JPH10122950A - Thermal infrared detector and method of manufacturing the same - Google Patents
Thermal infrared detector and method of manufacturing the sameInfo
- Publication number
- JPH10122950A JPH10122950A JP8280678A JP28067896A JPH10122950A JP H10122950 A JPH10122950 A JP H10122950A JP 8280678 A JP8280678 A JP 8280678A JP 28067896 A JP28067896 A JP 28067896A JP H10122950 A JPH10122950 A JP H10122950A
- Authority
- JP
- Japan
- Prior art keywords
- microbridge
- light receiving
- parallel
- bolometer
- receiving portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000005452 bending Methods 0.000 claims abstract description 10
- 230000001681 protective effect Effects 0.000 claims description 24
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 12
- 229920005591 polysilicon Polymers 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 abstract description 5
- 239000000463 material Substances 0.000 abstract description 3
- 238000000926 separation method Methods 0.000 abstract description 2
- 239000000470 constituent Substances 0.000 abstract 1
- 239000012779 reinforcing material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 40
- 230000035882 stress Effects 0.000 description 7
- 239000005380 borophosphosilicate glass Substances 0.000 description 6
- 238000005530 etching Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 241000981595 Zoysia japonica Species 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
(57)【要約】
【課題】 マイクロブリッジ構造を用いた熱型赤外線検
出器において、受光部の熱的分離および赤外線吸収率向
上のため、マイクロブリッジの各部の反りをサブミクロ
ンの精度で制御する。
【解決手段】 梁30および受光部29の周辺部が下方
に曲がったマイクロブリッジ11は、受光部および梁
が、各々曲げ応力の軸線に平行でかつ互いに非平行な二
つ以上の平面で構成されている。非平行な二つ以上の平
面は、互いの平面の曲げ応力に対して補強材として働く
ため、マイクロブリッジ11は、異なる材質および成膜
条件で形成された複数の構成層で構成されているにもか
かわらず、各部のたわみ量は、1μmに満たなかった。
このため、マイクロブリッジ11の熱的分離が確保され
たばかりでなく、赤外線反射膜18と赤外線吸収膜23
の間のキャビティ長がサブミクロン単位で制御された。
PROBLEM TO BE SOLVED: To control the warpage of each part of a microbridge with submicron accuracy in a thermal infrared detector using a microbridge structure in order to thermally separate a light receiving part and improve an infrared absorptivity. . SOLUTION: The microbridge 11 in which the periphery of a beam 30 and a light receiving portion 29 is bent downward, the light receiving portion and the beam are each formed of two or more planes which are parallel to the axis of the bending stress and non-parallel to each other. ing. Since two or more non-parallel planes act as a reinforcing material against the bending stress of each other plane, the microbridge 11 is composed of a plurality of constituent layers formed by different materials and film forming conditions. Nevertheless, the deflection of each part was less than 1 μm.
Therefore, not only is thermal separation of the microbridge 11 secured, but also the infrared reflection film 18 and the infrared absorption film 23
Was controlled in submicron units.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、赤外線検出器に関
し、特にマイクロブリッジ構造を用いた熱型赤外線検出
器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detector, and more particularly, to a thermal infrared detector using a microbridge structure.
【0002】[0002]
【従来の技術】従来の二次元熱型赤外線検出器は、図4
(a)に示すような形状の梁30、受光部29で構成さ
れるマイクロブリッジ11を有している。図4(a)の
A−A′線における断面を図4(b)に示す。梁30
は、電極配線19、ボロメータ下部保護膜20およびボ
ロメータ上部保護膜22を有しており、受光部29は、
電極配線19、ボロメータ21、ボロメータ下部保護膜
20、ボロメータ上部保護膜22、および、赤外線吸収
層23を有している。マイクロブリッジ11の下部に
は、赤外線反射層18を有しており、赤外線反射層18
と赤外線吸収層23の間でキャビティ26を形成してい
る。赤外線反射層18の下部には、IC保護膜16を介
して信号読み出し用の集積回路を有している。2. Description of the Related Art A conventional two-dimensional thermal infrared detector is shown in FIG.
