[go: up one dir, main page]

JPH10118402A - Method for concentrating liquid - Google Patents

Method for concentrating liquid

Info

Publication number
JPH10118402A
JPH10118402A JP27911596A JP27911596A JPH10118402A JP H10118402 A JPH10118402 A JP H10118402A JP 27911596 A JP27911596 A JP 27911596A JP 27911596 A JP27911596 A JP 27911596A JP H10118402 A JPH10118402 A JP H10118402A
Authority
JP
Japan
Prior art keywords
liquid
heat transfer
evaporator
transfer tube
condensate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27911596A
Other languages
Japanese (ja)
Other versions
JP3941017B2 (en
Inventor
Michio Futagawa
道夫 二川
Yoshiaki Harada
吉明 原田
Suekazu Yamada
末和 山田
Kenichi Yamazaki
健一 山崎
Tatsuo Kume
辰雄 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP27911596A priority Critical patent/JP3941017B2/en
Publication of JPH10118402A publication Critical patent/JPH10118402A/en
Application granted granted Critical
Publication of JP3941017B2 publication Critical patent/JP3941017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROBLEM TO BE SOLVED: To miniaturize a device and to reduce the cost of equipment and running cost by introducing condensate into a preheater from a condensate tank for invariably controlling the height of condensate level of vapor in the outside of a heat transfer pipe and pulling out concentrate from the tower bottom of an evaporator in accordance with a signal showing the height of liquid level in the evaporator and sending the concentrate to a storage tank thereof. SOLUTION: Vapor generated in a concentrator 8 is compressed by a screw type compressor 10 through a line 9 and temperature rise is performed. Obtained compressed vapor is supplied to the outside of the heat transfer pipe of the concentrator 8 through lines 11, 25 and heats liquid in the heat transfer pipe to evaporate the liquid. Thereby, vapor itself in the outside of the heat transfer pipe is condensed and liquefied. Condensate is stored in a condensate tank 13 through a line 12 from the lower part of the concentrator 8. To prevent loss of noncondensed vapor caused by discharge to the outside of the system, the liquid level of the condensate tank 13 is controlled so as to be held higher than the position of the line 12 for taking out condensate from the concentrator 8 to the condensate tank 13. Condensate is sent from a line 15 to a preheater 5 and herein heat-exchanged for waste water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種液体の濃縮、
蒸留などに好適な蒸気圧縮式濃縮技術の改良に関し、よ
り詳しくは、原液中の水分を蒸発することによって原液
の濃縮を行うに際し、原液からの発生蒸気を圧縮機によ
り圧縮・昇温することによって、前記原液を蒸発するた
めの熱源として利用する液体濃縮方法に関する。
TECHNICAL FIELD The present invention relates to the concentration of various liquids,
Regarding the improvement of the vapor compression type concentrating technology suitable for distillation, etc., more specifically, when concentrating the stock solution by evaporating the water in the stock solution, the generated steam from the stock solution is compressed and heated by a compressor. And a liquid concentrating method utilizing the undiluted solution as a heat source for evaporating the undiluted solution.

【0002】[0002]

【従来の技術とその問題点】例えば、特開昭59-26184号
公報における図面に示されている従来の蒸気圧縮式蒸発
装置は、下部に原液の溜室を備えた密閉型の蒸発器内の
上部に多数本の伝熱管を設け、該各伝熱管の外側面に、
原液ポンプによって送られて来る原液を散布器にて散布
することにより蒸発させ、この蒸発により発生した蒸気
をブロワー圧縮機で圧縮して昇温し、この昇温した蒸気
をダクトを介して、前記各伝熱管内に供給することによ
り、各伝熱管の外側面に散布されている原液を加熱・蒸
発させるとともに、前記各伝熱管内から空気等の非凝縮
性ガスを真空ポンプなどの真空発生手段にて抽出するこ
とにより、前記蒸発器内を大気圧以下の減圧状態に保持
している。
2. Description of the Related Art For example, a conventional vapor-compression evaporator shown in the drawings of Japanese Patent Application Laid-Open No. 59-26184 discloses a closed evaporator having a stock solution chamber at the bottom. A number of heat transfer tubes are provided at the top of the heat transfer tube, and on the outer surface of each heat transfer tube,
The undiluted solution sent by the undiluted solution pump is evaporated by spraying with a sprayer, and the steam generated by the evaporation is compressed by a blower compressor to increase the temperature. By supplying into each heat transfer tube, the stock solution sprayed on the outer surface of each heat transfer tube is heated and evaporated, and a non-condensable gas such as air is blown from each heat transfer tube into a vacuum generating means such as a vacuum pump. The pressure in the evaporator is maintained at a pressure lower than the atmospheric pressure.

【0003】しかしながら、この形式の蒸気圧縮式蒸発
装置には、以下の様な問題点がある。
However, this type of vapor compression type evaporator has the following problems.

【0004】イ.ブロワー圧縮機本体の圧縮効率が低
く、単位原液量を圧縮するための必要電力量が大きくな
り、運転経費が高くなり、設備も大きくなる。
[0004] b. The compression efficiency of the blower compressor body is low, the amount of power required to compress the unit stock solution increases, the operating cost increases, and the equipment increases.

【0005】ロ.原液は、散布器を介して、各伝熱管の
外表面に散布されるので、液分散不良から生じる熱交換
器伝熱係数の低下がある。
[0005] b. Since the undiluted solution is sprayed on the outer surface of each heat transfer tube via the sprayer, there is a reduction in the heat transfer coefficient of the heat exchanger caused by poor liquid dispersion.

【0006】ハ.原液の濃縮倍率上昇または連続運転に
伴い、液分散器ノズル部分でのスラッジによる詰まりお
よび分散不良、各伝熱管外表面の汚れ、液比重または粘
度の上昇などによる伝熱係数の低下に対し、有効に対処
することができない。
C. Effective for reducing the heat transfer coefficient due to clogging and poor dispersion due to sludge at the nozzle of the liquid disperser, contamination of the outer surface of each heat transfer tube, increase in liquid specific gravity or viscosity, etc. due to increase in the concentration ratio of the stock solution or continuous operation. Can not deal with.

【0007】また、各管の外表面付着スケールの除去
は、液が分散されているため、伝熱管外面に対する液流
速が遅いことなどから、困難となる場合が多い。
In addition, it is often difficult to remove scale attached to the outer surface of each tube because the liquid is dispersed and the liquid flow velocity to the outer surface of the heat transfer tube is slow.

【0008】ニ.上記ロおよびハの結果、濃縮処理は、
常に単位断面積当たりの蒸発量が低い状態で行わざるを
得ない。従って、単位時間当たりの蒸発量を増大させる
ためには、伝熱面積を増大させるか、或いはブロワー圧
縮機として圧縮比の高いものを使用しなければならない
ため、装置が大型化するとともに、運転経費が嵩むとい
う問題がある。
D. As a result of the above b and c, the concentration process
It must be carried out in a state where the evaporation amount per unit sectional area is always low. Therefore, in order to increase the amount of evaporation per unit time, the heat transfer area must be increased, or a blower compressor having a high compression ratio must be used. However, there is a problem that the bulk increases.

