の程度を測定する方法
は、特に限定されない。例えば、凝集を定性的ないし半
定量的に測定する場合には、既知の試料の濁度の程度と
の比較から、上記結合物の凝集の程度を目視によって判
定することも可能である。該凝集を定量的に測定する場
合、簡便性及び精度の点からは、例えば光学的に測定す
ることが望ましい。
The method for measuring the degree of aggregation of the insoluble carrier is not particularly limited. For example, when agglutination is measured qualitatively or semi-quantitatively, it is possible to visually determine the degree of aggregation of the conjugate from comparison with the degree of turbidity of a known sample. When the aggregation is quantitatively measured, for example, it is desirable to measure the aggregation optically from the viewpoint of simplicity and accuracy.

【0036】凝集の光学的測定法としては、公知の方法
が利用可能である。より具体的には、例えば、いわゆる
比濁法(凝集塊の形成を濁度の増加としてとらえる)、
粒度分布による測定法(凝集塊の形成を粒度分布ないし
平均粒径の変化としてとらえる)、積分球濁度法(凝集
塊の形成による前方散乱光の変化を積分球を用いて測定
し、透過光強度との比を比較する)などの種々の方式が
利用可能である。
As an optical measurement method of aggregation, a known method can be used. More specifically, for example, a so-called turbidity method (the formation of aggregates is regarded as an increase in turbidity),
Measurement method based on particle size distribution (the formation of agglomerates is regarded as a change in particle size distribution or average particle size), integrated sphere turbidity method (change in forward scattered light due to the formation of agglomerates is measured using an integrating sphere, and transmitted light Various methods are available, such as comparing the ratio with the intensity.

【0037】これらのそれぞれの測定法について、速度
試験(レートアッセイ;異なる時点で少なくとも2つの
測定値を得て、これらの時点間における該測定値の増加
分(すなわち増加速度)に基づき凝集の程度を求める)
と、終点試験(エンドポイントアッセイ;ある時点(通
常は、反応の終点と考えられる時点)で1つの測定値を
得て、この測定値に基づき凝集の程度を求める)が利用
可能である。測定の簡便さ、迅速性の点からは、比濁法
を用いた速度試験を行うことが望ましい。
For each of these assays, a rate test (rate assay; at least two measurements were taken at different time points, and the extent of aggregation based on the increment (ie, the rate of increase) of the measurements between these time points) Ask for)
And an end point test (end point assay; one measurement is taken at some point (usually the end point of the reaction) and the degree of aggregation is determined based on this measurement). From the viewpoint of simplicity and quickness of measurement, it is desirable to conduct a speed test using a turbidimetric method.

【0038】[0038]

【発明の実施の形態】以下、本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0039】実施例および比較例で用いた試薬および材
料は、下記の通りである。
The reagents and materials used in the examples and comparative examples are as follows.

【0040】1)試薬および材料 下記の試薬および材料を用意ないしは調製した。1) Reagents and Materials The following reagents and materials were prepared or prepared.

【0041】抗ヒトCEAモノクローナル抗体:抗CE
Aモノクローナル抗体(Clone No. CEA4−G67、
IgG−1、DAKO社製、およびClone No. CEA4
−G11、IgG−1、DAKO社製)を用いた。
Anti-human CEA monoclonal antibody: anti-CE
A monoclonal antibody (Clone No. CEA4-G67,
IgG-1, DAKO, and Clone No. CEA4
-G11, IgG-1, manufactured by DAKO).

【0042】ラテックス:平均粒径0.087μm、
0.120μm、、0.210μm0.400μm、
0.464μmのポリスチレン粒子をそれぞれ含む5種
のラテックス(いずれも固形分10%(W/V)、積水
化学社製)を用いた。
Latex: average particle size 0.087 μm,
0.120 μm, 0.210 μm 0.400 μm,
Five types of latex each containing 0.464 μm polystyrene particles (all having a solid content of 10% (W / V), manufactured by Sekisui Chemical Co., Ltd.) were used.

【0043】ラテックス希釈用緩衝液:50mM Na
2 HPO4 と50mM NaH2 PO4 をpH7.50
になるように混合し、得られた混合物をラテックス希釈
用緩衝液として用いた。
Latex dilution buffer: 50 mM Na
2 HPO 4 and 50 mM NaH 2 PO 4 at pH 7.50
And the resulting mixture was used as a latex dilution buffer.

【0044】抗体希釈用緩衝液:上記ラテックス希釈用
緩衝液を抗体希釈用緩衝液としても用いた。
Antibody dilution buffer: The above latex dilution buffer was also used as an antibody dilution buffer.

【0045】ブロッキング用緩衝液:100mM Na
2 HPO4 と100mM NaH2 PO4 をpH7.4
0になるように混合し、得られた混合物にウシ血清アル
ブミン(Bovine serum albumin、Fraction V、Reagent
Grade 、Miles Corp. 社製)を1%(W/V)になるよ
うに、またNaN3 (試薬特級、ナカライテスク社製)
を0.1%(W/V)になるように添加したものを、ブ
ロッキング用緩衝液として用いた。
Blocking buffer: 100 mM Na
2 HPO 4 and 100 mM NaH 2 PO 4 at pH 7.4
0, and the resulting mixture was added to bovine serum albumin (Bovine serum albumin, Fraction V, Reagent
Grade, manufactured by Miles Corp.) to 1% (W / V), and NaN 3 (reagent grade, manufactured by Nacalai Tesque)
Was added to a concentration of 0.1% (W / V) and used as a blocking buffer.