The microbridge 11 includes a beam 30 having a shape as shown in FIG. FIG. 4B shows a cross section taken along line AA ′ of FIG. Beam 30
Has an electrode wiring 19, a bolometer lower protective film 20, and a bolometer upper protective film 22, and the light receiving unit 29
It has an electrode wiring 19, a bolometer 21, a bolometer lower protective film 20, a bolometer upper protective film 22, and an infrared absorption layer 23. An infrared reflection layer 18 is provided below the microbridge 11.
A cavity 26 is formed between the infrared ray absorbing layer 23 and the infrared ray absorbing layer 23. An integrated circuit for signal reading is provided below the infrared reflective layer 18 via the IC protective film 16.
【0003】次に動作原理について述べる。キャビティ
26の長さを最適化することにより、赤外線吸収層23
において、80%以上の赤外線吸収率が達成される(米
国特許第5286976号明細書)。入射赤外線を吸収
した受光部29は、熱コンダクタンスの小さい形状の梁
30によってのみシリコン基板13と接しているため、
熱的に分離されており、ボロメータ21の温度が大きく
変化する。この温度変化を電気抵抗の変化量で検出す
る。Next, the operation principle will be described. By optimizing the length of the cavity 26, the infrared absorbing layer 23
, An infrared absorption of 80% or more is achieved (US Pat. No. 5,286,976). Since the light receiving portion 29 that has absorbed the incident infrared light is in contact with the silicon substrate 13 only by the beam 30 having a small heat conductance,
It is thermally separated and the temperature of the bolometer 21 changes greatly. This temperature change is detected by the amount of change in electric resistance.
【0004】[0004]
【発明が解決しようとする課題】前記従来の技術には、
次の問題点がある。The above prior arts include:
There are the following problems.
【0005】第一の問題点は、受光部29の熱的分離を
図るため、マイクロブリッジ11は、梁30の基板のみ
でシリコン基板13に接触している状態でなければなら
ないが、実際には梁30の先端あるいは受光部29のI
C保護膜16への接触による熱コンダクタンスの増大が
発生するということである。[0005] The first problem is that the microbridge 11 must be in contact with the silicon substrate 13 only by the substrate of the beam 30 in order to thermally isolate the light receiving unit 29. The tip of the beam 30 or the I
This means that the thermal conductance increases due to the contact with the C protective film 16.
【0006】その理由は、梁30および受光部29は、
それぞれ異なる成膜条件および材質で形成される複数の
層で構成されており、各層の真性応力、熱応力等に起因
する反りが発生するためである。The reason is that the beam 30 and the light receiving section 29 are
This is because each of the layers is formed of a plurality of layers formed under different film forming conditions and materials, and warpage occurs due to intrinsic stress, thermal stress, and the like of each layer.
【0007】第二の問題点は、赤外線吸収膜23の赤外
線吸収率は、赤外線反射膜18から赤外線吸収膜23ま
での距離、即ちキャビティ26の長さに強く依存し、サ
ブミクロン単位の制御が必要であるが、従来のマイクロ
ブリッジ構造では制御が困難なことである。A second problem is that the infrared absorptivity of the infrared absorbing film 23 is strongly dependent on the distance from the infrared reflecting film 18 to the infrared absorbing film 23, that is, the length of the cavity 26, and the control on a submicron basis. Although necessary, control is difficult with conventional microbridge structures.
【0008】その理由は、第一の問題点の理由と同様で
ある。The reason is the same as that of the first problem.
【0009】第三の問題点は、従来、梁30および受光
部29の反りを低減させる方法としてボロメータ下部保
護膜20、ボロメータ上部保護膜22の厚膜化が用いら
れていたが、この方法では熱型赤外線検出器の感度が低
下するということである。A third problem is that conventionally, the bolometer lower protective film 20 and the bolometer upper protective film 22 are made thicker as a method of reducing the warpage of the beam 30 and the light receiving portion 29. This means that the sensitivity of the thermal infrared detector decreases.