【0009】ホ.また、原液の種類によっては、濃縮処
理中に発泡を生じ、発生蒸気側に原液が飛散して、運転
を継続できなくなることがある。
E. In addition, depending on the type of the stock solution, foaming may occur during the concentration process, and the stock solution may be scattered on the generated steam side, making it impossible to continue the operation.

【0010】[0010]

【発明が解決しようとする課題】従って、本発明は、上
記の様な従来技術の問題点を解消乃至軽減して、小型
で、設備費および運転経費の安価な蒸気圧縮式濃縮技術
を提供することを主な目的とする。
SUMMARY OF THE INVENTION Accordingly, the present invention is to provide a vapor compression type enrichment technology which is small in size and inexpensive in equipment and operation costs by eliminating or alleviating the problems of the prior art as described above. Its main purpose is to:

【0011】[0011]

【課題を解決するための手段】本発明者は、上記の様な
技術の現状に鑑みて鋭意研究を重ねた結果、濃縮装置で
発生する蒸気の圧縮にスクリュー型圧縮機を使用するこ
とにより、新規な液体濃縮技術を完成するに至った。
Means for Solving the Problems The present inventor has conducted intensive studies in view of the state of the art as described above, and as a result, by using a screw compressor to compress steam generated in a concentrator, A new liquid concentration technology has been completed.

【0012】すなわち、本発明は、下記の液体濃縮方法
を提供するものである。
That is, the present invention provides the following liquid concentrating method.

【0013】1.カランドリア型の蒸発缶を使用する液
体濃縮方法において、(1)原液と蒸発缶内伝熱管外側
からの蒸気の凝縮液とを予熱器において熱交換させて、
原液を予熱する工程、(2)予熱された原液を蒸発缶内
の液面から伝熱管まで間の液中に導入する工程、(3)
蒸発缶内で発生した蒸気をスクリュー型圧縮機で圧縮・
昇温する工程、(4)得られた圧縮蒸気を伝熱管外側に
供給して、伝熱管内の液を加熱・蒸発させる工程、
(5)伝熱管外側における蒸気の凝縮液面高さを一定に
制御するための凝縮液槽から凝縮液を予熱器に導入する
工程、および(6)蒸発缶内の液面高さを示す信号に対
応して濃縮液を蒸発缶塔底から抜き出し、濃縮液貯槽に
送る工程を備えたことを特徴とする液体濃縮方法。
1. In a liquid concentration method using a calandria type evaporator, (1) heat exchange is performed between a stock solution and a condensate of vapor from the outside of a heat transfer tube in an evaporator in a preheater,
A step of preheating the undiluted solution, (2) a step of introducing the preheated undiluted solution into the liquid between the liquid surface in the evaporator and the heat transfer tube, and (3)
The steam generated in the evaporator is compressed by a screw compressor.
(4) supplying the obtained compressed steam to the outside of the heat transfer tube to heat and evaporate the liquid in the heat transfer tube;
(5) a step of introducing condensate from a condensate tank to a preheater for controlling the condensate level of the vapor outside the heat transfer tube to a constant level; and (6) a signal indicating the level of the liquid level in the evaporator. 3. A method for concentrating a liquid, comprising the steps of: extracting a concentrated liquid from the bottom of an evaporator in accordance with the method (1) and sending the concentrated liquid to a concentrated liquid storage tank.

【0014】2.工程(1)の予熱器が、プレート型熱
交換器である上記項1に記載の液体濃縮方法。
2. Item 2. The liquid concentrating method according to Item 1, wherein the preheater in the step (1) is a plate heat exchanger.

【0015】3.工程(2)の原液の導入ライン中に背
圧弁を設けた上記項1に記載の液体濃縮方法。
3. Item 2. The liquid concentrating method according to the above item 1, wherein a back pressure valve is provided in the stock solution introduction line in the step (2).

【0016】4.工程(2)において、蒸発缶内の液面
の高さを調整するために蒸発缶塔底液をポンプで抜き取
り、原液の導入ラインへ循環する上記項1に記載の液体
濃縮方法。
4. 2. The liquid concentrating method according to the above item 1, wherein in the step (2), the bottom liquid of the evaporator tower is withdrawn by a pump in order to adjust the liquid level in the evaporator and circulated to a line for introducing a stock solution.

【0017】5.工程(3)のスクリュー型圧縮機のモ
ーター回転数をインバーター装置により制御する上記項
1に記載の液体濃縮方法。
5. Item 2. The liquid concentrating method according to the above item 1, wherein the motor rotation speed of the screw compressor in the step (3) is controlled by an inverter device.

【0018】6.工程(3)において、蒸発缶内発生蒸
気量に対応してスクリュー型圧縮機のモーター回転数を
制御する上記項5に記載の液体濃縮方法。
6. Item 6. The liquid concentrating method according to the above item 5, wherein in the step (3), the number of revolutions of the motor of the screw compressor is controlled in accordance with the amount of vapor generated in the evaporator.

【0019】7.工程(3)において、蒸気量に応じて
複数のスクリュー型圧縮機が設けられている上記項1に
記載の液体濃縮方法。
[7] 2. The liquid concentrating method according to the above item 1, wherein in the step (3), a plurality of screw compressors are provided according to the amount of vapor.

【0020】8.工程(5)の凝縮液槽の上部気相部と
伝熱管外側の蒸気ラインとが接続されている上記項1に
記載の液体濃縮方法。
8. Item 2. The liquid concentrating method according to the above item 1, wherein the upper gas phase portion of the condensate tank in the step (5) is connected to a vapor line outside the heat transfer tube.

【0021】9.伝熱管外側の蒸気ラインに、蒸発缶内
の非凝縮性気体の自動的排出を定期的に行うための電磁
弁を設けた上記項1に記載の液体濃縮方法。
9. Item 2. The liquid concentrating method according to Item 1, wherein an electromagnetic valve for periodically discharging the non-condensable gas in the evaporator is provided in the vapor line outside the heat transfer tube.

【0022】10.蒸発缶内の運転圧力が常圧又は減圧
である上記項1に記載の液体濃縮方法。
10. Item 2. The liquid concentrating method according to Item 1, wherein the operating pressure in the evaporator is normal pressure or reduced pressure.

【0023】11.伝熱管外側の蒸気ラインの電磁弁の
後流側に減圧運転時に電磁弁の開閉と連動する真空ポン
プを設けた上記項10に記載の液体濃縮方法。
11. Item 11. The liquid concentrating method according to Item 10, wherein a vacuum pump is provided on the downstream side of the electromagnetic valve of the steam line outside the heat transfer tube, the vacuum pump interlocking with the opening and closing of the electromagnetic valve during the decompression operation.