【0046】CEA標準品:CEA標準品(ダイナボッ
ト社製、CEA・リアビーズキット添付品)の0、5、
20、100、500ng/mlをそのまま用いた。
CEA standard products: 0, 5, CEA standard products (manufactured by Dynabot, attached to CEA / rear beads kit)
20, 100 and 500 ng / ml were used as they were.

【0047】検体希釈用希釈液(R1液):ブロッキン
グ用緩衝液に、ポリエチレングリコール6,000(平
均分子量7,500、和光純薬社製)を3%(W/V)
になるように添加したものを検体希釈用希釈液(R1
液)として用いた。
Diluent for sample dilution (R1 solution): polyethylene glycol 6,000 (average molecular weight 7,500, Wako Pure Chemical Industries) 3% (W / V) in blocking buffer
The diluted solution for sample dilution (R1
Liquid).

【0048】実施例1 (1) CEA測定用試薬の調製 平均粒径0.087μmのポリスチレンラテックス(固
形分10%(W/V))1容に、ラテックス希釈用緩衝
液9容を添加してラテックスを希釈し、1.0%ラテッ
クス液とした。抗CEA抗体(Clone No. CEA4−G
67)は、タンパク濃度が66.7μg/mlになるよ
うに抗体希釈用緩衝液で希釈し、感作用の抗体液とし
た。1.0%(W/V)ラテックス液600μlを25
℃のインキュベーター中でマグネチックスターラーで攪
拌しながら、これに抗体液1200μlを素早く添加
し、25℃にて1時間攪拌した。その後、ブロッキング
用緩衝液を3.0ml添加し、25℃にて続けて2時間
攪拌した。その後、15℃、15,000rpmにて1
5分間遠心分離した。得られた沈殿にブロッキング用緩
衝液を4.0ml添加し、同様に遠心分離することによ
り、沈殿を洗浄した。洗浄操作は3回行った。この沈殿
にブロッキング用緩衝液を1.8ml添加し、よく攪拌
した後、超音波破砕機にて分散処理を行った。これにさ
らにブロッキング用緩衝液を1.8ml添加し、固形分
0.17%(W/V)のCEA測定用試薬[1]とし
た。このようにして調製したCEA測定用試薬[1]は
4℃にて保存した。
Example 1 (1) Preparation of Reagent for CEA Measurement To 1 volume of polystyrene latex (solid content 10% (W / V)) having an average particle size of 0.087 μm, 9 volumes of a latex dilution buffer were added. The latex was diluted to a 1.0% latex solution. Anti-CEA antibody (Clone No. CEA4-G
No. 67) was diluted with an antibody diluting buffer so that the protein concentration became 66.7 μg / ml to obtain a sensitizing antibody solution. Add 600 μl of 1.0% (W / V) latex solution to 25
While stirring with a magnetic stirrer in an incubator at ° C, 1200 µl of the antibody solution was quickly added thereto, followed by stirring at 25 ° C for 1 hour. Thereafter, 3.0 ml of a blocking buffer was added, and the mixture was continuously stirred at 25 ° C. for 2 hours. Then, at 15 ° C and 15,000 rpm, 1
Centrifuged for 5 minutes. 4.0 ml of a blocking buffer was added to the obtained precipitate, and the precipitate was washed similarly by centrifugation. The washing operation was performed three times. 1.8 ml of a blocking buffer was added to the precipitate, and the mixture was stirred well, and then subjected to a dispersion treatment with an ultrasonic crusher. To this, 1.8 ml of a blocking buffer was further added to obtain a CEA measuring reagent [1] having a solid content of 0.17% (W / V). The reagent for CEA measurement [1] thus prepared was stored at 4 ° C.

【0049】また、不溶性担体液として、平均粒径0.
464μmのポリスチレンラテックス(固形分10%
(W/V))を用い、感作用の抗体液として、抵CEA
抗体(Clone No. CEA4−G11、IgG−1)をタ
ンパク濃度が12.5μg/mlになるように抗体希釈
用緩衝液で希釈したものを用い、その他の点ではCEA
測定用試薬[1]の場合と同様の操作を行って固形分
0.17%(W/V)のCEA測定用試薬[2]を得、
4℃にて保存した。
Further, as the insoluble carrier liquid, an average particle diameter of 0.1 is used.
464 μm polystyrene latex (solid content 10%
(W / V)) as a sensitive antibody solution
An antibody (Clone No. CEA4-G11, IgG-1) diluted with an antibody diluting buffer so that the protein concentration becomes 12.5 μg / ml is used.
The same operation as in the case of the measurement reagent [1] was performed to obtain a CEA measurement reagent [2] having a solid content of 0.17% (W / V).
Stored at 4 ° C.