【0010】その理由は、前記厚膜化により受光部29
の熱容量および梁30の熱コンダクタンスが増加し、ボ
ロメータ21の温度変化が小さくなるためである。The reason is that the light-receiving portion 29
This is because the heat capacity of the bolometer 21 and the thermal conductance of the beam 30 increase, and the temperature change of the bolometer 21 decreases.
【0011】そのため、熱型赤外線検出器の感度を低下
させることなく、梁30および受光部29の反りを制御
する方法の実現が望まれていた。Therefore, it has been desired to realize a method for controlling the warpage of the beam 30 and the light receiving section 29 without lowering the sensitivity of the thermal infrared detector.
【0012】[0012]
【課題を解決するための手段】本発明は、前記課題を解
決するため、次の手段を採用する。The present invention employs the following means to solve the above-mentioned problems.
【0013】(1)受光部、および、基板と前記受光部
を機械的に接続する梁からなるマイクロブリッジ構造に
おいて、前記受光部が前記受光部内の曲げ応力の軸線に
平行でかつ互いに非平行な二つ以上の平面で構成され、
前記梁が前記梁の曲げ応力の軸線に平行でかつ互いに非
平行な二つ以上の平面で構成されている前記マイクロブ
リッジ構造を有する熱型赤外線検出器。(1) In a microbridge structure including a light receiving portion and a beam for mechanically connecting a substrate and the light receiving portion, the light receiving portion is parallel to an axis of bending stress in the light receiving portion and non-parallel to each other. Consists of two or more planes,
A thermal infrared detector having the microbridge structure, wherein the beam is formed of two or more planes that are parallel to the bending stress axis of the beam and that are not parallel to each other.
【0014】(2)前記マイクロブリッジ構造のボロメ
ータ上下両部保護膜がシリコン窒化膜で形成されている
前記(1)記載の熱型赤外線検出器。(2) The thermal infrared detector according to (1), wherein the upper and lower protective films of the bolometer having the microbridge structure are formed of silicon nitride films.
【0015】(3)基板から分離したマイクロブリッジ
構造の製造方法において、犠牲層表面に任意の凹凸形状
を形成する工程と、前記犠牲層上に前記マイクロブリッ
ジ構造を構成する各層を形成する工程と、前記犠牲層を
除去する工程を有することにより、前記凹凸形状を前記
マイクロブリッジ構造に施す熱型赤外線検出器の製造方
法。(3) In a method for manufacturing a microbridge structure separated from a substrate, a step of forming an arbitrary uneven shape on the surface of the sacrificial layer, and a step of forming each layer constituting the microbridge structure on the sacrificial layer A method of manufacturing a thermal infrared detector in which the concave-convex shape is applied to the microbridge structure by removing the sacrificial layer.
【0016】(4)前記犠牲層がポリシリコンで形成さ
れている前記(3)記載の熱型赤外線検出器の製造方
法。(4) The method for manufacturing a thermal infrared detector according to (3), wherein the sacrificial layer is formed of polysilicon.
【0017】[0017]
【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。Embodiments of the present invention will now be described with reference to the drawings.
【0018】図1(a)は、本発明の熱型赤外線検出器
の実施の形態を示す平面図である。図1(a)のA−
A′線の断面を図1(b)に示す。FIG. 1A is a plan view showing an embodiment of a thermal infrared detector according to the present invention. A- of FIG.
FIG. 1B shows a cross section taken along the line A ′.
【0019】マイクロブリッジ11は、あらかじめ凹凸
の形状に加工した犠牲層(図2と図3のポリシリコン2
4)上に、電極配線19、ボロメータ下部保護膜20、
ボロメータ21、ボロメータ上部保護膜22、赤外線吸
収膜23を成膜形成し、部分的に犠牲層を露出させ、犠
牲層のみをエッチングにより除去して、製造される。The microbridge 11 is formed of a sacrificial layer (polysilicon 2 shown in FIGS.