【0024】12.スタートアップ時または長期運転時
に予熱器および/または蒸発缶内伝熱管の汚れによる蒸
発量の低下に対応するために、補助熱源を蒸発缶内底部
または圧縮機出口ラインへ導入する上記項1に記載の液
体濃縮方法。
12. Item 2. The auxiliary heat source is introduced into the bottom of the evaporator or the outlet line of the compressor in order to cope with a decrease in the amount of evaporation due to fouling of the preheater and / or the heat transfer tube in the evaporator during start-up or long-term operation. Liquid concentration method.

【0025】13.補助熱源が蒸気である上記項12に
記載の液体濃縮方法。
13. Item 13. The liquid concentrating method according to Item 12, wherein the auxiliary heat source is steam.

【0026】[0026]

【発明の実施の形態】本発明で使用する圧縮機は、従来
の濃縮技術では用いられたことがなかったスクリュー型
圧縮機であり、次の様な特性を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION The compressor used in the present invention is a screw type compressor which has not been used in the conventional concentration technology, and has the following characteristics.

【0027】a.低速回転時から高圧力・高効率運転が
可能である。
A. High pressure and high efficiency operation is possible from low speed rotation.

【0028】b.高い応答性を持っている。B. Has high responsiveness.

【0029】c.小型、コンパクトで据え付けが容易で
ある。
C. Small, compact and easy to install.

【0030】d.発生蒸気量に対応して、スクリュー型
圧縮機のモーター回転数を制御することができる。
D. The motor rotation speed of the screw compressor can be controlled according to the amount of generated steam.

【0031】本発明で使用するスクリュー型圧縮機は、
通常アルミニウム合金製のケーシング部に一対の雄、雌
シリンダーを内蔵する構造を有している。
The screw type compressor used in the present invention comprises:
It usually has a structure in which a pair of male and female cylinders are built in a casing part made of aluminum alloy.

【0032】上記の様な構造を有し、効果を発揮するス
クリュー型圧縮機を使用する場合には、従来の圧縮機を
使用する場合に比して、設備費および運転費が大幅に安
価となる。
When a screw-type compressor having the above-mentioned structure and exerting its effects is used, the cost of equipment and operation is significantly lower than when a conventional compressor is used. Become.

【0033】本発明で使用するスクリュー型圧縮機は、
一例として、最大吐出圧力として160kPa、最高許容吐出
温度として160℃、最大吸気量として760m3/hr(空気換
算)、圧縮比として約2.3という高い特性を発揮するこ
とができる。
The screw type compressor used in the present invention comprises:
As an example, high characteristics such as a maximum discharge pressure of 160 kPa, a maximum allowable discharge temperature of 160 ° C., a maximum intake air amount of 760 m 3 / hr (in air conversion), and a compression ratio of about 2.3 can be exhibited.

【0034】従来の圧縮機としてのルーツブロワーでの
圧縮比限界が約1.8程度で、全断熱効率が約45〜60%で
あるのに対し、スクリュー型圧縮機は、圧縮比1.5で全
断熱効率約65%、圧縮比2〜2.3で約70%と高い性能を発
揮することができる。
The compression ratio limit of a conventional roots blower as a compressor is about 1.8, and the total adiabatic efficiency is about 45 to 60%, whereas the screw type compressor has a total adiabatic efficiency of about 1.5 at a compression ratio of 1.5. High performance of about 65% and about 70% with a compression ratio of 2 to 2.3 can be achieved.

【0035】スクリュー型圧縮機のローターは、熱膨張
を少なくし、必要クリアランスを小さくするために、好
ましくは、膨張係数の少ないアルミニウム合金を用い、
ローターの表面にフッ素樹脂(たとえば、デュポン社か
ら商標名「テフロン」として市販されている)系コーテ
ィング材を塗布する。圧縮機は、発生蒸気量に応じて、
複数個設けることができる。
In order to reduce the thermal expansion and the required clearance, the rotor of the screw type compressor is preferably made of an aluminum alloy having a small expansion coefficient.
A fluororesin (for example, commercially available from DuPont under the trade name “Teflon”)-based coating material is applied to the surface of the rotor. The compressor, depending on the amount of steam generated,
A plurality can be provided.

【0036】従来、蒸気発生量に対応して圧縮機により
吸引および吐出を行い、蒸発缶内での蒸発を効率よく行
わせることは、圧縮機の制御上困難であった。本発明に
おいては、圧縮機の駆動源として高速回転型の誘導電動
機からなるモーターを使用し、このモーターの回転数制
御機構としてインバーター装置を用いる。すなわち、圧
縮機前流側に設けたオリフィス式流量計、フロート式流
量計などにより蒸気発生量を検出し、この入力信号を調
節計に送り、この調節計からの出力信号をインバーター
に入力して、蒸気発生量が一定となる様にするか、或い
は蒸気発生量に対応してモーターの回転数を増減するこ
とができる。その結果、装置全体が簡略化され、始動時
などのおける制御も容易となる。
Conventionally, it has been difficult in terms of control of the compressor to perform suction and discharge by the compressor in accordance with the amount of generated steam, and to efficiently perform evaporation in the evaporator. In the present invention, a motor composed of a high-speed rotation type induction motor is used as a drive source of the compressor, and an inverter device is used as a rotation speed control mechanism of the motor. That is, the amount of steam generation is detected by an orifice type flow meter, a float type flow meter, etc. provided on the upstream side of the compressor, and this input signal is sent to the controller, and the output signal from this controller is input to the inverter. The amount of generated steam can be made constant, or the number of revolutions of the motor can be increased or decreased in accordance with the amount of generated steam. As a result, the entire apparatus is simplified, and control at the time of starting or the like becomes easy.

【0037】また、本発明においては、装置の小型化と
コスト低減のために、原液の予熱にプレート型熱交換器
を用いることができる。この予熱器および原液導入ライ
ン内の圧力を蒸発缶内圧力よりも高くすることにより、
予熱器内での気泡生成による伝熱係数の低下を防ぐた
め、予熱器出口(カランドリア型蒸発缶入口)側に背圧
弁を設けている。
In the present invention, a plate-type heat exchanger can be used for preheating the stock solution in order to reduce the size and cost of the apparatus. By making the pressure in this preheater and the stock solution introduction line higher than the pressure in the evaporator,
A back pressure valve is provided on the preheater outlet (calandria evaporator inlet) side to prevent a decrease in the heat transfer coefficient due to the formation of bubbles in the preheater.