【0050】(2) CEA量の測定 CEA量の測定は、生化学用自動分析装置7150形
(日立製作所社製)を用いて行った。上記(1) で得られ
た固形分0.17%(W/V)のCEA測定用試薬
[1]および[2]を等量混合し、得られた混合液を試
薬(R2液)(固形分0.17%(W/V))とした。
測定条件は以下の通りである。
(2) Measurement of CEA Amount The CEA amount was measured using an automatic analyzer for biochemistry Model 7150 (manufactured by Hitachi, Ltd.). Equal amounts of the reagents [1] and [2] for CEA measurement having a solid content of 0.17% (W / V) obtained in the above (1) are mixed in equal amounts, and the obtained mixture is mixed with the reagent (solution R2) (solid 0.17% (W / V)).
The measurement conditions are as follows.

【0051】 検体容量 20μl 検体希釈用希釈液(R1液) 210μl 試薬(R2液) 30μl 測定波長 570nm 測定温度 37℃Sample volume 20 μl Diluent for sample dilution (R1 solution) 210 μl Reagent (R2 solution) 30 μl Measurement wavelength 570 nm Measurement temperature 37 ° C.

【0052】測定系に試薬(R2液)を添加してから約
80秒後の吸光度と約320秒後の吸光度の差(ΔOD
570)を測定し、この吸光度の差を10,000倍し
たものを吸光度変化量とした。検体として既知濃度のC
EA標準品を用いて測定を行い、検量線を作成した。
The difference between the absorbance approximately 80 seconds after the addition of the reagent (R2 solution) to the measurement system and the absorbance approximately 320 seconds later (ΔOD
570), and the difference in absorbance multiplied by 10,000 was defined as the change in absorbance. C of known concentration as a sample
The measurement was performed using the EA standard, and a calibration curve was created.

【0053】比較例1(同一平均粒径のラテックス凝集
免疫試薬を用いたCEA量の測定) 実施例1で得られたCEA測定用試薬[1](ラテック
ス凝集免疫試薬(固形分0.17%(W/V))をその
まま試薬(R2液)として用いた点を除いて、実施例1
と同じ操作を行った。
Comparative Example 1 (Measurement of CEA amount using latex agglutination immunoreagent having the same average particle size) CEA measurement reagent [1] (latex agglutination immunoreagent (solid content 0.17%) obtained in Example 1 Example 1 except that (W / V)) was used as a reagent (R2 solution) as it was.
The same operation was performed.

【0054】比較例2(同一平均粒径のラテックス凝集
免疫試薬を用いたCEA量の測定) 実施例1で得られたCEA測定用試薬[2](ラテック
ス凝集免疫試薬(固形分0.17%(W/V))をその
まま試薬(R2液)として用いた点を除いて、実施例1
と同じ操作を行った。
Comparative Example 2 (Measurement of CEA amount using latex agglutination immunoreagent having the same average particle size) CEA measurement reagent [2] (latex agglutination immunoreagent (solid content 0.17%) obtained in Example 1 Example 1 except that (W / V)) was used as a reagent (R2 solution) as it was.
The same operation was performed.

【0055】試験結果 実施例1および比較例1、2で測定した吸光度変化量お
よび作成した検量線を表1および図1に示す。
Test Results Table 1 and FIG. 1 show the amounts of change in absorbance measured in Example 1 and Comparative Examples 1 and 2 and the calibration curves prepared.

【0056】[0056]

【表1】 [Table 1]

【0057】表1および図1から明らかなように、本発
明の方法による実施例1の測定値から作成された検量線
は、CEA低濃度域から高濃度域まで、良好な直線性を
示した。これに対し、同一平均粒径のラテックス凝集免
疫試薬による比較例1、2の検量線は、CEA低濃度域
および高濃度域において、本発明による方法よりも反応
性が低いため、良好な直線性を示さなかった。
As is clear from Table 1 and FIG. 1, the calibration curve prepared from the measured values of Example 1 by the method of the present invention showed good linearity from the low concentration range to the high concentration range of CEA. . On the other hand, the calibration curves of Comparative Examples 1 and 2 using the latex agglutination immunoreagent having the same average particle size show lower linearity and lower linearity in the CEA low concentration region and high concentration region than the method according to the present invention. Did not show.

【0058】これは、実施例1では、2種のモノクロー
ナル抗原を異なる平均粒径の不溶性担体に担持させてな
るラテックス試薬を用いたため、比較例で用いた同一平
均粒径のものよりもラテックス粒子間の立体障害が解消
され、抗原抗体反応およびそれに続く凝集反応が促進さ
れたためと推察される。
This is because, in Example 1, a latex reagent comprising two types of monoclonal antigens supported on insoluble carriers having different average particle diameters was used. It is presumed that the steric hindrance between them was resolved, and the antigen-antibody reaction and the subsequent agglutination reaction were promoted.

【0059】以上の結果から、本発明によるCEA定量
法は、従来のラテックス凝集免疫試薬よりも高感度で優
れた定量法であることが確認された。
From the above results, it was confirmed that the CEA quantification method according to the present invention was a quantification method superior in sensitivity and superior to the conventional latex agglutination immunoreagent.

