[go: up one dir, main page]

JPH10122844A - Ultrasonic measuring device and its temperature correction method - Google Patents

Ultrasonic measuring device and its temperature correction method

Info

Publication number
JPH10122844A
JPH10122844A JP8298208A JP29820896A JPH10122844A JP H10122844 A JPH10122844 A JP H10122844A JP 8298208 A JP8298208 A JP 8298208A JP 29820896 A JP29820896 A JP 29820896A JP H10122844 A JPH10122844 A JP H10122844A
Authority
JP
Japan
Prior art keywords
detection object
ultrasonic
wave
electric signal
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8298208A
Other languages
Japanese (ja)
Inventor
Yoichi Yokobori
洋一 横堀
Seiji Toda
誠二 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ueda Japan Radio Co Ltd
Original Assignee
Ueda Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ueda Japan Radio Co Ltd filed Critical Ueda Japan Radio Co Ltd
Priority to JP8298208A priority Critical patent/JPH10122844A/en
Publication of JPH10122844A publication Critical patent/JPH10122844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure the displacement distance of a detection object that does not include an error even if a sound velocity changes by using the time difference of electrical signals equivalent to a reflection wave from a reflection plate being spaced from the detection object by a known distance. SOLUTION: The configuration of a device is achieved by adding only a reflection plate 6 and a memory 7 to a device without any temperature correction function. An ultrasonic wave U0 that is discharged from an ultrasonic sensor 2 is propagated in air and is partially reflected by a reflection plate 6, is received by the ultrasonic sensor 2 after being reflected on water surface, and is subjected to operation processing. Then, a measurement is made at a certain temperature and the measured value is stored in the memory 7. (The measurement is called memory measurement to distinguish itself from an actual measurement. And, a measurement may be made only once before the actual measurement if a detection object is the same but may be made in the case of an actual measurement).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空中超音波を利用
し検出物体の変位や水面の水位の変化を測定する超音波
計測装置及びその温度補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic measuring apparatus for measuring the displacement of a detection object and a change in the water level of a water surface using airborne ultrasonic waves, and a method of correcting the temperature thereof.

【0002】[0002]

【従来の技術】図4は従来のこの種の超音波計測装置の
構成の概略を示すブロック図であり、図において、1は
パルス発生器、2は超音波センサ(送受波器)、3は信
号処理回路、4は表示器、5は水面、10は温度セン
サ、11は温度補正回路である。この種の超音波計測装
置は良く知られているように、パルス発生器1からのバ
ーストパルス信号に基づいて超音波センサ2から水面5
に向けて超音波を発射し、水面5で反射した反射波を再
び超音波センサ2で受波し、電気信号に変換して信号処
理回路3へ入力する。超音波センサ2から超音波が発射
されてから反射波が受波されるまでの時間tは超音波が
超音波センサ2と水面5との距離Lを往復するのに要す
る時間であり、音速をvとすれば、 L=(1/2)・
t×v・・・(1) により距離Lが求められることは
良く知られている。
2. Description of the Related Art FIG. 4 is a block diagram schematically showing the configuration of a conventional ultrasonic measuring apparatus of this type. In the drawing, reference numeral 1 denotes a pulse generator, 2 denotes an ultrasonic sensor (transmitter / receiver), and 3 denotes A signal processing circuit, 4 is a display, 5 is a water surface, 10 is a temperature sensor, and 11 is a temperature correction circuit. As is well known, this type of ultrasonic measuring device uses an ultrasonic sensor 2 and a water surface 5 based on a burst pulse signal from a pulse generator 1.
, And the reflected wave reflected by the water surface 5 is received again by the ultrasonic sensor 2, converted into an electric signal, and input to the signal processing circuit 3. The time t from when the ultrasonic wave is emitted from the ultrasonic sensor 2 to when the reflected wave is received is the time required for the ultrasonic wave to reciprocate the distance L between the ultrasonic sensor 2 and the water surface 5, and v, L = (1/2) ·
It is well known that the distance L is obtained by t × v (1).