【0038】原液中に濃縮条件下に発泡を生じる可能性
がある成分(界面活性剤など)が含まれている場合に
は、あらかじめシリコーン系消泡剤を添加してもよい。
消泡剤の添加量は、発泡性成分の含有量などを考慮して
定めれば良く、特に限定されるものではないが、通常30
〜500mg/l程度である。
When the stock solution contains a component (such as a surfactant) that may cause foaming under the concentration condition, a silicone-based antifoaming agent may be added in advance.
The addition amount of the defoaming agent may be determined in consideration of the content of the foaming component and the like, and is not particularly limited.
About 500 mg / l.

【0039】本発明で使用するカランドリア型蒸発缶に
おいては、従来技術で生じていたの液分散不良などによ
る伝熱係数の低下を防ぐために、カランドリア型蒸発缶
(以下単に「カランドリア」ということもある)内液面か
ら伝熱管上部までの液深さの上方から15〜50%程度の位
置に液を導入することが好ましい。これにより、液は、
伝熱管内に常時保持された状態で、伝熱管外の圧縮蒸気
により加熱・蒸発される。従来の液供給方法では、発泡
を促進することがあり、その結果濃縮処理が不能となる
ことがあった。しかるに、本発明方法では、前記の液の
分散による流速の低下ならびに発泡促進などの問題は、
解消される。
In the calandria type evaporator used in the present invention, the calandria type evaporator is used in order to prevent the heat transfer coefficient from being reduced due to poor liquid dispersion, which is caused by the prior art.
It is preferable to introduce the liquid at a position about 15 to 50% from above the liquid depth from the inner liquid level to the upper part of the heat transfer tube (hereinafter sometimes simply referred to as "calandria"). Thus, the liquid
While being constantly held in the heat transfer tube, it is heated and evaporated by the compressed steam outside the heat transfer tube. In the conventional liquid supply method, foaming may be promoted, and as a result, concentration processing may not be performed. However, in the method of the present invention, problems such as a reduction in flow rate due to the dispersion of the liquid and promotion of foaming are as follows.
Will be resolved.

【0040】また、必要に応じ、カランドリア内塔底液
をポンプで抜き出し、原液導入位置へ循環することによ
り、伝熱管内の液流速を増大させて、伝熱係数を上げる
ことができる。
If necessary, the bottom liquid in the calandria is withdrawn by a pump and circulated to the undiluted liquid introduction position, thereby increasing the liquid flow velocity in the heat transfer tube and increasing the heat transfer coefficient.

【0041】伝熱管外の蒸気は、伝熱管内の液を加熱
し、蒸発させた後、凝縮する。本発明においては、伝熱
管外の蒸気の凝縮液面高さを一定に制御するために、凝
縮液槽を設け、これにより、圧縮蒸気の系外への排出に
よる損失を防いでいる。凝縮液槽内の液は、予熱器を経
て液面制御弁から系外に排出され、再利用もしくは放流
される。この凝縮液槽の上部気相部と伝熱管外側の蒸気
ラインとの接続により、凝縮液槽内液面は安定して制御
される。
The vapor outside the heat transfer tube heats the liquid inside the heat transfer tube, evaporates, and then condenses. In the present invention, a condensed liquid tank is provided in order to keep the condensed liquid level of the vapor outside the heat transfer tube constant, thereby preventing loss due to discharge of the compressed vapor to the outside of the system. The liquid in the condensed liquid tank is discharged from the liquid level control valve via the preheater to the outside of the system, and is reused or discharged. The connection between the upper gas phase portion of the condensate tank and the vapor line outside the heat transfer tube stably controls the liquid level in the condensate tank.

【0042】圧縮機の効率、消費電力などに影響を与え
るカランドリア内の空気などの非凝縮性ガスは、伝熱管
外側の蒸気ラインに設けた電磁弁の開閉により、カラン
ドリア外へ排出される。排出ガスは、ガス中の成分に対
応して、必要ならば、活性炭吸着などにより所定成分を
除去した後、或いは濃縮液タンク内の液にバブリングさ
せて所定成分を吸収除去した後、大気中に放出される。
或いは、後述する補助熱源としての蒸気発生用のガスだ
きボイラーにおいて、空気と混合して、燃焼処理され
る。電磁弁の開閉は、カランドリア内圧力と連動させる
方法や任意のタイマー設定などにより、自動的に行われ
る。
A non-condensable gas such as air in the calandria that affects the efficiency and power consumption of the compressor is discharged out of the calandria by opening and closing a solenoid valve provided in a steam line outside the heat transfer tube. Exhaust gas is released into the atmosphere after removal of a predetermined component by activated carbon adsorption or the like, if necessary, or after bubbling the liquid in the concentrated solution tank to absorb and remove the predetermined component, in accordance with the components in the gas. Released.
Alternatively, in a gas-fired boiler for generating steam as an auxiliary heat source to be described later, it is mixed with air and burned. The opening and closing of the solenoid valve is automatically performed by a method linked with the pressure in the calandria or by setting an arbitrary timer.

【0043】濃縮液は、濃縮器内の液面計からの信号を
受け、塔底部から制御弁を通して排出される。
The concentrated liquid is discharged from the bottom of the column through a control valve upon receiving a signal from the liquid level gauge in the concentrator.

【0044】カランドリア内の運転圧力が減圧系である
場合には、伝熱管外側の蒸気ラインに設けた電磁弁の後
流側にこの電磁弁の開閉と連動する真空ポンプを設け
る。
When the operating pressure in the calandria is a pressure reducing system, a vacuum pump is provided on the downstream side of the solenoid valve provided in the steam line outside the heat transfer tube in conjunction with the opening and closing of the solenoid valve.

【0045】必要ならば、スタートアップ時の装置全体
の昇温のために、或いは長期運転後の予熱器やカランド
リア伝熱管の汚れによる蒸発量の低下に応じて、補助熱
源(ガスだきボイラーからの蒸気など)を、カランドリア
内底部または圧縮器出口ラインへ導入する。
If necessary, an auxiliary heat source (such as steam from a gas-fired boiler) is used to raise the temperature of the entire system at start-up, or to reduce the amount of evaporation due to contamination of the preheater or calandria heat transfer tube after long-term operation. ) Is introduced into the calandria inner bottom or the compressor outlet line.

【0046】以下図面を参照しつつ、本発明をさらに詳
細に説明する。なお、以下においては、廃水の濃縮につ
いて説明するが、前述の様に、本発明は、その他の液の
濃縮にも適用できることはいうまでもない。
Hereinafter, the present invention will be described in more detail with reference to the drawings. In the following, the concentration of wastewater will be described, but as described above, it goes without saying that the present invention can be applied to the concentration of other liquids.