4) On top, electrode wiring 19, bolometer lower protective film 20,
The bolometer 21, the bolometer upper protective film 22, and the infrared absorption film 23 are formed and formed, the sacrificial layer is partially exposed, and only the sacrificial layer is removed by etching.
【0020】梁30は、多層薄膜で構成された構造のた
め、梁30の内部には紙面に垂直な方向の軸線を持った
曲げ応力が発生する。梁30は、この軸線に平行で、か
つ互いに非平行な二つ以上の平面で構成される。これら
の二つ以上の平面は、それぞれ互いの平面に働く曲げ応
力に対して剛体に近く、反りの生成を妨げる機能を持
つ。また梁30と同様に、受光部29も多層薄膜で構成
された構造のため、曲げ応力が発生するが、受光部29
が互いに非平行な二つ以上の平面で構成され、各平面の
交線が曲げ応力の軸線に平行な成分を持つため、反りが
生成しない。Since the beam 30 has a structure composed of a multilayer thin film, a bending stress having an axis perpendicular to the paper surface is generated inside the beam 30. The beam 30 is composed of two or more planes parallel to this axis and non-parallel to each other. Each of these two or more planes is close to a rigid body against bending stress acting on each other plane, and has a function of preventing generation of warpage. Similarly to the beam 30, the light receiving section 29 also has a structure formed of a multilayer thin film, so that bending stress is generated.
Is composed of two or more planes that are not parallel to each other, and the intersection of each plane has a component parallel to the axis of the bending stress, so that no warpage is generated.
【0021】[0021]
【実施例】図2(a)〜(d)は、本発明の熱型赤外線
検出器の第1実施例の製造工程を示す平面図であり、ま
た図2(e)〜(h)は、梁30の基部付近の斜視図で
ある。受光部29のサイズは、およそ40×40μmで
ある。以下では赤外線反射膜18および赤外線吸収膜2
3を省略して示す。この素子の製造にあたっては、まず
図2(a)、(e)に示すように犠牲層である厚さ2μ
mのポリシリコン24上にBPSG25を全面塗布し、
ホトリソグラフィ技術による部分エッチングを行い開口
した後、平坦化用のベークを行う。次に図2(b)、
(f)に示すように、ポリシリコン24をプラズマエッ
チングにより加工して高さ1μmの隆起部28を形成
し、前記隆起部28の側面を含めた全面にボロメータ下
部保護膜20を形成する。次に前記隆起部28の上面に
電極配線19、ボロメータ21を形成し、全面にボロメ
ータ上部保護膜22を形成する。ここで、ボロメータ下
部保護膜20には減圧CVDによるシリコン窒化膜(1
500A)、電極配線19にはスパッタによるチタン
(1000A)、ボロメータ21には反応性スパッタに
よる酸化バナジウム(1000A)、およびボロメータ
上部保護膜22にはプラズマCVDによるシリコン窒化
膜(2000A)を用いた。次に図2(c)、(g)に
示すように、ボロメータ下部保護膜20およびボロメー
タ上部保護膜22のエッチングによりスルーホール27
を形成し、ポリシリコン24を露出させる。次に図2
(d)、(h)に示すように、ポリシリコン24をスル
ーホール27を介したウエットエッチングにより除去す
る。このようにして、梁30および受光部29の周辺部
が下方に曲がったマイクロブリッジ11が実現された。2 (a) to 2 (d) are plan views showing manufacturing steps of a first embodiment of a thermal infrared detector according to the present invention, and FIGS. FIG. 3 is a perspective view of the vicinity of a base of a beam 30. The size of the light receiving section 29 is approximately 40 × 40 μm. Hereinafter, the infrared reflecting film 18 and the infrared absorbing film 2
3 is omitted. In manufacturing this device, first, as shown in FIGS. 2A and 2E, a sacrificial layer having a thickness of 2 μm is formed.
BPSG 25 is entirely coated on the polysilicon 24 of m
After partial etching by photolithography and opening, a bake for planarization is performed. Next, FIG.