【0003】然しながら音速はその音が伝播する媒質の
温度に依存し、例えば空気中では、 v=331+0.6T m/sec・・・(2) (T
は温度) で変化するので、微妙な水位変化の計測等に
おいては、温度変化により生じる誤差を補正する手段が
必要となる。このため温度センサ10と温度補正回路1
1とを設けて、計測時の正確な音速を求め、この音速に
より信号処理回路3で上述の式(1)により正確な距離
Lを求める構成となっている。然しながらこのような温
度補正方法では、温度センサを設ける必要がある。
However, the speed of sound depends on the temperature of the medium through which the sound propagates. For example, in air, v = 331 + 0.6T m / sec (2) (T
Since the temperature changes with temperature), a means for correcting an error caused by a temperature change is required in the measurement of a delicate water level change or the like. Therefore, the temperature sensor 10 and the temperature correction circuit 1
1 is provided to obtain an accurate sound speed at the time of measurement, and the signal processing circuit 3 obtains an accurate distance L from the above formula (1) based on the sound speed. However, in such a temperature correction method, it is necessary to provide a temperature sensor.

【0004】図5は温度センサを用いずに温度補正が可
能な従来の超音波計測装置の超音波センサ近傍を示す図
であり、この超音波計測装置は超音波センサ2の送受波
口に、予めその距離L1,L2が既知の金属棒201,
202を横に這わした管20を取り付け、発射された超
音波U0 の一部が先ず金属棒201で反射し、次に金属
棒202で反射し、最後に水面5で反射するように構成
している。
FIG. 5 is a diagram showing the vicinity of an ultrasonic sensor of a conventional ultrasonic measuring device capable of temperature correction without using a temperature sensor. Metal rods 201 whose distances L1, L2 are known in advance,
A tube 20 is provided, which crawls 202 horizontally, and a part of the emitted ultrasonic wave U 0 is first reflected by the metal bar 201, then reflected by the metal bar 202, and finally reflected by the water surface 5. ing.

【0005】図6に示すように、このような構成の管2
0を取り付けて超音波センサ2から超音波を送受波する
と、発射波U0 に相当する電気信号S0 と、金属棒20
1,202での反射波に相当する電気信号S1 ,S2
と、水面5からの反射波Uw に相当する電気信号SW
が受信できる。そして信号S0 からS1 までの間の時間
がt1 、S2 までの時間がt2 、SW までの時間がtW
であった場合、温度の変化は音速のみが変化するので、 L={(L2−L1)/(t2 −t1 )}×tW ・・・(3) により、温度変化による誤差を含まない水面までの距離
の計測が行えるようになる。
[0005] As shown in FIG.
0 attached when transmitting and receiving ultrasonic waves from the ultrasonic sensor 2, and the electric signal S 0 corresponding to the firing wave U 0, the metal rod 20
Electrical signals S 1 , S 2 corresponding to the reflected waves at 1,202
When, can be received and an electric signal S W corresponding to reflected waves U w from the water surface 5. The signal t 1 is the time between the S 0 to S 1, S time t 2 up 2, S time until W is t W
If it was in, the change in temperature only sound speed is changed, L = the {(L2-L1) / ( t 2 -t 1)} × t W ··· (3), contains an error due to a temperature change You can measure the distance to the surface of the water.

【0006】[0006]

【発明が解決しようとする課題】上記のような従来の超
音波計測装置及びその温度補正方法では、第1の方法で
は温度センサが必要になり、コスト高となる。また第2
の方法では、標識となる金属棒を少なくとも2つ既知の
距離に設けた管を超音波センサの送受波口に取り付けて
おく必要があり、その構成および取り扱いが繁雑になる
と共に、やはりコスト高になる等の問題点があった。
In the conventional ultrasonic measuring apparatus and the temperature correcting method as described above, the first method requires a temperature sensor, which increases the cost. Also the second
In the above method, it is necessary to attach a tube provided with at least two known metal rods at a known distance to the transmitting / receiving port of the ultrasonic sensor, which complicates the configuration and handling and also increases the cost. There were problems such as becoming.

【0007】本発明はかかる問題点を解決するためにな
されたものであり、極めて簡便且つ安価な構成の超音波
計測装置及びその温度補正方法を提供することを目的と
している。
The present invention has been made in order to solve such a problem, and an object of the present invention is to provide an ultrasonic measuring apparatus having a very simple and inexpensive configuration and a method of correcting the temperature thereof.