【0047】図1は、本発明による廃水の濃縮処理の一
例を示すフローシートである。濃縮すべき廃水は、廃水
タンク1から、ライン2を経て、廃水ポンプ3において
所定圧力まで昇温された後、ライン4から予熱器5に送
られ、ここで後述するライン15からの凝縮液と熱交換
される。廃水が発泡性成分を含んでいる場合には、消泡
剤タンク27から消泡剤を添加しておくことができる。
FIG. 1 is a flow sheet showing an example of the wastewater concentration process according to the present invention. The wastewater to be concentrated is heated from a wastewater tank 1 through a line 2 to a predetermined pressure in a wastewater pump 3 and then sent to a preheater 5 from a line 4 where it is condensed with a condensate from a line 15 described later. Heat exchanged. If the wastewater contains a foaming component, a defoamer can be added from the defoamer tank 27.

【0048】予熱器5を出た液は、ライン6から濃縮器
(カランドリア型蒸発缶)8へ導入される。予熱器5と濃
縮器8との間に背圧弁7を設けることにより、予熱器5
内或いはライン6内などでの内圧を濃縮器8内の圧力よ
り高めることができるので、予熱器5内での気泡生成を
防止し、伝熱係数の低下を防ぐことができる。背圧弁7
を出た液は、濃縮器8内の液面から伝熱管上部までの液
深さの15〜50%の位置(液面から下方に向けての位置)
で濃縮器に導入される。
The liquid exiting the preheater 5 is supplied from the line 6 to the concentrator.
(Calandria-type evaporator) 8. By providing the back pressure valve 7 between the preheater 5 and the concentrator 8, the preheater 5
Since the internal pressure in the inside or in the line 6 can be higher than the pressure in the concentrator 8, the generation of bubbles in the preheater 5 can be prevented, and the decrease in the heat transfer coefficient can be prevented. Back pressure valve 7
Of the liquid from the liquid level in the concentrator 8 to the upper part of the heat transfer tube at a position of 15 to 50% (position downward from the liquid level)
At the concentrator.

【0049】濃縮器8内で発生した蒸気は、ライン9を
経てスクリュー型圧縮機10で圧縮され、昇温される。
スクリュー型圧縮機は、先述の様に、アルミニウム合金
製ケーシング内に一対の雄および雌ローターを内蔵した
形式のものを使用することが好ましい。得られた圧縮蒸
気は、ライン11および25を経て濃縮器8の伝熱管外
側に供給され、伝熱管内の液を加熱し、蒸発させる。こ
れにより、伝熱管外の蒸気自体は、凝縮・液化する。凝
縮液は、伝熱管8の下部からライン12を経て、凝縮液
槽13に溜められる。
The steam generated in the concentrator 8 is compressed by a screw compressor 10 via a line 9 and is heated.
As described above, it is preferable to use a screw-type compressor in which a pair of male and female rotors are built in an aluminum alloy casing. The obtained compressed steam is supplied to the outside of the heat transfer tube of the concentrator 8 via the lines 11 and 25, and heats and evaporates the liquid in the heat transfer tube. Thereby, the steam itself outside the heat transfer tube is condensed and liquefied. The condensate is stored in the condensate tank 13 via the line 12 from the lower part of the heat transfer tube 8.

【0050】未凝縮蒸気の系外への排出(ライン14→
ライン19→電磁弁20→ライン21)による損失を防
ぐため、凝縮液槽13での液面は、濃縮器8から凝縮液
槽13への凝縮液取り出しライン12の位置よりも高く
なる様に、制御する。凝縮液は、ライン15から予熱器
5に送られ、ここで廃水と熱交換し、ライン16上の液
面制御弁(図示せず)を通り、凝縮液タンク17へ送ら
れた後、再利用または放流される。
Discharge of uncondensed vapor outside the system (line 14 →
In order to prevent loss due to line 19 → solenoid valve 20 → line 21), the liquid level in condensate tank 13 is higher than the position of condensate removal line 12 from concentrator 8 to condensate tank 13. Control. The condensate is sent from line 15 to preheater 5 where it exchanges heat with wastewater, passes through a liquid level control valve (not shown) on line 16 and is sent to condensate tank 17 for reuse. Or is released.

【0051】凝縮液槽13の気相部は、ライン14を経
て、伝熱管外側の蒸気ライン19と接続されている。
The vapor phase of the condensate tank 13 is connected via a line 14 to a steam line 19 outside the heat transfer tube.

【0052】圧縮機10の効率および消費電力などに影
響を与える濃縮器8内の空気などの非凝縮性ガスは、伝
熱管外側の蒸気ライン19に設けた電磁弁20の開閉に
より蒸発缶外へ排出される。この電磁弁20の開閉は、
濃縮器8内圧力と連動させることにより行ってもよく、
或いはタイマー設定により自動的に行ってもよい。必要
ならば、排出ガスを活性炭などによる吸着処理に供した
り、或いは濃縮液タンク17内の液中にバブリングさせ
る。
A non-condensable gas such as air in the concentrator 8 which affects the efficiency and power consumption of the compressor 10 is discharged to the outside of the evaporator by opening and closing a solenoid valve 20 provided in a steam line 19 outside the heat transfer tube. Is discharged. The opening and closing of this solenoid valve 20
It may be performed by interlocking with the pressure in the concentrator 8,
Alternatively, it may be performed automatically by setting a timer. If necessary, the exhaust gas is subjected to an adsorption treatment using activated carbon or the like, or is bubbled in the liquid in the concentrated liquid tank 17.

【0053】濃縮器8内の濃縮液は、濃縮器8内の液面
計(図示せず)からの信号により、濃縮器8の下部ライ
ン21および制御弁(図示せず)を通じて、濃縮液タン
ク22に排出される。
The concentrated liquid in the concentrator 8 is supplied to the concentrated liquid tank through a lower line 21 of the concentrator 8 and a control valve (not shown) in accordance with a signal from a liquid level gauge (not shown) in the concentrator 8. It is discharged to 22.

【0054】また、必要に応じて、濃縮器8内の液を液
抜き出しライン21から循環ポンプ(図示せず)により
抜き出し、原液ライン6へ循環することにより、伝熱管
内の液流速を増大させ、伝熱係数を上げることができる 濃縮器8内の運転圧力が減圧系である場合には、電磁弁
20の後流側に電磁弁20の開閉と連動する真空ポンプ
(図示せず)を設ける。減圧系で運転する場合には、ラ
イン16上に凝縮液ポンプ(図示せず)を設け、ライン
21上に濃縮液ポンプ(図示せず)を設ける必要があ
る。
If necessary, the liquid in the condenser 8 is drawn out from the liquid draw-out line 21 by a circulation pump (not shown) and circulated to the stock solution line 6 to increase the liquid flow rate in the heat transfer tube. When the operating pressure in the concentrator 8 is a pressure reducing system, a vacuum pump (not shown) is provided on the downstream side of the solenoid valve 20 in conjunction with opening and closing of the solenoid valve 20. . When operating in a reduced pressure system, it is necessary to provide a condensate pump (not shown) on line 16 and a concentrate pump (not shown) on line 21.