As shown in (f), the polysilicon 24 is processed by plasma etching to form a raised portion 28 having a height of 1 μm, and the bolometer lower protective film 20 is formed on the entire surface including the side surface of the raised portion 28. Next, the electrode wiring 19 and the bolometer 21 are formed on the upper surface of the raised portion 28, and the bolometer upper protective film 22 is formed on the entire surface. Here, a silicon nitride film (1
500A), titanium (1000A) by sputtering for the electrode wiring 19, vanadium oxide (1000A) by reactive sputtering for the bolometer 21, and a silicon nitride film (2000A) by plasma CVD for the bolometer upper protective film 22. Next, as shown in FIGS. 2C and 2G, the through-hole 27 is formed by etching the bolometer lower protective film 20 and the bolometer upper protective film 22.
Is formed, and the polysilicon 24 is exposed. Next, FIG.
As shown in (d) and (h), the polysilicon 24 is removed by wet etching through the through hole 27. In this manner, the microbridge 11 in which the periphery of the beam 30 and the light receiving unit 29 is bent downward is realized.
【0022】図3(a)〜(d)は、本発明の熱型赤外
線検出器の第2実施例の製造工程を示す平面図であり、
また図3(e)〜(h)は、梁30の基部付近の斜視図
である。受光部29のサイズは、およそ40×40μm
である。以下では赤外線反射膜18および赤外線吸収膜
23を省略して示す。この素子の製造にあたっては、ま
ず図3(a)、(e)に示すように、厚さ2μmのポリ
シリコン24上にホトリソグラフィ技術による部分エッ
チングにより高さ1μmの隆起部28を形成する。次に
図3(b)、(f)に示すように、BPSG25を全面
塗布し、同BPSGをエッチングにより開口した後、平
坦化用のベークを行う。その後、ボロメータ下部保護膜
20、電極配線19、ボロメータ21、ボロメータ上部
保護膜22の成膜およびエッチングを行う。次に図3
(c)、(g)に示すように、スルーホール27を形成
し、ポリシリコン24を露出させる。次に図3(d)、
(h)に示すように、ポリシリコン24をウエットエッ
チングにより除去する。このようにして、梁30および
受光部29の周辺部が下方に曲がったマイクロブリッジ
11が実現された。FIGS. 3A to 3D are plan views showing the manufacturing steps of a second embodiment of the thermal infrared detector according to the present invention.
FIGS. 3E to 3H are perspective views of the vicinity of the base of the beam 30. The size of the light receiving section 29 is about 40 × 40 μm
It is. Hereinafter, the infrared reflection film 18 and the infrared absorption film 23 are omitted. In manufacturing the device, first, as shown in FIGS. 3A and 3E, a protrusion 28 having a height of 1 μm is formed on a polysilicon 24 having a thickness of 2 μm by partial etching using a photolithography technique. Next, as shown in FIGS. 3B and 3F, a BPSG 25 is applied on the entire surface, the BPSG is opened by etching, and then a baking for flattening is performed. Thereafter, the bolometer lower protective film 20, the electrode wiring 19, the bolometer 21, and the bolometer upper protective film 22 are formed and etched. Next, FIG.
As shown in (c) and (g), a through hole 27 is formed, and the polysilicon 24 is exposed. Next, FIG.
As shown in (h), the polysilicon 24 is removed by wet etching. In this manner, the microbridge 11 in which the periphery of the beam 30 and the light receiving unit 29 is bent downward is realized.
【0023】図2に示した製造方法は、BPSG25に
よる平坦化後にポリシリコン24上面の部分エッチング
を行うため、ホトリソグラフィを行いやすいという利点
がある一方、図3に示した製造方法では、梁30の基部
周辺においてBPSG25とボロメータ下部保護膜20
およびボロメータ上部保護膜22との段差がより小さ
く、製造後の構造において梁30の基部における強度が
大きいという利点がある。The manufacturing method shown in FIG. 2 has an advantage that photolithography is easy to perform since the upper surface of the polysilicon 24 is partially etched after planarization by the BPSG 25, whereas the manufacturing method shown in FIG. BPSG 25 and bolometer lower protective film 20 around the base
In addition, there is an advantage that the step with the bolometer upper protective film 22 is smaller, and the strength at the base of the beam 30 is large in the structure after manufacturing.