【0008】[0008]

【課題を解決するための手段】本発明に係わる超音波計
測装置の温度補正方法は、超音波送受波器から検出物体
へ超音波を送受波し、前記検出物体の変位距離(Lx)
を、温度変化に伴う音速の変化による誤差を含まずに計
測する超音波計測装置の温度補正方法において、実際の
測定の前に前記検出物体へ超音波を送受波して、この超
音波送受波器と前記検出物体との間の前記超音波送受波
器から既知の距離LR においた反射板からの反射波に相
当する電気信号SR と、前記検出物体からの反射波に相
当する電気信号SW1との、発射波に相当する電気信号S
0 からのそれぞれの時間差tR およびtW1を記憶してお
き、実際に測定を行い、前記反射板からの反射波に相当
する電気信号SR ’と、前記検出物体からの反射波に相
当する電気信号SW2との、発射波に相当する電気信号S
0 からのそれぞれの時間差がtR ’およびtW2であった
場合、 Lx={tW2−(tW1/tR )×tR ’}×(LR /t
R ’) により前記検出物体の変位距離(Lx)を求めることを
特徴とする。
A temperature correction method for an ultrasonic measuring device according to the present invention transmits and receives an ultrasonic wave from an ultrasonic transducer to a detection object, and displaces the detection object (Lx).
In a temperature correction method of an ultrasonic measuring device that measures without including an error due to a change in sound speed due to a temperature change, an ultrasonic wave is transmitted and received to the detection object before actual measurement. the electrical signal S R corresponding to the reflected wave from the reflecting plate placed from the ultrasonic transducer to the known distance L R, an electric signal corresponding to the reflected wave from the detection object between vessel and said detected object with S W1, electrical signal S corresponding to the firing wave
The respective time differences t R and t W1 from 0 are stored and actually measured, and the electric signal S R ′ corresponding to the reflected wave from the reflector and the reflected signal from the detection object are equivalent. the electric signal S W2, the electric signal S corresponding to the firing wave
If the respective time differences from 0 are t R ′ and t W2 , then Lx = {t W2 − (t W1 / t R ) × t R ′} × (L R / t
R ′) is used to determine the displacement distance (Lx) of the detection object.

【0009】また装置構成としては、超音波送受波器と
前記検出物体との間の前記超音波送受波器から既知の距
離LR に設けた反射板と、実際の測定の前に前記超音波
送受波器から超音波を送受波して、前記反射板からの反
射波に相当する電気信号SR と、前記検出物体からの反
射波に相当する電気信号SW1との、発射波に相当する電
気信号S0 からのそれぞれの時間差tR およびtW1を記
憶しておくメモリと、実際に測定を行い、前記反射板か
らの反射波に相当する電気信号SR ’と、前記検出物体
からの反射波に相当する電気信号SW2との、発射波に相
当する電気信号S0 からのそれぞれの時間差がtR ’お
よびtW2であった場合、 Lx={tW2−(tW1/tR )×tR ’}×(LR /t
R ’) により前記検出物体の変位距離(Lx)を算出する演算
回路とを備えたことを特徴とする。すなわち既知の距離
R においた1枚の反射板と、メモリと、簡単な演算式
とで温度により音速が変化してもその誤差を含まない検
出物体の変位距離を計測できることになる。
[0009] As the device configuration, the ultrasound before the reflecting plate provided at a known distance L R from the ultrasonic transducer between the detected object and the ultrasonic transducer, the actual measurement Ultrasonic waves are transmitted and received from the transducer, and an electric signal S R corresponding to a reflected wave from the reflection plate and an electric signal SW 1 corresponding to a reflected wave from the detection object correspond to emission waves. A memory for storing the respective time differences t R and t W1 from the electric signal S 0, an electric signal S R ′ corresponding to a reflected wave from the reflection plate, which is actually measured, and a signal from the detected object. If the electrical signal S W2 corresponding to the reflected wave, each of the time difference between the electric signals S 0 corresponding to the firing wave was t R 'and t W2, Lx = {t W2 - (t W1 / t R ) × t R } × (L R / t
R ′) and a calculation circuit for calculating a displacement distance (Lx) of the detection object. That is, the displacement distance of the detection object which does not include an error even if the sound speed changes due to the temperature can be measured by one reflector at a known distance L R , a memory, and a simple arithmetic expression.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態を図面を
用いて説明する。図1は本発明の超音波計測装置の装置
構成の一実施形態を示すブロック図であり、図におい
て、1はパルス発生器、2は超音波センサ、3は信号処
理回路、4は表示器、5は水面、6は超音波センサ2か
ら既知の距離LR に設けられ発射される超音波U0 の一
部を反射する反射板、7はメモリである。なおこの装置
構成は、温度補正機能のない超音波計測装置に、反射板
6とメモリ7とを追加しただけの簡単な構成で実現でき
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of an apparatus configuration of an ultrasonic measuring apparatus according to the present invention. In the figure, 1 is a pulse generator, 2 is an ultrasonic sensor, 3 is a signal processing circuit, 4 is a display, 5 water, 6 reflector for reflecting a portion of the ultrasound U 0 emitted provided from the ultrasonic sensor 2 a known distance L R, 7 is a memory. Note that this device configuration can be realized with a simple configuration in which the reflection plate 6 and the memory 7 are added to the ultrasonic measurement device having no temperature correction function.