【0055】また、必要に応じ、スタートアップ時の加
熱・昇温のために、或いは長期運転後に予熱器5、濃縮
器8の伝熱管などの汚れによる蒸発量の低下に応じて、
補助熱源として、例えばガスだきボイラー23からの蒸
気をライン24を経て、ライン25から、またはライン
25を経てライン26から導入する。
In addition, if necessary, for the purpose of heating / heating at the time of start-up, or after the long-term operation, the evaporation amount due to contamination of the heat transfer tubes of the preheater 5 and the concentrator 8 is reduced.
As an auxiliary heat source, for example, steam from a gas-fired boiler 23 is introduced via line 24, from line 25, or from line 26 via line 25.

【0056】なお、予熱器5、濃縮器8の伝熱管などの
汚れとそれに伴う伝熱係数の低下を生じた場合には、運
転中に廃水の供給を一時的に中断し、工業用水を供給す
ることにより、汚れを洗浄・除去することができる。
If contamination of the heat transfer tubes of the preheater 5 and the concentrator 8 and a decrease in the heat transfer coefficient associated with the contamination occur, the supply of the waste water is temporarily interrupted during the operation, and the industrial water is supplied. By doing so, dirt can be washed and removed.

【0057】本発明は、たとえば、各種の産業廃水、洗
浄廃水、写真現像液、定着液および洗浄廃水などの濃縮
・減容化、原液中の有用成分或いは不純物の蒸留分離、
食品工業での溶液(だし汁、ジュース、ミルクなど)の
濃縮などの広い分野で利用できる。本発明は、その他の
分野でも利用可能であり、ここに例示した分野での利用
に限定されるものではない。
The present invention is directed to, for example, concentrating and reducing the volume of various industrial wastewaters, washing wastewaters, photographic developing solutions, fixing solutions, washing wastewaters, etc., separating and separating useful components or impurities in stock solutions,
It can be used in a wide range of fields, such as the concentration of solutions (dashi, juice, milk, etc.) in the food industry. The present invention can be used in other fields, and is not limited to use in the fields exemplified here.

【0058】[0058]

【発明の効果】本発明方法によれば、以下の様な顕著な
効果が達成される。
According to the method of the present invention, the following remarkable effects are achieved.

【0059】(1)従来技術に比して、原液の濃縮プロ
セスが簡単であり、設備が小型化されるので、設備費、
運転経費などが低減される。
(1) As compared with the prior art, the process of concentrating the undiluted solution is simpler and the equipment is downsized, so that the equipment cost and
Operating costs are reduced.

【0060】(2)連続的に安定した運転が可能であ
る。
(2) Continuous and stable operation is possible.

【0061】(3)濃縮処理における発泡を抑制するこ
とができる。
(3) Foaming in the concentration treatment can be suppressed.

【0062】[0062]

【実施例】以下に図面を参照しつつ実施例を示し、本発
明の特徴とするところをより一層明らかにする。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention;

【0063】実施例1 図1に示すフローに従って本発明方法を実施した。すな
わち、メッキ工場廃水(銅イオン濃度5100mg/l、比重1.
01)を原液として、常圧下に表1に示す条件によりその
濃縮処理を行った。
Example 1 The method of the present invention was carried out according to the flow shown in FIG. That is, plating plant wastewater (copper ion concentration 5100mg / l, specific gravity 1.
01) was used as a stock solution and concentrated under normal pressure under the conditions shown in Table 1.

【0064】[0064]

【表1】 [Table 1]

【0065】本実施例において使用した電力は、24.7kw
h/m3であり、ガスだきボイラーで補助熱源としての蒸気
を発生させるために使用した都市ガス量は、2.3Nm3/m3
であった。その結果、本発明方法における運転経費は、
特開昭59-26184号公報記載の従来技術での運転経費の約
1/4となり、大幅な経費削減が達成された。また、本発
明方法による濃縮処理は、安定して継続することが可能
であった。
The power used in this embodiment is 24.7 kw
h / m 3 and the amount of city gas used to generate steam as an auxiliary heat source in the gas-fired boiler is 2.3 Nm 3 / m 3
Met. As a result, operating costs in the method of the present invention are:
About the operating cost in the prior art described in JP-A-59-26184
The cost was reduced by a factor of four. Further, the concentration treatment according to the method of the present invention could be stably continued.

【0066】また、所定時間経過後に得られた濃縮液の
比重、銅イオン濃度などを表2に示す。
Table 2 shows the specific gravity, copper ion concentration and the like of the concentrated solution obtained after the lapse of a predetermined time.

【0067】[0067]

【表2】 [Table 2]

【0068】表2に示す結果から、濃縮液中の成分は、
運転後約20時間で約10倍に濃縮されており、銅イオンは
全量濃縮液に移行していることが明らかである。これら
の結果は、本発明によれば、測定容易な濃縮液の比重に
より、原液の濃縮工程を管理することができるので、煩
雑な操作を必要とする液中含有成分の濃度分析を行う必
要はないことを明らかにしている。その結果、廃水など
の原液の処理コストが大幅に低下する。
From the results shown in Table 2, the components in the concentrated solution were:
It is apparent that the copper ions have been transferred to the concentrated liquid in a total amount of about 10 times in about 20 hours after the operation. According to the present invention, these results can control the concentration step of the stock solution by the specific gravity of the concentrated solution that can be easily measured, so that it is not necessary to perform the concentration analysis of the components contained in the liquid, which requires complicated operations. Reveals no. As a result, the cost of treating undiluted liquid such as wastewater is greatly reduced.

【0069】実施例2 実施例1と同様の手法に準じて、減圧下にメッキ工場廃
水の濃縮処理を行った。その条件を表3に示す。
Example 2 In accordance with the same method as in Example 1, the plating plant wastewater was concentrated under reduced pressure. Table 3 shows the conditions.

【0070】[0070]

【表3】 [Table 3]

【0071】圧縮のための電力原単位は、実施例1に比
して約1.4倍に増大したが、より一層安定した濃縮処理
が可能であった。本実施例において、電力原単位が増加
した理由は、蒸気の比容積が、760mmHgにおいて1.673m3
/kgであるのに対し、200mmHgにおいては5.842m3/kgとな
るため、減圧下では圧縮のための蒸気流量が増加するこ
とによる。
The power consumption for compression was increased about 1.4 times as compared with Example 1, but a more stable concentration treatment was possible. In the present embodiment, the reason for the increase in power consumption is that the specific volume of steam is 1.673 m 3 at 760 mmHg.
Since it is 5.842 m 3 / kg at 200 mmHg, it is because the steam flow rate for compression increases under reduced pressure.