【0060】実施例2 (1) CEA測定用試薬の調製 不溶性担体液として、平均粒径0.120μmおよび
0.400μmの2種のポリスチレンラテックスを用
い、感作用の抗体液として、抵CEA抗体Clone No. C
EA4−G67をタンパク濃度が48.3μg/mlに
なるように抗体希釈用緩衝液で希釈したもの、および、
抵CEA抗体Clone No. CEA4−G11をタンパク濃
度が14.5μg/mlになるように抗体希釈用緩衝液
で希釈したものをそれぞれ用い、その他の点ではCEA
測定用試薬[1]の場合と同様の操作を行って固形分
0.17%(W/V)のCEA測定用試薬[3]および
[4]を得、4℃にて保存した。
Example 2 (1) Preparation of Reagent for CEA Measurement Two kinds of polystyrene latex having an average particle size of 0.120 μm and 0.400 μm were used as an insoluble carrier solution, and a CEA antibody Clone was used as a sensitive antibody solution. No. C
EA4-G67 diluted with an antibody dilution buffer so that the protein concentration becomes 48.3 μg / ml; and
The CEA antibody Clone No. CEA4-G11 was diluted with an antibody diluting buffer so that the protein concentration was 14.5 μg / ml.
The same operation as in the case of the measurement reagent [1] was performed to obtain CEA measurement reagents [3] and [4] having a solid content of 0.17% (W / V), and stored at 4 ° C.

【0061】(2) CEA量の測定 上記(1) で得られた固形分0.17%(W/V)のCE
A測定用試薬[3]および[4]を等量混合し、得られ
た混合液を試薬(R2液)とした点を除いて、実施例1
と同じ操作を行ってCEA量を測定した。
(2) Measurement of CEA Amount of CE having a solid content of 0.17% (W / V) obtained in (1) above.
Example 1 was repeated except that equal amounts of the reagents A for measurement [3] and [4] were mixed and the resulting mixture was used as the reagent (solution R2).
The same operation as described above was performed to measure the CEA amount.

【0062】比較例3(同一平均粒径のラテックス凝集
免疫試薬を用いたCEA量の測定) 実施例2で得られたCEA測定用試薬[3](ラテック
ス凝集免疫試薬(固形分0.17%(W/V))をその
まま試薬(R2液)として用いた点を除いて、実施例2
と同じ操作を行った。
Comparative Example 3 (Measurement of CEA amount using latex agglutination immunoreagent having the same average particle size) CEA measurement reagent [3] obtained in Example 2 (latex agglutination immunoreagent (solid content 0.17% Example 2 except that (W / V)) was used as a reagent (solution R2) as it was.
The same operation was performed.

【0063】比較例4(同一平均粒径のラテックス凝集
免疫試薬を用いたCEA量の測定) 実施例2で得られたCEA測定用試薬[4](ラテック
ス凝集免疫試薬(固形分0.17%(W/V))をその
まま試薬(R2液)として用いた点を除いて、実施例2
と同じ操作を行った。
Comparative Example 4 (Measurement of CEA amount using latex agglutination immunoreagent having the same average particle size) CEA measurement reagent [4] obtained in Example 2 (latex agglutination immunoreagent (solid content 0.17% Example 2 except that (W / V)) was used as a reagent (solution R2) as it was.
The same operation was performed.

【0064】試験結果 実施例2および比較例3、4で測定した吸光度変化量お
よび作成した検量線を表2および図2に示す。
Test Results Table 2 and FIG. 2 show the change in absorbance measured in Example 2 and Comparative Examples 3 and 4, and the prepared calibration curves.

【0065】[0065]

【表2】 [Table 2]

【0066】表2および図2から明らかなように、本発
明の方法による実施例2の測定値から作成された検量線
は、実施例1と同様にCEA低濃度域から高濃度域ま
で、良好な直線性を示した。これに対し、同一平均粒径
のラテックス凝集免疫試薬による比較例3、4の検量線
は、CEA低濃度域および高濃度域において、本発明に
よる方法よりも反応性が低いため、良好な直線性を示さ
なかった。
As is clear from Table 2 and FIG. 2, the calibration curve prepared from the measured values of Example 2 according to the method of the present invention shows good results from the low concentration region to the high concentration region of CEA as in Example 1. It showed excellent linearity. On the other hand, the calibration curves of Comparative Examples 3 and 4 using the latex agglutination immunoreagent having the same average particle size show lower linearity in the CEA low concentration region and high CEA concentration region than in the method according to the present invention. Did not show.

【0067】実施例3 実施例1で得られたCEA測定用試薬[1]と、実施例
2で得られたCEA測定用試薬[4]とを等量混合し、
得られた混合液を試薬(R2液)とした点を除いて、実
施例1と同じ操作を行ってCEA量を測定した。
Example 3 An equal amount of the CEA measurement reagent [1] obtained in Example 1 and the CEA measurement reagent [4] obtained in Example 2 were mixed.
The amount of CEA was measured by performing the same operation as in Example 1 except that the obtained mixture was used as a reagent (solution R2).

【0068】実施例4 実施例1で得られたCEA測定用試薬[2]と、実施例
2で得られたCEA測定用試薬[3]とを等量混合し、
得られた混合液を試薬(R2液)とした点を除いて、実
施例1と同じ操作を行ってCEA量を測定した。
Example 4 An equal amount of the CEA measuring reagent [2] obtained in Example 1 and the CEA measuring reagent [3] obtained in Example 2 were mixed.
The amount of CEA was measured by performing the same operation as in Example 1 except that the obtained mixture was used as a reagent (solution R2).