【0011】次に動作について説明する。超音波センサ
(送受波器)2から発射された超音波U0 は、空気中を
伝播し、その一部は反射板6で反射し、その後水面で反
射して超音波センサ2で受波され、電気信号に変換され
て信号処理回路3により演算処理される。そして本実施
形態では、ある温度のときに計測を行い、この計測値を
メモリ7に記憶させておく(この計測を実際の計測と区
別する意味でメモリ計測とも称する。このメモリ計測は
検出物体が同じであれば実際の計測の前に一度計測して
おくだけで良いが、実際の計測の際に計測することとし
ても良い)。
Next, the operation will be described. The ultrasonic wave U 0 emitted from the ultrasonic sensor (transmitter / receiver) 2 propagates in the air, and a part of the ultrasonic wave U 0 is reflected by the reflection plate 6, then reflected on the water surface and received by the ultrasonic sensor 2. Is converted into an electric signal, and is processed by the signal processing circuit 3. In the present embodiment, measurement is performed at a certain temperature, and the measured value is stored in the memory 7 (this measurement is also referred to as memory measurement in order to distinguish this measurement from actual measurement. If they are the same, it is only necessary to measure once before the actual measurement, but it is also possible to measure at the time of the actual measurement.)

【0012】図2に示すように、このメモリ計測時には
水面が5−1の位置にある場合、図3(A)に示すよう
に、発射波U0 に相当する電気信号S0 と、反射板6で
反射した反射波に相当する電気信号SR との時間差がt
R 、水面5−1で反射した反射波UW1に相当する電気信
号SW1との時間差がtW1であった場合、時間差tR およ
びtW1をメモリ7に記憶させておく。
[0012] As shown in FIG. 2, if at the time the memory measurement at the position of the water surface 5-1, as shown in FIG. 3 (A), and the electric signal S 0 corresponding to the firing wave U 0, reflector The time difference from the electric signal S R corresponding to the reflected wave reflected at 6 is t
R, if the time difference between the electric signals S W1 corresponding to the reflected wave U W1 reflected by the surface of the water 5-1 was t W1, allowed to store the time difference t R and t W1 in the memory 7.

【0013】次に実際の計測時には、上述のメモリ計測
時から温度および水位が変化するが、始めに温度による
変化分を考えると、例えばメモリ計測時より温度が下が
り音速が遅くなった場合、図3(B)に示すように、時
間差tR も時間差tW1も延び、時間差tR ’、tW1’と
変化するが、この変化の割合は等しいので、 (tR /tR ’)=(tW1/tW1’)・・・(4) tW1’=(tW1/tR )×tR ’・・・(5) の関係
式が成立する。
Next, at the time of actual measurement, the temperature and the water level change from the time of the above-mentioned memory measurement. First, considering the change due to the temperature, for example, when the temperature drops and the sound speed becomes slower than at the time of the memory measurement, FIG. As shown in FIG. 3 (B), both the time difference t R and the time difference t W1 extend and change to the time differences t R ′ and t W1 ′. Since the ratios of these changes are equal, (t R / t R ′) = ( t W1 / t W1 ') (4) The relational expression of t W1 ' = (t W1 / t R ) × t R '(5) holds.