【0072】比較例1 実施例1と同様の銅メッキ工場廃水(但し、界面活性剤
を約3%含有する)を実施例1と同様にして濃縮処理に
供したところ、カランドリア型蒸発缶内の温度が約60℃
を超え始めた時点で異常発泡現象を生じた。その結果、
廃水がライン9、圧縮機10、ライン11、濃縮器伝熱
管外側、凝縮液槽13、予熱器5を経て凝縮器ラインか
ら排出され、運転が全く不可能となった。
Comparative Example 1 The same copper plating plant wastewater (containing about 3% of a surfactant) as in Example 1 was subjected to a concentration treatment in the same manner as in Example 1. Temperature is about 60 ° C
At the time when it began to exceed the limit. as a result,
The wastewater was discharged from the condenser line through the line 9, the compressor 10, the line 11, the outside of the condenser heat transfer tube, the condensate tank 13, and the preheater 5, and the operation became completely impossible.

【0073】実施例3 比較例1で処理した廃水にシリコーン系消泡剤をその濃
度が200ppmとなる割合で添加した後、実施例1と同様に
して処理を行ったところ、発泡現象を乗じることなく、
実施例1とほぼ同様の良好な処理結果が得られた。
Example 3 A silicone-based antifoaming agent was added to the wastewater treated in Comparative Example 1 at a concentration of 200 ppm, and the same treatment as in Example 1 was carried out. Not
Almost the same good processing results as in Example 1 were obtained.

【0074】実施例4 実施例2と同様にして減圧下に写真廃水(現像液と定着
液との混合廃液)の濃縮処理を行った。その条件を表4
に示す。
Example 4 In the same manner as in Example 2, photographic wastewater (a mixed waste solution of a developing solution and a fixing solution) was concentrated under reduced pressure. Table 4 shows the conditions.
Shown in

【0075】[0075]

【表4】 [Table 4]

【0076】また、下記表5に濃縮処理に使用した廃水
の性状と得られた凝縮液の性状とを併せて示す。なお、
廃水と凝縮液のCODは、マンガン法により測定した値で
ある。
Table 5 below also shows the properties of the wastewater used for the concentration treatment and the properties of the condensate obtained. In addition,
The COD of wastewater and condensate is a value measured by the manganese method.

【0077】[0077]

【表5】 [Table 5]

【0078】本実施例においては、凝縮液は、二次処理
を行うこなく放流可能な水質を有している。また、濃縮
処理は、安定して長時間継続することが可能であった。
In this embodiment, the condensate has a water quality that can be discharged without performing secondary treatment. Further, the concentration treatment could be stably continued for a long time.

【0079】実施例5 廃水として電気機器製造工場からの廃水を使用する以外
は実施例1と同様にして濃縮処理を行った。その条件を
表6に示し、廃水および得られた凝縮液の性状を表7に
示す。
Example 5 A concentration treatment was performed in the same manner as in Example 1 except that wastewater from an electric equipment manufacturing plant was used as wastewater. The conditions are shown in Table 6, and the properties of the wastewater and the obtained condensate are shown in Table 7.

【0080】[0080]

【表6】 [Table 6]

【0081】[0081]

【表7】 [Table 7]

【0082】表7に示す結果から明らかな様に、廃水の
約90%の割合で生成する凝縮水は、二次処理を行うこと
なく、そのまま放流し或いは再利用することが可能であ
る。
As is evident from the results shown in Table 7, the condensed water generated at a rate of about 90% of the wastewater can be discharged or reused without performing secondary treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による廃水の濃縮処理の一例を示すフロ
ーシートである。
FIG. 1 is a flow sheet showing an example of a wastewater concentration process according to the present invention.

【符号の説明】[Explanation of symbols]

1…廃水タンク 3…廃水ポンプ 5…予熱器 7…背圧弁 8…濃縮器 10…圧縮機 13…凝縮液槽 17…凝縮液タンク 20…電磁弁 22…濃縮液タンク 23…ボイラー 27…消泡液タンク DESCRIPTION OF SYMBOLS 1 ... Waste water tank 3 ... Waste water pump 5 ... Preheater 7 ... Back pressure valve 8 ... Concentrator 10 ... Compressor 13 ... Condensate tank 17 ... Condensate tank 20 ... Electromagnetic valve 22 ... Concentrate tank 23 ... Boiler 27 ... Defoaming Liquid tank