【0069】試験結果 実施例3、4で測定した吸光度変化量および作成した検
量線を表3および図3に示す。
Test Results Table 3 and FIG. 3 show the change in absorbance measured in Examples 3 and 4 and the prepared calibration curve.

【0070】[0070]

【表3】 [Table 3]

【0071】表3および図3から明らかなように、本発
明の方法による実施例3、4の測定値から作成された検
量線は、実施例1と同様にCEA低濃度域から高濃度域
まで良好な直線性を示した。
As is clear from Table 3 and FIG. 3, the calibration curves prepared from the measured values of Examples 3 and 4 according to the method of the present invention are similar to those of Example 1 from the low concentration range of CEA to the high concentration range. It showed good linearity.

【0072】実施例5 (1) CEA測定用試薬の調製 不溶性担体液として、平均粒径0.210μmのポリス
チレンラテックスを用い、感作用の抗体液として、抵C
EA抗体Clone No. CEA4−G67をタンパク濃度が
27.6μg/mlになるように抗体希釈用緩衝液で希
釈したものを用い、その他の点では実施例1のCEA測
定用試薬[1]の場合と同様の操作を行って固形分0.
17%(W/V)のCEA測定用試薬[5]を得、4℃
にて保存した。
Example 5 (1) Preparation of Reagent for CEA Measurement A polystyrene latex having an average particle size of 0.210 μm was used as an insoluble carrier liquid, and
The EA antibody Clone No. CEA4-G67 was diluted with an antibody dilution buffer so that the protein concentration became 27.6 μg / ml, and in the other respects, the CEA measurement reagent [1] of Example 1 was used. The same operation as described above was performed to obtain a solid content of 0.1%.
17% (W / V) CEA measuring reagent [5] was obtained at 4 ° C.
Saved in.

【0073】(2) CEA量の測定 上記(1) で得られた固形分0.17%(W/V)のCE
A測定用試薬[5]と、実施例1で得られたCEA測定
用試薬[2]とを等量混合し、得られた混合液を試薬
(R2液)とした点を除いて、実施例1と同じ操作を行
ってCEA量を測定した。
(2) Measurement of CEA content CE of 0.17% (W / V) solid content obtained in (1) above
An A-reagent [5] and a CEA-reagent [2] obtained in Example 1 were mixed in equal amounts, and the resulting mixture was used as a reagent (R2 solution). The same operation as in Example 1 was performed to measure the amount of CEA.

【0074】比較例5(同一平均粒径のラテックス凝集
免疫試薬を用いたCEA量の測定) (1) CEA測定用試薬の調製 不溶性担体液として、平均粒径0.464μmのポリス
チレンラテックスを用い、感作用の抗体液として、抵C
EA抗体Clone No. CEA4−G67をタンパク濃度が
12.5μg/mlになるように抗体希釈用緩衝液で希
釈したものを用い、その他の点ではCEA測定用試薬
[1]の場合と同様の操作を行って固形分0.17%
(W/V)のCEA測定用試薬[6]を得、4℃にて保
存した。
Comparative Example 5 (Measurement of CEA Amount Using Latex Agglutination Immunoreagent with Same Average Particle Size) (1) Preparation of CEA Measurement Reagent A polystyrene latex having an average particle size of 0.464 μm was used as an insoluble carrier liquid. As a sensitizing antibody solution, C
Using the EA antibody Clone No. CEA4-G67 diluted with an antibody diluting buffer so that the protein concentration becomes 12.5 μg / ml, in other respects the same operation as in the case of the CEA measurement reagent [1] is used. 0.17% solids
(W / V) CEA reagent [6] was obtained and stored at 4 ° C.

【0075】(2) CEA量の測定 上記(1) で得られた固形分0.17%(W/V)のCE
A測定用試薬[6]と、実施例1で得られたCEA測定
用試薬[2]とを等量混合し、得られた混合液を試薬
(R2液)とした点を除いて、実施例1と同じ操作を行
ってCEA量を測定した。
(2) Measurement of CEA content CE of 0.17% (W / V) solid content obtained in (1) above
An A-reagent [6] and an CEA-reagent [2] obtained in Example 1 were mixed in equal amounts, and the resulting mixture was used as a reagent (R2 solution), except that the mixture was used as a reagent (R2 solution). The same operation as in Example 1 was performed to measure the amount of CEA.

【0076】試験結果 実施例5および比較例5で測定した吸光度変化量および
作成した検量線を表4および図3に示す。
Test Results Table 4 and FIG. 3 show the amounts of change in absorbance measured in Example 5 and Comparative Example 5 and the prepared calibration curves.

【0077】[0077]

【表4】 [Table 4]

【0078】表4および図3から明らかなように、本発
明の方法による実施例5の測定値から作成された検量線
は、実施例1と同様にCEA低濃度域から高濃度域ま
で、良好な直線性を示した。これに対し、同一平均粒径
のラテックス凝集免疫試薬による比較例5の検量線は、
CEA低濃度域および高濃度域において、本発明による
方法よりも反応性が低いため、良好な直線性を示さなか
った。
As is clear from Table 4 and FIG. 3, the calibration curve prepared from the measured values of Example 5 according to the method of the present invention shows good results from the low concentration region to the high concentration region of CEA as in Example 1. It showed excellent linearity. On the other hand, the calibration curve of Comparative Example 5 using the latex agglutination immunoreagent having the same average particle size is as follows:
In the low concentration region and the high concentration region of CEA, the reactivity was lower than that of the method according to the present invention, so that good linearity was not exhibited.

【0079】[0079]

【発明の効果】本発明による免疫測定法は以上の如く構
成されているので、従来のラテックス凝集免疫試薬で見
られたような不溶性担体の立体的障害による凝集阻害が
なく、かつ非特異凝集を惹起することがなく、抗原抗体
反応系中に反応に関与する抗原または抗体をできるだけ
多く存在させることができる。その結果、抗原性物質を
正確に定量することができ、低濃度域でも高い検出感度
を示すことができる。特に、2種以上のモノクローナル
抗体の認識する抗原のエピトープが構造的に互いに近接
していたり、または抗原物質の分子量が小さく、同一平
均粒径の不溶性担体では凝集反応が生じ難い場合に、よ
り一層その効果が発揮される。したがって、本発明によ
る測定法は、被検試料中の抗原性物質を正確に定量する
ことを可能にし、疾患の発見、病態の把握、治療方法の
決定などに有用である。
Since the immunoassay according to the present invention is constituted as described above, there is no inhibition of aggregation due to steric hindrance of the insoluble carrier as seen with the conventional latex agglutination immunoreagent, and non-specific agglutination can be achieved. The antigen or antibody involved in the reaction can be present in the antigen-antibody reaction system as much as possible without causing any elicitation. As a result, the antigenic substance can be accurately quantified, and high detection sensitivity can be exhibited even in a low concentration range. Particularly, when the epitopes of the antigens recognized by two or more types of monoclonal antibodies are structurally close to each other, or when the molecular weight of the antigenic substance is small and an insoluble carrier having the same average particle diameter does not easily cause agglutination, The effect is exhibited. Therefore, the measurement method according to the present invention enables accurate quantification of an antigenic substance in a test sample, and is useful for finding a disease, grasping a disease state, and determining a treatment method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1に使用された既知濃度のCEA標準品
中のCEA量と、本発明のCEA測定方法による吸光度
変化量の相関、および比較例1、2に使用された既知濃
度のCEA標準品中のCEA量と、従来法によるラテッ
クス凝集免疫試薬による吸光度変化量の相関を示すグラ
フである。
FIG. 1 shows the correlation between the amount of CEA in a CEA standard sample of known concentration used in Example 1 and the amount of change in absorbance according to the CEA measuring method of the present invention, and the known concentration of CEA used in Comparative Examples 1 and 2. 4 is a graph showing the correlation between the amount of CEA in a standard product and the amount of change in absorbance by a latex agglutination immunoreagent according to a conventional method.

【図2】実施例2に使用された既知濃度のCEA標準品
中のCEA量と、本発明のCEA測定方法による吸光度
変化量の相関、および比較例3、4に使用された既知濃
度のCEA標準品中のCEA量と、従来法によるラテッ
クス凝集免疫試薬による吸光度変化量の相関を示すグラ
フである。
FIG. 2 shows the correlation between the amount of CEA in a CEA standard sample of known concentration used in Example 2 and the amount of change in absorbance according to the CEA measurement method of the present invention, and the CEA of known concentration used in Comparative Examples 3 and 4. 4 is a graph showing the correlation between the amount of CEA in a standard product and the amount of change in absorbance by a latex agglutination immunoreagent according to a conventional method.

【図3】実施例3、4および5に使用された既知濃度の
CEA標準品中のCEA量と、本発明のCEA測定方法
による吸光度変化量の相関、および比較例5に使用され
た既知濃度のCEA標準品中のCEA量と、従来法によ
るラテックス凝集免疫試薬による吸光度変化量の相関を
示すグラフである。
FIG. 3 shows the correlation between the amount of CEA in a CEA standard sample of known concentration used in Examples 3, 4 and 5, and the amount of change in absorbance according to the CEA measurement method of the present invention, and the known concentration used in Comparative Example 5. 4 is a graph showing the correlation between the amount of CEA in a CEA standard sample and the amount of change in absorbance by a latex agglutination immunoreagent according to a conventional method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 特定の抗原に対する異なる2種以上のモ
ノクローナル抗体を不溶性担体に担持させ、水溶媒中で
抗原と反応させ、不溶性担体と抗原の結合物を選択的に
凝集させるに当たり、不溶性担体として平均粒径の異な
る2種以上の担体を用い、これら不溶性担体に各モノク
ローナル抗体をそれぞれ担持させることを特徴とする高
感度免疫測定法。
1. An insoluble carrier in which two or more different monoclonal antibodies against a specific antigen are supported on an insoluble carrier and reacted with the antigen in an aqueous solvent to selectively aggregate a conjugate of the insoluble carrier and the antigen. A high-sensitivity immunoassay method comprising using two or more carriers having different average particle diameters and carrying each monoclonal antibody on each of these insoluble carriers.
【請求項2】 不溶性担体がラテックス粒子であること
を特徴とする請求項1記載の測定法。
2. The method according to claim 1, wherein the insoluble carrier is latex particles.
【請求項3】 平均粒径が0.05〜0.500μmの
範囲にある2種以上の不溶性担体を、最小粒子種の平均
粒径に対する他の粒子種の平均粒径の比が3〜6の範囲
になるように組み合わせて使用することを特徴とする請
求項1又は2記載の測定法。
3. An insoluble carrier having an average particle size in the range of 0.05 to 0.500 μm, wherein the ratio of the average particle size of the other particle type to the average particle size of the minimum particle type is 3 to 6; 3. The measuring method according to claim 1, wherein the measuring method is used in combination so as to fall within the range.
JP27345196A 1996-10-16 1996-10-16 Highly sensitive immunoassay Expired - Lifetime JP3652029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27345196A JP3652029B2 (en) 1996-10-16 1996-10-16 Highly sensitive immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27345196A JP3652029B2 (en) 1996-10-16 1996-10-16 Highly sensitive immunoassay