【0024】以上述べた、梁30および受光部29の周
辺部が下方に曲がったマイクロブリッジ11は、異なる
材質および成膜条件で形成された多層薄膜で構成されて
いるにもかかわらず、各部のたわみ量は1μmに満たな
かった。The microbridge 11 in which the peripheral portions of the beam 30 and the light receiving portion 29 are bent downward as described above, despite the fact that the microbridge 11 is formed of a multilayer thin film formed by different materials and film forming conditions. The amount of deflection was less than 1 μm.
【0025】[0025]
【発明の効果】本発明は、熱型赤外線検出の感度を向上
することができる。According to the present invention, the sensitivity of thermal infrared detection can be improved.
【0026】その理由は、マイクロブリッジ構造に反り
が発生しないので熱分離が確保されたばかりでなく、赤
外線反射膜と赤外線吸収膜の間のキャビティ長がサブミ
クロン単位で制御されたためである。また、従来より薄
い多層薄膜でマイクロブリッジ構造が構成され、マイク
ロブリッジ構造の熱容量および受光部とシリコン基板と
の間の熱コンダクタンスが低減したためである。The reason is that the microbridge structure does not warp, so that not only thermal separation is ensured, but also the cavity length between the infrared reflecting film and the infrared absorbing film is controlled in submicron units. In addition, the microbridge structure is constituted by a thinner multilayer thin film than before, and the heat capacity of the microbridge structure and the thermal conductance between the light receiving portion and the silicon substrate are reduced.
【図面の簡単な説明】[Brief description of the drawings]
【図1】本発明の一実施の形態例におけるマイクロブリ
ッジ構造を示し、(a)は平面図、(b)は(a)にお
けるA−A′線断面図である。FIGS. 1A and 1B show a microbridge structure according to an embodiment of the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a cross-sectional view taken along line AA ′ in FIG.
【図2】本発明の第1実施例におけるマイクロブリッジ
構造の製造工程であり、(a)〜(d)は平面図を順次
示し、(e)〜(h)はそれぞれ(a)〜(d)の梁の
基部付近の斜視図である。2 (a) to 2 (d) show plan views sequentially, and FIGS. 2 (e) to 2 (h) show (a) to (d), respectively. 3) is a perspective view of the vicinity of the base of the beam of FIG.
【図3】本発明の第2実施例におけるマイクロブリッジ
構造の製造工程であり、(a)〜(d)は平面図を順次
示し、(e)〜(h)はそれぞれ(a)〜(d)の梁の
基部付近の斜視図である。3 (a) to 3 (d) are plan views sequentially showing a manufacturing process of a microbridge structure according to a second embodiment of the present invention, and FIGS. 3 (e) to 3 (h) are (a) to (d), respectively. 3) is a perspective view of the vicinity of the base of the beam of FIG.
【図4】従来の熱型赤外線検出器におけるマイクロブリ
ッジ構造を示し、(a)は平面図、(b)は(a)にお
けるA−A′線断面図である。4A and 4B show a microbridge structure in a conventional thermal infrared detector, wherein FIG. 4A is a plan view and FIG. 4B is a cross-sectional view taken along line AA ′ in FIG.