【0014】次に水面の変化分、すなわち実際の計測で
は、この温度で水面が図2の(5−1)から(5−2)
に示すように、距離Lx下がっているとすると、図3
(C)に示すように、水面5−2で反射した反射波UW2
に相当する電気信号SW2との時間差tW2は、時間差
W1’より距離Lx分に対応する時間tX 分遅れるた
め、 tW2=tW1’+tX ・・・(6) tX =tW2−tW1’・・・(7) が成立する。そし
て、式(7)と式(5)とにより、 tX =tW2−(tW1/tR )×tR ’・・・(8) が
成立する。
Next, in the change of the water surface, that is, in the actual measurement, at this temperature, the water surface changes from (5-1) to (5-2) in FIG.
As shown in FIG. 3, if the distance Lx is lowered,
As shown in (C), the reflected wave U W2 reflected on the water surface 5-2
Since the time difference t W2 from the electric signal SW 2 corresponding to the above is delayed by the time t X corresponding to the distance Lx from the time difference t W1 ′, t W2 = t W1 ′ + t X (6) t X = t W2 -t W1 '··· (7) is established. By the expression (7) and equation (5), t X = t W2 - (t W1 / t R) × t R '··· (8) is satisfied.

【0015】また、距離LX は、Lx=tX ×(LR
R ’) ・・・(9) が成立するので、 Lx={tW2−(tW1/tR )×tR ’}×(LR /tR ’)・・・(10) となる。そして、この式(10)のLR は既知の距離、
R ,tW1はメモリに記憶した数値、tR ’,tW2は実
際の計測で得られる数値であり、温度変化により音速が
変化しても、この影響を受けないで水位の変化Lxの計
測が可能となる。なお上述の実施形態では、水位の変化
を計測する場合について説明しているが、空気中の検出
物体の位置変化の測定等に使用できることは言うまでも
ない。
The distance L X is Lx = t X × (L R /
'Since) (9) is satisfied, Lx = {t W2 - ( t W1 / t R) × t R' t R a} × (L R / t R ') ··· (10) . L R in equation (10) is a known distance,
t R and t W1 are numerical values stored in the memory, and t R 'and t W2 are numerical values obtained by actual measurement. Even if the sound speed changes due to a temperature change, the water level change Lx is not affected by this change. Measurement becomes possible. In the above embodiment, the case where the change in the water level is measured has been described. However, it is needless to say that the present invention can be used for measuring the change in the position of the detected object in the air.

【0016】[0016]

【発明の効果】以上説明したように本発明の超音波計測
装置及びその温度補正方法は、極めて簡便かつ安価な構
成で、温度変化による誤差を含まない超音波計測が行え
るという効果がある。
As described above, the ultrasonic measuring apparatus and the temperature correcting method of the present invention have an effect that the ultrasonic measurement can be performed with a very simple and inexpensive configuration and without error caused by a temperature change.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の超音波計測装置の装置構成の一実施形
態を示すブロック図である。
FIG. 1 is a block diagram showing one embodiment of a device configuration of an ultrasonic measuring device of the present invention.

【図2】本発明の超音波計測装置における測定方法を説
明するための図である。
FIG. 2 is a diagram for explaining a measuring method in the ultrasonic measuring device of the present invention.

【図3】本発明の超音波計測装置における測定方法を説
明するためのタイミング図である。
FIG. 3 is a timing chart for explaining a measuring method in the ultrasonic measuring device of the present invention.

【図4】従来のこの種の超音波計測装置の装置構成の一
例を示すブロック図である。
FIG. 4 is a block diagram showing an example of a device configuration of a conventional ultrasonic measuring device of this type.

【図5】従来のこの種の超音波計測装置の装置構成の他
の一例を示すブロック図である。
FIG. 5 is a block diagram showing another example of the device configuration of this type of conventional ultrasonic measurement device.