Publications (2)

Publication Number Publication Date
JPH10123137A true JPH10123137A (en) 1998-05-15
JP3652029B2 JP3652029B2 (en) 2005-05-25

Family

ID=17528104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27345196A Expired - Lifetime JP3652029B2 (en) 1996-10-16 1996-10-16 Highly sensitive immunoassay

Country Status (1)

Country Link
JP (1) JP3652029B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103427A (en) * 1991-05-17 2000-08-15 Dupont Photomasks, Inc. Pressure relieving pellicle
WO2000067027A1 (en) * 1999-04-30 2000-11-09 Microbiological Research Authority Augmented agglutination assay
WO2002079782A1 (en) * 2001-03-30 2002-10-10 Mitsubishi Kagaku Iatron, Inc. Reagent and method for immunoanalysis of elastase 1 and method of detecting pancreatic disease
US7279339B2 (en) 2003-09-30 2007-10-09 Wako Pure Chemical Industries, Ltd. Reagent for an immunoassay
WO2008007773A1 (en) * 2006-07-13 2008-01-17 Olympus Corporation Method of confirming the specimen-detecting activity of microparticles
WO2012133482A1 (en) * 2011-03-28 2012-10-04 積水メディカル株式会社 Psa assay method and reagent therefor
WO2012161226A1 (en) 2011-05-23 2012-11-29 積水メディカル株式会社 Method for inhibiting non-specific reaction in pivka-ii measurement reagent
WO2014057880A1 (en) * 2012-10-12 2014-04-17 藤倉化成株式会社 Measurement reagent and measurement method for measuring c-reactive protein
JP2015117980A (en) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 Dyeing method
CN106680505A (en) * 2017-01-04 2017-05-17 南京鼓楼医院 Latex-enhanced immunoturbidimetry detection method based on multiple mutually-matchable monoclonal antibodies
WO2018181549A1 (en) 2017-03-28 2018-10-04 デンカ株式会社 Membrane carrier, kit for testing liquid sample using same, and manufacturing method thereof
US10994271B2 (en) 2016-06-14 2021-05-04 Denka Company Limited Membrane carrier for liquid sample test kit, liquid sample test kit, and method for producing liquid sample test kit
US11385227B2 (en) 2017-03-28 2022-07-12 Denka Company Limited Membrane carrier and kit for testing liquid sample using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151264A (en) * 1979-05-07 1980-11-25 Behringwerke Ag Latex reagent
JPS5786051A (en) * 1980-07-28 1982-05-28 Akzo Nv Determination of antigen employing two or more monochronal antibodies
JPS6365369A (en) * 1986-09-08 1988-03-23 Mitsubishi Chem Ind Ltd Measuring method of antigen-antibody reaction
JPH0359459A (en) * 1989-07-28 1991-03-14 Mitsubishi Kasei Corp Antigen/antibody measurement method
JPH0518973A (en) * 1991-07-12 1993-01-26 Shima Kenkyusho:Kk Method and reagent for immunological measurement
JPH06109735A (en) * 1992-09-22 1994-04-22 Nippon Paint Co Ltd Measuring method for in vivo material by antigen-antibody reaction
JPH0763761A (en) * 1993-08-31 1995-03-10 Tosoh Corp Method for producing magnetic fine particles on which physiologically active substance is immobilized

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55151264A (en) * 1979-05-07 1980-11-25 Behringwerke Ag Latex reagent
JPS5786051A (en) * 1980-07-28 1982-05-28 Akzo Nv Determination of antigen employing two or more monochronal antibodies
JPS6365369A (en) * 1986-09-08 1988-03-23 Mitsubishi Chem Ind Ltd Measuring method of antigen-antibody reaction
JPH0359459A (en) * 1989-07-28 1991-03-14 Mitsubishi Kasei Corp Antigen/antibody measurement method
JPH0518973A (en) * 1991-07-12 1993-01-26 Shima Kenkyusho:Kk Method and reagent for immunological measurement
JPH06109735A (en) * 1992-09-22 1994-04-22 Nippon Paint Co Ltd Measuring method for in vivo material by antigen-antibody reaction
JPH0763761A (en) * 1993-08-31 1995-03-10 Tosoh Corp Method for producing magnetic fine particles on which physiologically active substance is immobilized