11 マイクロブリッジ 13 シリコン基板 16 IC保護膜 18 赤外線反射膜 19 電極配線 20 ボロメータ下部保護膜 21 ボロメータ 22 ボロメータ上部保護膜 23 赤外線吸収膜 24 ポリシリコン 25 BPSG 26 キャビティ 27 スルーホール 28 隆起部 29 受光部 30 梁 11 Micro Bridge 13 Silicon Substrate 16 IC Protective Film 18 Infrared Reflective Film 19 Electrode Wiring 20 Bolometer Lower Protective Film 21 Bolometer 22 Bolometer Upper Protective Film 23 Infrared Absorbing Film 24 Polysilicon 25 BPSG 26 Cavity 27 Through Hole 28 Ridge 29 Light Receiver 30 Beam
───────────────────────────────────────────────────── フロントページの続き (72)発明者 神崎 昌之 東京都港区芝五丁目7番1号 日本電気株 式会社内 (72)発明者 松本 尚平 東京都港区芝五丁目7番1号 日本電気株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masayuki Kanzaki 5-7-1 Shiba, Minato-ku, Tokyo Inside NEC Corporation (72) Shohei Matsumoto 5-7-1 Shiba, Minato-ku, Tokyo Japan Inside Electric Co., Ltd.
Claims (4)
械的に接続する梁からなるマイクロブリッジ構造におい
て、前記受光部が前記受光部内の曲げ応力の軸線に平行
でかつ互いに非平行な二つ以上の平面で構成され、前記
梁が前記梁の曲げ応力の軸線に平行でかつ互いに非平行
な二つ以上の平面で構成されていることを特徴とする前
記マイクロブリッジ構造を有する熱型赤外線検出器。1. A microbridge structure comprising a light receiving portion and a beam for mechanically connecting a substrate and the light receiving portion, wherein the light receiving portion is parallel to an axis of bending stress in the light receiving portion and non-parallel to each other. A thermal infrared ray having the microbridge structure, wherein the thermal bridge is constituted by two or more planes, and the beam is constituted by two or more planes which are parallel to an axis of bending stress of the beam and which are not parallel to each other. Detector.
上下両部保護膜がシリコン窒化膜で形成されていること
を特徴とする請求項1記載の熱型赤外線検出器。2. The thermal infrared detector according to claim 1, wherein the upper and lower protective films of the bolometer of the microbridge structure are formed of a silicon nitride film.
の製造方法において、犠牲層表面に任意の凹凸形状を形
成する工程と、前記犠牲層上に前記マイクロブリッジ構
造を構成する各層を形成する工程と、前記犠牲層を除去
する工程を有することにより、前記凹凸形状を前記マイ
クロブリッジ構造に施すことを特徴とする熱型赤外線検
出器の製造方法。3. A method of manufacturing a microbridge structure separated from a substrate, wherein a step of forming an arbitrary concavo-convex shape on a surface of a sacrifice layer, and a step of forming each layer constituting the microbridge structure on the sacrifice layer; A method for manufacturing a thermal infrared detector, comprising the step of removing the sacrifice layer to apply the unevenness to the microbridge structure.
いることを特徴とする請求項3記載の熱型赤外線検出器
の製造方法。4. The method according to claim 3, wherein the sacrificial layer is formed of polysilicon.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8280678A JPH10122950A (en) | 1996-10-23 | 1996-10-23 | Thermal infrared detector and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8280678A JPH10122950A (en) | 1996-10-23 | 1996-10-23 | Thermal infrared detector and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10122950A true JPH10122950A (en) | 1998-05-15 |
Family
ID=17628414
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8280678A Pending JPH10122950A (en) | 1996-10-23 | 1996-10-23 | Thermal infrared detector and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10122950A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000002585A (en) * | 1998-06-15 | 2000-01-07 | Nec Corp | Thermal infrared detecting element |
WO2000012984A1 (en) * | 1998-08-31 | 2000-03-09 | Daewoo Electronics Co., Ltd. | Bolometer with a serpentine stress balancing member |
WO2000033032A1 (en) * | 1998-12-01 | 2000-06-08 | Daewoo Electronics Co., Ltd. | Infrared bolometer with an enhanced structural stability and integrity |
WO2000037907A1 (en) * | 1998-12-18 | 2000-06-29 | Daewoo Electronics Co., Ltd. | Structurally stable infrared bolometer |
WO2000060324A1 (en) * | 1999-04-01 | 2000-10-12 | Honeywell Inc. | Large area low mass ir pixel having tailored cross section |