【図6】図5に示す装置の測定方法を説明するためのタ
イミング図である。
FIG. 6 is a timing chart for explaining a measuring method of the apparatus shown in FIG. 5;

【符号の説明】[Explanation of symbols]

1 パルス発生器 2 超音波センサ(送受波器) 3 信号処理回路 4 表示器 5 5−1,5−2 水面 6 反射板 7 メモリ DESCRIPTION OF SYMBOLS 1 Pulse generator 2 Ultrasonic sensor (transmitter / receiver) 3 Signal processing circuit 4 Display 5 5-1 and 5-2 Water surface 6 Reflector 7 Memory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 超音波送受波器から検出物体へ超音波を
送受波し、前記検出物体の変位距離(Lx)を、温度変
化に伴う音速の変化による誤差を含まずに計測する超音
波計測装置の温度補正方法において、 実際の測定の前に前記検出物体へ超音波を送受波して、
この超音波送受波器と前記検出物体との間の前記超音波
送受波器から既知の距離LR においた反射板からの反射
波に相当する電気信号SR と、前記検出物体からの反射
波に相当する電気信号SW1との、発射波に相当する電気
信号S0 からのそれぞれの時間差tR およびtW1を記憶
しておき、 実際に測定を行い、前記反射板からの反射波に相当する
電気信号SR ’と、前記検出物体からの反射波に相当す
る電気信号SW2との、発射波に相当する電気信号S0
らのそれぞれの時間差がtR ’およびtW2であった場
合、 Lx={tW2−(tW1/tR )×tR ’}×(LR /t
R ’) により前記検出物体の変位距離(Lx)を求める超音波
計測装置の温度補正方法。
1. An ultrasonic measurement system for transmitting and receiving an ultrasonic wave from an ultrasonic transducer to a detection object and measuring a displacement distance (Lx) of the detection object without including an error due to a change in sound speed due to a temperature change. In the temperature correction method of the apparatus, transmitting and receiving ultrasonic waves to the detection object before actual measurement,
And an electric signal S R corresponding to the reflected wave from the reflecting plate placed from the ultrasonic transducer to the known distance L R between the detected object and the ultrasonic transducer, the reflected wave from the detection object The respective time differences t R and t W1 from the electric signal S 0 corresponding to the emitted wave with respect to the electric signal S W1 corresponding to are stored, and actually measured, and correspond to the reflected wave from the reflector. electric signal S R that case 'and, between the electric signals S W2 corresponding to the reflected wave from the detection object, each of the time difference between the electric signals S 0 corresponding to the firing wave t R' was and t W2 , Lx = {t W2 - ( t W1 / t R) × t R '} × (L R / t
R ′), a temperature correction method of the ultrasonic measuring device for obtaining the displacement distance (Lx) of the detection object.
【請求項2】 超音波送受波器から検出物体へ超音波を
送受波し、前記検出物体の変位距離(Lx)を、温度変
化に伴う音速の変化による誤差を含まずに計測する超音
波計測装置において、 前記超音波送受波器と前記検出物体との間の前記超音波
送受波器から既知の距離LR に設けた反射板と、 実際の測定の前に前記超音波送受波器から超音波を送受
波して、前記反射板からの反射波に相当する電気信号S
R と、前記検出物体からの反射波に相当する電気信号S
W1との、発射波に相当する電気信号S0 からのそれぞれ
の時間差tR およびtW1を記憶しておくメモリと、 実際に測定を行い、前記反射板からの反射波に相当する
電気信号SR ’と、前記検出物体からの反射波に相当す
る電気信号SW2との、発射波に相当する電気信号S0
らのそれぞれの時間差がtR ’およびtW2であった場
合、 Lx={tW2−(tW1/tR )×tR ’}×(LR /t
R ’) により前記検出物体の変位距離(Lx)を算出する演算
回路と、 を備えたことを特徴とする超音波計測装置。
2. Ultrasonic measurement for transmitting and receiving an ultrasonic wave from an ultrasonic transducer to a detection object and measuring a displacement distance (Lx) of the detection object without including an error due to a change in sound speed due to a temperature change. An apparatus, comprising: a reflector provided at a known distance L R from the ultrasonic transducer between the ultrasonic transducer and the detection object; and an ultrasonic transducer from the ultrasonic transducer before actual measurement. Transmits and receives a sound wave, and generates an electric signal S corresponding to a reflected wave from the reflector.
R and an electric signal S corresponding to a reflected wave from the detection object.
Of W1, and the respective memory for storing the time difference t R and t W1 from the electric signal S 0 corresponding to the firing wave, performs the actual measurement, the electric signal S corresponding to the reflected wave from the reflector When the time differences between R ′ and the electric signal S W2 corresponding to the reflected wave from the detection object from the electric signal S 0 corresponding to the emission wave are t R ′ and t W2 , Lx = { t W2 − (t W1 / t R ) × t R ′} × (L R / t
R ′), an arithmetic circuit for calculating a displacement distance (Lx) of the detection object.
JP8298208A 1996-10-22 1996-10-22 Ultrasonic measuring device and its temperature correction method Pending JPH10122844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8298208A JPH10122844A (en) 1996-10-22 1996-10-22 Ultrasonic measuring device and its temperature correction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8298208A JPH10122844A (en) 1996-10-22 1996-10-22 Ultrasonic measuring device and its temperature correction method