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103427A (en) * 1991-05-17 2000-08-15 Dupont Photomasks, Inc. Pressure relieving pellicle
WO2000067027A1 (en) * 1999-04-30 2000-11-09 Microbiological Research Authority Augmented agglutination assay
WO2002079782A1 (en) * 2001-03-30 2002-10-10 Mitsubishi Kagaku Iatron, Inc. Reagent and method for immunoanalysis of elastase 1 and method of detecting pancreatic disease
US7279339B2 (en) 2003-09-30 2007-10-09 Wako Pure Chemical Industries, Ltd. Reagent for an immunoassay
WO2008007773A1 (en) * 2006-07-13 2008-01-17 Olympus Corporation Method of confirming the specimen-detecting activity of microparticles
JPWO2012133482A1 (en) * 2011-03-28 2014-07-28 積水メディカル株式会社 PSA measurement method and reagent
WO2012133482A1 (en) * 2011-03-28 2012-10-04 積水メディカル株式会社 Psa assay method and reagent therefor
US10119963B2 (en) 2011-03-28 2018-11-06 Sekisui Medical Co., Ltd. PSA assay and reagent therefor
KR20140057495A (en) 2011-05-23 2014-05-13 세키스이 메디칼 가부시키가이샤 Method for inhibiting non-specific reaction in pivka-ii measurement reagent
WO2012161226A1 (en) 2011-05-23 2012-11-29 積水メディカル株式会社 Method for inhibiting non-specific reaction in pivka-ii measurement reagent
US9952230B2 (en) 2011-05-23 2018-04-24 Sekisui Medical Co., Ltd. Method of inhibiting nonspecific reaction in PIVKA-II assay reagent
JP2014081205A (en) * 2012-10-12 2014-05-08 Fujikura Kasei Co Ltd Measurement reagent for c-reactive protein measurement, and measurement method
WO2014057880A1 (en) * 2012-10-12 2014-04-17 藤倉化成株式会社 Measurement reagent and measurement method for measuring c-reactive protein
JP2015117980A (en) * 2013-12-18 2015-06-25 コニカミノルタ株式会社 Dyeing method
US10994271B2 (en) 2016-06-14 2021-05-04 Denka Company Limited Membrane carrier for liquid sample test kit, liquid sample test kit, and method for producing liquid sample test kit
CN106680505A (en) * 2017-01-04 2017-05-17 南京鼓楼医院 Latex-enhanced immunoturbidimetry detection method based on multiple mutually-matchable monoclonal antibodies
WO2018181549A1 (en) 2017-03-28 2018-10-04 デンカ株式会社 Membrane carrier, kit for testing liquid sample using same, and manufacturing method thereof
KR20190127665A (en) 2017-03-28 2019-11-13 덴카 주식회사 Membrane carrier, liquid sample test kit using the same and method for manufacturing same
US11162938B2 (en) 2017-03-28 2021-11-02 Denka Company Limited Membrane carrier, kit for testing liquid sample using same, and manufacturing method thereof
US11385227B2 (en) 2017-03-28 2022-07-12 Denka Company Limited Membrane carrier and kit for testing liquid sample using same

Also Published As

Publication number Publication date
JP3652029B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
US4062935A (en) Immunoassay involving the binding of RF to the antigen-antibody complex
JP3652029B2 (en) Highly sensitive immunoassay
JPS62502938A (en) Novel measurement using fibrinogen as reagent
WO1985000663A1 (en) Immunometric assay using polyclonal and monoclonal antibodies and a kit for use therein
JP3623657B2 (en) Nonspecific reaction inhibitor, immunoassay reagent and immunoassay method
US4283383A (en) Analysis of biological fluids
KR102520342B1 (en) Reagent and method for measuring thrombin antithrombin complex
JPS6171361A (en) Immunochemical quantitative measuring method and reagent forantigen substance
JP4668768B2 (en) Immunoassay method and non-specific reaction suppression method
US5792606A (en) Nucleic acid hybridization based assay for determining a substance of interest
JP2013125005A (en) Latex agglutination immunoreagent for ck-mb measurement and measuring method
JP3537331B2 (en) Type IV collagen immunoassay and reagents
CN101446586A (en) Immunological assay reagents and assay method
IE60253B1 (en) "Membrane affinity concentration immunoassay"
JP3502497B2 (en) Competitive immunoassay using conjugated analyte derivatives
US11827887B2 (en) Alkaline phosphatase fusion antibody and method for producing the same, and immunoassay method
JP3569074B2 (en) Immunoassay method
US6927071B2 (en) Method for reducing non-specific aggregation of latex microparticles in the presence of serum or plasma
JPH03170058A (en) Reagent complex for immunoassay
JP3618909B2 (en) Immunoassay reagents and immunoassays
JP4616516B2 (en) Immunological assay
WO1987002779A1 (en) Idiotypic-antigenic conjunction binding assay
JP2001108681A (en) Reagent for determining immunoagglutination and measuring method
JP2025024795A (en) Antibody or antigen-binding fragment-substrate complex
JPH10307140A (en) Reagent for latex agglutination reaction

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 9

EXPY Cancellation because of completion of term