US6165587A (en) * | 1997-09-09 | 2000-12-26 | Honda Giken Kogyo Kabushiki Kaisha | Microbridge structure with reinforcement section |
US6528789B1 (en) | 1999-11-30 | 2003-03-04 | Nec Corporation | Thermal infrared detector |
US7180063B2 (en) | 2002-11-01 | 2007-02-20 | Director General, Technical Research Institute, Japan Defense Agency | Thermal infrared detector having a small thermal time constant and method of producing the same |
-
1996
- 1996-10-23 JP JP8280678A patent/JPH10122950A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6165587A (en) * | 1997-09-09 | 2000-12-26 | Honda Giken Kogyo Kabushiki Kaisha | Microbridge structure with reinforcement section |
JP2000002585A (en) * | 1998-06-15 | 2000-01-07 | Nec Corp | Thermal infrared detecting element |
WO2000012984A1 (en) * | 1998-08-31 | 2000-03-09 | Daewoo Electronics Co., Ltd. | Bolometer with a serpentine stress balancing member |
US6225629B1 (en) | 1998-08-31 | 2001-05-01 | Daewoo Electronics Co., Ltd. | Bolometer with a serpentine stress balancing member |
WO2000033032A1 (en) * | 1998-12-01 | 2000-06-08 | Daewoo Electronics Co., Ltd. | Infrared bolometer with an enhanced structural stability and integrity |
WO2000037907A1 (en) * | 1998-12-18 | 2000-06-29 | Daewoo Electronics Co., Ltd. | Structurally stable infrared bolometer |
US6242738B1 (en) | 1998-12-18 | 2001-06-05 | Daewoo Electronics Co., Ltd. | Structurally stable infrared bolometer |
WO2000060324A1 (en) * | 1999-04-01 | 2000-10-12 | Honeywell Inc. | Large area low mass ir pixel having tailored cross section |
US6528789B1 (en) | 1999-11-30 | 2003-03-04 | Nec Corporation | Thermal infrared detector |
US7180063B2 (en) | 2002-11-01 | 2007-02-20 | Director General, Technical Research Institute, Japan Defense Agency | Thermal infrared detector having a small thermal time constant and method of producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3514681B2 (en) | Infrared detector | |
JP3862080B2 (en) | Method for manufacturing thermal infrared detector | |
JP5597862B2 (en) | Bolometer type THz wave detector | |
JP4978501B2 (en) | Thermal infrared detector and method for manufacturing the same | |
JP5109169B2 (en) | Bolometer type THz wave detector | |
JP4377118B2 (en) | Non-contact temperature sensor | |
JP3097591B2 (en) | Thermal infrared detector | |
US7423270B2 (en) | Electronic detection device and detector comprising such a device | |
JP4697611B2 (en) | Thermal infrared solid-state imaging device and manufacturing method thereof | |
JPH10122950A (en) | Thermal infrared detector and method of manufacturing the same | |
KR100538996B1 (en) | Infrared ray sensor using silicon oxide film as a infrared ray absorption layer and method for fabricating the same | |
JPH11148861A (en) | Microbidge structure | |
KR100930590B1 (en) | MEMS type infrared sensor with improved warping and manufacturing method | |
JP3175662B2 (en) | Manufacturing method of thermal infrared detecting element | |
JP6792438B2 (en) | Photodetector | |
JP3417855B2 (en) | Infrared sensor | |
WO2010073288A1 (en) | Infrared sensor and infrared sensor manufacturing method | |
JP2010101675A (en) | Infrared imaging element and method of manufacturing the same | |
JP2000346704A (en) | Bolometer type infrared detection element | |
JPS61195318A (en) | Pyroelectric type infrared detector | |
JP3840768B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JPH07318420A (en) | Infrared ray sensor and manufacture thereof | |
JPH08261832A (en) | Infrared sensor and manufacturing method thereof | |
JP2000230860A (en) | Thermal infrared sensor, manufacture thereof and thermal infrared array element | |
JPH06103218B2 (en) | Optical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20010516 |