Publications (1)

Publication Number Publication Date
JPH10122844A true JPH10122844A (en) 1998-05-15

Family

ID=17856619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8298208A Pending JPH10122844A (en) 1996-10-22 1996-10-22 Ultrasonic measuring device and its temperature correction method

Country Status (1)

Country Link
JP (1) JPH10122844A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333533A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Refrigeration equipment
CN103499375A (en) * 2013-10-11 2014-01-08 南京信息工程大学 High-precision ultrasonic level gauge measuring distance based on time delay method
WO2023171311A1 (en) 2022-03-10 2023-09-14 Jfeスチール株式会社 Solidification position measurement device, solidification position measurement method, metal material quality management method, casting equipment, metal material manufacturing equipment, and metal material manufacturing method
KR20240148396A (en) 2022-03-10 2024-10-11 제이에프이 스틸 가부시키가이샤 Solidification position measuring device, solidification position measuring method, quality control method for metal materials, casting equipment, manufacturing equipment for metal materials and manufacturing method for metal materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333533A (en) * 2006-06-14 2007-12-27 Mitsubishi Electric Corp Refrigeration equipment
CN103499375A (en) * 2013-10-11 2014-01-08 南京信息工程大学 High-precision ultrasonic level gauge measuring distance based on time delay method
WO2023171311A1 (en) 2022-03-10 2023-09-14 Jfeスチール株式会社 Solidification position measurement device, solidification position measurement method, metal material quality management method, casting equipment, metal material manufacturing equipment, and metal material manufacturing method
KR20240148396A (en) 2022-03-10 2024-10-11 제이에프이 스틸 가부시키가이샤 Solidification position measuring device, solidification position measuring method, quality control method for metal materials, casting equipment, manufacturing equipment for metal materials and manufacturing method for metal materials

Similar Documents

Publication Publication Date Title
US4606015A (en) Method and apparatus for detecting position of object with ultrasonic wave
EP3812757A1 (en) Method and apparatus for detecting a property of a liquid medium, urea sensor system, computer program product and computer-readable storage medium
US6865137B2 (en) Method for pulse offset calibration in time of flight ranging systems
JPH10122844A (en) Ultrasonic measuring device and its temperature correction method
JP3573090B2 (en) Underwater target position detecting device and method
JPH08271322A (en) Ultrasonic liquid level measurement method
JP2002090452A (en) Ultrasonic range finder
JPH03277987A (en) Ultrasonic range finder
JPH08136321A (en) Ultrasonic distance measuring instrument
KR101685039B1 (en) Method and apparatus for compensating the sensitivity of ultrasonic sensors
JP3287938B2 (en) Water depth measuring method and apparatus
JPH07174843A (en) Sonic velocity correcting device in position measurement and its method
JPH06148316A (en) Ultrasonic distance sensor
JPH05172793A (en) Acoustic characteristic value measuring device
RU1809378C (en) Method of article ultrasound check
JP2765317B2 (en) Sonar device
JPH07253469A (en) Instrument for measuring frequency characteristic of fish
JPH01187485A (en) Ultrasonic distance measuring method
JPS581372B2 (en) I'm going to have a good time.
JPH06118169A (en) Acoustic position measuring device
SU1320742A1 (en) Method of ultrasonic shadow examination of articles and device for effecting same
JPH11183580A (en) Underwater position measuring device
JPH05133792A (en) Liquid level sensing device for pressure vessel
JPH08271321A (en) Ultrasonic liquid level measurement method
JP3479145B2 (en) Ultrasonic measurement device