フロントページの続き (72)発明者 山崎 健一 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 久米 辰雄 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内Continued on the front page (72) Inventor Kenichi Yamazaki 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Inside Osaka Gas Co., Ltd. (72) Inventor Tatsuo Kume 4-1-2, Hirano-cho, Chuo-ku, Osaka-shi, Osaka No. Osaka Gas Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】カランドリア型の蒸発缶を使用する液体濃
縮方法において、(1)原液と蒸発缶内伝熱管外側から
の蒸気の凝縮液とを予熱器において熱交換させて、原液
を予熱する工程、(2)予熱された原液を蒸発缶内の液
面から伝熱管まで間の液中に導入する工程、(3)蒸発
缶内で発生した蒸気をスクリュー型圧縮機で圧縮・昇温
する工程、(4)得られた圧縮蒸気を伝熱管外側に供給
して、伝熱管内の液を加熱・蒸発させる工程、(5)伝
熱管外側における蒸気の凝縮液面高さを一定に制御する
ための凝縮液槽から凝縮液を予熱器に導入する工程、お
よび(6)蒸発缶内の液面高さを示す信号に対応して濃
縮液を蒸発缶塔底から抜き出し、濃縮液貯槽に送る工程
を備えたことを特徴とする液体濃縮方法。
1. A liquid condensing method using a calandria type evaporator, wherein (1) a step of preheating the undiluted solution by exchanging heat in a preheater between the undiluted solution and a condensate of vapor from outside the heat transfer tube in the evaporator. (2) a step of introducing the preheated stock solution into the liquid between the liquid level in the evaporator and the heat transfer tube; and (3) a step of compressing and raising the temperature of the vapor generated in the evaporator by the screw compressor. (4) supplying the obtained compressed steam to the outside of the heat transfer tube to heat and evaporate the liquid in the heat transfer tube; and (5) controlling the height of the condensed liquid surface of the steam outside the heat transfer tube to be constant. Introducing the condensed liquid from the condensate tank into the preheater, and (6) extracting the concentrated liquid from the bottom of the evaporator tower in response to the signal indicating the liquid level in the evaporator and sending it to the concentrated liquid storage tank A liquid concentrating method, comprising:
【請求項2】工程(1)の予熱器が、プレート型熱交換
器である請求項1に記載の液体濃縮方法。
2. The liquid concentrating method according to claim 1, wherein the preheater in the step (1) is a plate heat exchanger.
【請求項3】工程(2)の原液の導入ライン中に背圧弁
を設けた請求項1に記載の液体濃縮方法。
3. The liquid concentrating method according to claim 1, wherein a back pressure valve is provided in the stock solution introduction line in the step (2).
【請求項4】工程(2)において、蒸発缶内の液面の高
さを調整するために蒸発缶塔底液をポンプで抜き取り、
原液の導入ラインへ循環する請求項1に記載の液体濃縮
方法。
4. In step (2), the bottom liquid of the evaporator tower is withdrawn by a pump to adjust the level of the liquid in the evaporator.
2. The liquid concentrating method according to claim 1, wherein the liquid is circulated to an undiluted solution introduction line.
【請求項5】工程(3)のスクリュー型圧縮機のモータ
ー回転数をインバーター装置により制御する請求項1に
記載の液体濃縮方法。
5. The liquid concentrating method according to claim 1, wherein the number of revolutions of the motor of the screw compressor in the step (3) is controlled by an inverter device.
【請求項6】工程(3)において、蒸発缶内発生蒸気量
に対応してスクリュー型圧縮機のモーター回転数を制御
する請求項5に記載の液体濃縮方法。
6. The liquid concentrating method according to claim 5, wherein, in step (3), the number of revolutions of the motor of the screw compressor is controlled in accordance with the amount of steam generated in the evaporator.
【請求項7】工程(3)において、蒸気量に応じて複数
のスクリュー型圧縮機が設けられている請求項1に記載
の液体濃縮方法。
7. The liquid concentrating method according to claim 1, wherein in the step (3), a plurality of screw compressors are provided according to the amount of vapor.
【請求項8】工程(5)の凝縮液槽の上部気相部と伝熱
管外側の蒸気ラインとが接続されている請求項1に記載
の液体濃縮方法。
8. The liquid concentrating method according to claim 1, wherein the upper gas phase portion of the condensate tank in the step (5) is connected to a vapor line outside the heat transfer tube.
【請求項9】伝熱管外側の蒸気ラインに、蒸発缶内の非
凝縮性気体の自動的排出を定期的に行うための電磁弁を
設けた請求項1に記載の液体濃縮方法。
9. The liquid concentrating method according to claim 1, wherein an electromagnetic valve for periodically discharging the non-condensable gas in the evaporator is provided in the vapor line outside the heat transfer tube.
【請求項10】蒸発缶内の運転圧力が常圧又は減圧であ
る請求項1に記載の液体濃縮方法。
10. The liquid concentrating method according to claim 1, wherein the operating pressure in the evaporator is normal pressure or reduced pressure.
【請求項11】伝熱管外側の蒸気ラインの電磁弁の後流
側に減圧運転時に電磁弁の開閉と連動する真空ポンプを
設けた請求項10に記載の液体濃縮方法。
11. The liquid concentrating method according to claim 10, wherein a vacuum pump is provided on the downstream side of the solenoid valve of the steam line outside the heat transfer tube, the vacuum pump interlocking with the opening and closing of the solenoid valve during the decompression operation.
【請求項12】スタートアップ時または長期運転時に予
熱器および/または蒸発缶内伝熱管の汚れによる蒸発量
の低下に対応するために、補助熱源を蒸発缶内底部また
は圧縮機出口ラインへ導入する請求項1に記載の液体濃
縮方法。
12. An auxiliary heat source is introduced into the bottom of the evaporator or the outlet line of the compressor in order to cope with a decrease in the amount of evaporation due to fouling of the preheater and / or the heat transfer tube in the evaporator during startup or long-term operation. Item 6. The liquid concentrating method according to Item 1.
【請求項13】補助熱源が蒸気である請求項12に記載
の液体濃縮方法。
13. The method according to claim 12, wherein the auxiliary heat source is steam.
JP27911596A 1996-10-22 1996-10-22 Liquid concentration method Expired - Fee Related JP3941017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27911596A JP3941017B2 (en) 1996-10-22 1996-10-22 Liquid concentration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27911596A JP3941017B2 (en) 1996-10-22 1996-10-22 Liquid concentration method

Publications (2)

Publication Number Publication Date
JPH10118402A true JPH10118402A (en) 1998-05-12
JP3941017B2 JP3941017B2 (en) 2007-07-04

Family

ID=17606638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27911596A Expired - Fee Related JP3941017B2 (en) 1996-10-22 1996-10-22 Liquid concentration method

Country Status (1)

Country Link
JP (1) JP3941017B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324510A (en) * 2014-11-28 2015-02-04 安徽中烟再造烟叶科技有限责任公司 Condensate water discharge device of tobacco extract evaporation concentrator
JP2016209779A (en) * 2015-04-28 2016-12-15 関西化学機械製作株式会社 Evaporation system
CN108217794A (en) * 2018-03-22 2018-06-29 兰州节能环保工程有限责任公司 It is a kind of can simultaneously a variety of waste liquids of crystallization treatment method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104324510A (en) * 2014-11-28 2015-02-04 安徽中烟再造烟叶科技有限责任公司 Condensate water discharge device of tobacco extract evaporation concentrator
JP2016209779A (en) * 2015-04-28 2016-12-15 関西化学機械製作株式会社 Evaporation system
CN108217794A (en) * 2018-03-22 2018-06-29 兰州节能环保工程有限责任公司 It is a kind of can simultaneously a variety of waste liquids of crystallization treatment method and device

Also Published As

Publication number Publication date
JP3941017B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US6365005B1 (en) Apparatus and method for vapor compression distillation
AU660842B2 (en) A water distillation system
JP3328779B2 (en) Apparatus and method for treating an emulsion
WO2008104900A2 (en) Injectable water distillation system
JP3975312B2 (en) Waste hydrochloric acid treatment method
US3300392A (en) Vacuum distillation including predegasification of distilland
US4719016A (en) Pervaporization method and apparatus
JPH10263301A (en) Liquid thickening
JPH10118404A (en) Method for concentrating liquid
JPH10118402A (en) Method for concentrating liquid
JP4096130B2 (en) Waste hydrochloric acid treatment method
JP3975311B2 (en) Waste hydrochloric acid treatment method
JP2000000557A (en) Wastewater evaporative concentrator
JPH11199204A (en) Treatment of waste hydrochloric acid
JPH10118405A (en) Method for concentrating liquid
CN115947397A (en) Desulfurization wastewater multi-effect evaporation automatic control system and method
JPH10118403A (en) Method for concentrating liquid
JP2000279945A (en) Treatment of spent hydrochloric acid
CN111960488B (en) Sewage treatment device and method
CN214936167U (en) Low-temperature negative-pressure evaporation concentration system applied to wastewater zero discharge device
JPH05293493A (en) Evaporation-concentration apparatus for aqueous solution and method for treating photoprocess waste water using the same
CN112441640A (en) Low-temperature negative-pressure evaporation concentration system applied to wastewater zero discharge device
JPH11244843A (en) Vapor compression pure water production equipment
RU2115737C1 (en) Multiple-effect evaporator
CN222348722U (en) Waste water evaporation crystallization equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Written amendment

Effective date: 20060818

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060913

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061107

A131 Notification of reasons for refusal

Effective date: 20061220

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070119

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees