[go: up one dir, main page]

JPH10111414A - Multistep index type plastic optical fiber and its production - Google Patents

Multistep index type plastic optical fiber and its production

Info

Publication number
JPH10111414A
JPH10111414A JP8263902A JP26390296A JPH10111414A JP H10111414 A JPH10111414 A JP H10111414A JP 8263902 A JP8263902 A JP 8263902A JP 26390296 A JP26390296 A JP 26390296A JP H10111414 A JPH10111414 A JP H10111414A
Authority
JP
Japan
Prior art keywords
resin
refractive index
plastic optical
optical fiber
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8263902A
Other languages
Japanese (ja)
Other versions
JP3762489B2 (en
Inventor
Shinichi Toyoshima
真一 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP26390296A priority Critical patent/JP3762489B2/en
Publication of JPH10111414A publication Critical patent/JPH10111414A/en
Application granted granted Critical
Publication of JP3762489B2 publication Critical patent/JP3762489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a multistep index type plastic optical fiber which enables a cost effective mass production with stable quality. SOLUTION: A PMMA-based resin is used as a first component resin and an AS resin having refractive index nd 20 deg.C different by >=0.01 at the absolute value from the value of this PMMA resin is used as a second component resin. These independent component resins or the resin mixtures are arranged concentrically in >=5 layers in such a manner that the refractive index is highest at the central and decreases like a quadratic distribution toward its outer circumferential side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はグレーデッドインデ
ックス型プラスチック光ファイバに準ずる、高帯域を有
する多段階段状屈折率分布を有するマルチステップイン
デックス型プラスチック光ファイバとその連続的製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-step index plastic optical fiber having a multi-stage stepped refractive index distribution having a high bandwidth and a method for continuously producing the same according to a graded index plastic optical fiber.

【0002】[0002]

【従来の技術】グレーデッドインデックス(GI)型光
ファイバはファイバの中心の屈折率が高く、外側に行く
に従って屈折率が2次分布的に低くなる光ファイバのこ
とであり伝送帯域の広いのが特長である。
2. Description of the Related Art A graded index (GI) type optical fiber is an optical fiber in which the refractive index at the center of the fiber is high and the refractive index decreases in a quadratic distribution toward the outside, and the transmission band is wide. It is a feature.

【0003】プラスチック製のGIファイバには昭和4
0年代から多数の提案があるが、なかでも優れたものと
して、慶応大学の大塚,小池らの開発によるものが知ら
れている。
[0003] Showa 4
Although many proposals have been made since the 0s, the most outstanding ones are those developed by Otsuka and Koike of Keio University.

【0004】これらのGI型POFは、予め屈折率分布
を有するPMMA系のプリフォームと呼ばれる棒を重合
によってつくり、それを熱で伸ばしてファイバにするも
のである。これらのプリフォームはPMMAのパイプの
中でうまく屈折率勾配がつくように重合するのがポイン
トであり、主としてMMAモノマーと高屈折率の重合性
モノマーあるいは非重合性化合物を静置、あるいは回転
などの細心の注意を払いながら長時間で重合固化させて
製造するものである。このプリフォームの出来具合が、
GIファイバの伝送損失や伝送帯域などの重要な性能を
決める。
[0004] In these GI POFs, a rod called a PMMA-based preform having a refractive index distribution is formed in advance by polymerization, and is stretched by heat to form a fiber. The point is that these preforms are polymerized in a PMMA pipe so that a refractive index gradient is formed well. Mainly, the MMA monomer and the high refractive index polymerizable monomer or non-polymerizable compound are allowed to stand or rotate. It is manufactured by polymerizing and solidifying in a long time while paying close attention to the above. The condition of this preform is
It determines important performance such as transmission loss and transmission band of the GI fiber.

【0005】[0005]

【発明が解決しようとする課題】POFのメリットは大
口径で扱い易いことであるが、従来のプリフォーム方式
によるGI型POFは重合過程の分子の拡散状態を利用
した屈折率分布形成を行ったものであるため、プリフォ
ームロッドはあまり大きなものは製造困難であり、PO
Fのメリットを維持するために直径が0.5mm〜1.
0mm程度の比較的大口径のファイバに線引きするとす
れば、プリフォームから得られるファイバ長は短いもの
に終わり、生産性に劣る。そして、かかるプリフォーム
ロッドを工業的に安定した品質で量産し、しかも経済的
に生産するのはまだ見通しが立っていないのが実状であ
る。
The advantage of the POF is that it has a large diameter and is easy to handle. However, the GI type POF by the conventional preform method has formed a refractive index distribution utilizing the diffusion state of molecules in the polymerization process. Therefore, it is difficult to manufacture a preform rod that is too large,
In order to maintain the advantages of F, the diameter is 0.5 mm to 1.
If a relatively large-diameter fiber of about 0 mm is drawn, the fiber length obtained from the preform is short, resulting in poor productivity. In fact, there is no prospect of mass-producing such preform rods with industrially stable quality and producing them economically.

【0006】本発明は、従来のプリフォーム方式の欠点
を解消し、安定した品質で経済的に大量生産を可能とす
る新規なGI型POF及びその製造方法を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a novel GI-type POF which solves the drawbacks of the conventional preform method and enables economical mass production with stable quality and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すべく成
された本発明の構成は、以下の通りである。
The structure of the present invention to achieve the above object is as follows.

【0008】すなわち、本発明の第一は、メチルメタク
リレートを主体としたPMMA系樹脂を第1成分樹脂と
し、該樹脂とミッシブルに混合して透明な樹脂を形成す
ることが出来、屈折率nd20℃がPMMA系樹脂の値
より絶対値において0.01以上異なる樹脂を第2成分
樹脂とし、これらの単独成分樹脂または混合樹脂を、中
心が最も屈折率が高く、その円周外側に向かって屈折率
がほぼ2次分布状に低下するように、少なくとも5層以
上に同心円状に配置したことを特徴とするマルチステッ
プインデックス型プラスチック光ファイバにある。
That is, a first aspect of the present invention is that a transparent resin can be formed by mixing a PMMA-based resin mainly composed of methyl methacrylate as a first component resin and miscible with the resin, and has a refractive index nd of 20 ° C. Is a second component resin whose absolute value differs from the value of the PMMA-based resin by at least 0.01 in terms of the second component resin. The single component resin or the mixed resin has the highest refractive index at the center and the refractive index toward the outer circumference. Is multi-step index type plastic optical fiber characterized by being arranged concentrically in at least five or more layers so that is substantially reduced in a secondary distribution.

【0009】さらに、本発明の第二は、上記本発明第一
のマルチステップインデックス型プラスチック光ファイ
バの製造方法であって、溶融状態の第1成分樹脂と第2
成分樹脂を、計量性と、混合性と移送性能を有するギヤ
ポンプを用いて両成分樹脂の混合割合を調節し、屈折率
を調整し、少なくとも5層以上の「超多層複合紡糸ダ
イ」に供給し、中心に最も屈折率が高い混合樹脂を配置
し、その円周外側に向かって、屈折率がほぼ2次分布状
に低下するように多段階、同心円状に配置したマルチス
テップインデックス型プラスチック光ファイバの連続的
製造方法にある。
Further, a second aspect of the present invention is the method for producing a multi-step index type plastic optical fiber according to the first aspect of the present invention, wherein the first component resin in a molten state and the second
Using a gear pump with metering, mixing and transfer properties, adjust the mixing ratio of both component resins, adjust the refractive index, and supply them to at least five or more "super-multi-layer composite spinning dies". A multi-step index type plastic optical fiber in which a mixed resin having the highest refractive index is arranged at the center and concentrically arranged in multiple stages so that the refractive index decreases substantially in a secondary distribution toward the outer circumference. In a continuous production method.

【0010】従来のグレーデッドインデックス型のプラ
スチック光ファイバの確立された製造方法はプリフォー
ムと呼ばれるロッドの重合時にモノマーの拡散により屈
折率勾配を付けたものであるが、本発明のマルチステッ
プインデックス型のプラスチック光ファイバは、屈折率
の異なる樹脂を多層に成形したものであり量産性のある
ものである。しかし、ファイバの屈折率の勾配は階段状
になる。これは必ずしも好ましいことではないが、コス
トパフォーマンス的に見て妥協を許すものである。階段
の数が無限になれば、屈折率勾配は滑らかになるが、5
層段以上とすることにより、プラスチック光ファイバと
しての伝送帯域に向上が現れる。
The conventional method of manufacturing a graded-index type plastic optical fiber is one in which a refractive index gradient is provided by diffusion of a monomer during polymerization of a rod called a preform. The plastic optical fiber described above is formed by molding resins having different refractive indices into multiple layers and has mass productivity. However, the gradient of the refractive index of the fiber is stepped. Although this is not always desirable, it allows for a compromise in terms of cost performance. When the number of steps becomes infinite, the refractive index gradient becomes smooth, but 5
When the number of layers is equal to or more than the number of layers, the transmission band as a plastic optical fiber is improved.

【0011】[0011]

【発明の実施の形態】本発明に係る第1成分樹脂として
はメチルメタクリレートのホモポリマー或はメチルメタ
クリレートが50重量%以上のアクリル酸エステル、メ
タクリル酸エステル、あるいはその他共重合可能な成分
との共重合体などであり、これらのPMMA系樹脂の好
ましいメルトフローインデックスは、オリフィスの直径
2mm、長さ8mmで、230℃、3.8Kg荷重にて
0.2〜60g/10分の範囲のものが使用でき、特に
好ましくは1.0〜40g/10分のものが好ましい。
その他、これらのPMMA系樹脂の中に含まれる異物を
極力排除し、かつ、熱による着色を抑えるための配慮と
して、連続溶液重合法または連続塊状重合法により樹脂
の製造を行い、後述の樹脂混合から紡糸工程を一貫した
連続工程に組み込んで行うのが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION As the first component resin according to the present invention, a homopolymer of methyl methacrylate or an acrylate, methacrylate or other copolymerizable component containing 50% by weight or more of methyl methacrylate is used. The preferred melt flow index of these PMMA-based resins is 2 mm in diameter and 8 mm in length at 230 ° C. under a load of 3.8 kg at 0.2 to 60 g / 10 minutes. It can be used, particularly preferably 1.0 to 40 g / 10 min.
In addition, as a measure to eliminate foreign substances contained in these PMMA-based resins as much as possible and to suppress coloring due to heat, the resin is manufactured by a continuous solution polymerization method or a continuous bulk polymerization method, and the resin mixing described below is performed. It is preferred that the spinning process is carried out by incorporating the process into a continuous process.

【0012】一方、第2成分樹脂としては、前記PMM
A系樹脂とはよく相溶し、分子状に混合し得るミッシブ
ルな樹脂を選ぶ必要がある。この理由は、後述する、樹
脂を混合して、屈折率を変えた層樹脂を次々に製造して
いくことの他に、各層の樹脂が接する面での樹脂の相溶
性がよく滑らかな屈折率分布が付与できる点で重要であ
る。しかも、溶融状態で混合したり、複合紡糸成形した
りすることから、精々250℃以下でミッシブルとなる
樹脂を選ばなければならない。しかも、これらの樹脂の
もう一つの重要な性質として、PMMA系樹脂に比べて
屈折率が異なっている必要がある。その屈折率の差の絶
対値の程度は、目安としてナトリウムD線に対する屈折
率nd20℃において、0.01以上ある必要がある。
On the other hand, as the second component resin, the PMM
It is necessary to select a miscible resin that is well compatible with the A-based resin and can be mixed molecularly. The reason for this is that, besides the fact that the resin is mixed to produce layer resins with different refractive indices one after another, the compatibility of the resin on the surface where the resin of each layer comes into contact is good and the refractive index is smooth. This is important in that the distribution can be given. In addition, a resin that is miscible at 250 ° C. or less must be selected because it is mixed in a molten state or formed into a composite spin. Moreover, as another important property of these resins, it is necessary that the refractive index is different from that of the PMMA resin. The absolute value of the difference between the refractive indices needs to be 0.01 or more at a refractive index nd of 20 ° C. with respect to the sodium D line as a guide.

【0013】上記の第2成分樹脂としては、例えばアク
リロニトリルとスチレンの共重合体であるAS樹脂があ
る。中でもスチレン構造単位が78〜85重量%、アク
リルニトリル構造単位が22〜15重量%の共重合体で
あるものは、AS樹脂をPMMA系樹脂と250℃以下
で混合するなどの処理を行っても、完全にミッシブルに
混合できるので好ましい。その他、有効な樹脂としては
メチルメタクリレートとメタクリル酸又はアクリル酸の
ような不飽和カルボン酸とスチレン又はαメチルスチレ
ンのような芳香族ビニル化合物を共重合し、加熱脱水反
応により六員環環化物を含んだ共重合体も相溶性に優れ
る樹脂であり好ましい。さらにその他、メチルメタクリ
レートとスチレンと無水マレイン酸の共重合体も、PM
MA系樹脂とよく相溶して透明となる樹脂であり好まし
い。
As the second component resin, for example, there is an AS resin which is a copolymer of acrylonitrile and styrene. Among them, copolymers having a styrene structural unit of 78 to 85% by weight and an acrylonitrile structural unit of 22 to 15% by weight can be treated by mixing an AS resin with a PMMA resin at 250 ° C. or lower. It is preferable because it can be completely miscible mixed. In addition, as an effective resin, an unsaturated vinylic acid such as methyl methacrylate and methacrylic acid or acrylic acid and an aromatic vinyl compound such as styrene or α-methylstyrene are copolymerized, and a 6-membered cyclic product is obtained by a thermal dehydration reaction. The contained copolymer is also a resin having excellent compatibility and is preferable. In addition, copolymers of methyl methacrylate, styrene and maleic anhydride are also available as PM
A transparent resin which is well compatible with the MA resin and is preferable.

【0014】以上に述べた第2成分樹脂はいずれも、連
続溶液重合または連続塊状重合法により製造することの
できる樹脂であり、第1成分樹脂と第2成分樹脂を連続
重合法により製造し、樹脂の重合段階から脱揮を一貫し
て行い、かつ樹脂を溶融状態のまま引き続き、混合や紡
糸までの工程を一貫した連続工程で行うことができ、汚
染と熱履歴の少ない光学的に優れた樹脂組成物が処理さ
れる点で好ましい。
The above-mentioned second component resin is a resin which can be produced by a continuous solution polymerization or a continuous bulk polymerization method. The first component resin and the second component resin are produced by a continuous polymerization method. Consistently performs devolatilization from the polymerization stage of the resin, and continues the mixing and spinning process in a continuous continuous process while keeping the resin in a molten state, optically excellent with little contamination and heat history This is preferred in that the resin composition is treated.

【0015】その他の第2成分樹脂としては、ビニリデ
ンフロライド系の樹脂、例えばビニリデンフロライドと
ヘキサフロロアセトンの共重合体あるいは、これらの2
元成分にさらに、トリフロロエチレンやテトラフロロエ
チレンを加えた3元以上の共重合体は非常に好ましい。
さらに、ビニリデンフロライドとヘキサフロロプペンの
共重合体、あるいはこれらの2元成分にさらに、トリフ
ロロエチレンやテトラフロロエチレンを加えた3元以上
の共重合体、さらにビニリデンフロライドとテトラフロ
ロエチレンの2元共重合体、ビニリデンフロライドとト
リフロロエチレンの2元共重合体などは、連続重合によ
る一貫工程で紡糸をすることは出来ない樹脂ではある
が、第2成分樹脂として用いることができる。
As the other second component resin, a vinylidene fluoride resin, for example, a copolymer of vinylidene fluoride and hexafluoroacetone or a copolymer of vinylidene fluoride and hexafluoroacetone is used.
Tertiary or higher copolymers obtained by further adding trifluoroethylene or tetrafluoroethylene to the base component are very preferable.
Further, a copolymer of vinylidene fluoride and hexafluoropropene, or a ternary or higher copolymer obtained by adding trifluoroethylene or tetrafluoroethylene to these binary components, and further, a copolymer of vinylidene fluoride and tetrafluoroethylene Is a resin that cannot be spun in an integrated process by continuous polymerization, but can be used as a second component resin. .

【0016】以下、特に第2成分樹脂をAS樹脂とし
て、詳細に説明する。
Hereinafter, the second component resin will be described in detail as an AS resin.

【0017】AS樹脂はアクリロニトリル成分の量によ
り、屈折率が異なり、アクリロニトリル成分が20重量
%のAS樹脂では屈折率nd20℃が1.5747、ア
クリロニトリル成分が25重量%だと屈折率nd20℃
が1.5695である。
The AS resin has a different refractive index depending on the amount of the acrylonitrile component. The AS resin having an acrylonitrile component of 20% by weight has a refractive index nd20 ° C. of 1.5747, and the acrylonitrile component of 25% by weight has a refractive index nd20 ° C.
Is 1.5695.

【0018】一方、PMMA系樹脂の屈折率nd20℃
は1.492程度であり、両者の樹脂を混合すると透明
な樹脂組成物となり、屈折率は配合に比例して調節がで
きる。
On the other hand, the refractive index of the PMMA resin is nd 20 ° C.
Is about 1.492. When both resins are mixed, a transparent resin composition is obtained, and the refractive index can be adjusted in proportion to the blending.

【0019】これらの樹脂の混合と、複合紡糸ダイへの
混合樹脂の供給はギヤポンプのような混合機能があり定
量性のある供給装置が好都合である。より好ましい方法
としては、PMMA系樹脂及びAS系樹脂は夫々連続重
合法により製造し、連続した工程の中で未反応モノマー
や溶剤等の揮発成分を脱揮し、溶融状態のまま計量装置
を用いてPMMA系樹脂とAS系樹脂の混合割合を多段
階に調節して屈折率の勾配が多段階になるように混合
し、ギヤポンプなどの混合供給装置を介して複合紡糸ダ
イに供給し、中心に最もAS濃度が高く屈折率が高い混
合樹脂を配置し、その周りを段階的に屈折率がほぼ2次
分布状に低下するように多段階・同心円状に配置したプ
ラスチック光ファイバを連続的に製造する。この時、フ
ァイバ軸径方向の層幅は均等に取ってもよいし、均等で
なくてもよいが、必要なことは、軸径方向の屈折率の分
布が、中心が最も高く、外側に行くにつれて位置とその
場所の屈折率の関係が2次分布状に減少する構造となれ
ばよい。
For the mixing of these resins and the supply of the mixed resin to the composite spinning die, a feeding device having a mixing function such as a gear pump and having a quantitative property is convenient. As a more preferred method, the PMMA-based resin and the AS-based resin are each produced by a continuous polymerization method, devolatilize volatile components such as unreacted monomers and solvents in a continuous process, and use a measuring device in a molten state. The mixing ratio of the PMMA-based resin and the AS-based resin is adjusted in multiple stages to mix them in such a manner that the gradient of the refractive index becomes multiple stages, and the mixture is supplied to a composite spinning die via a mixing supply device such as a gear pump. Continuously manufacture plastic optical fiber in which a mixed resin with the highest AS concentration and the highest refractive index is arranged, and multi-stage concentrically arranged so that the refractive index decreases stepwise substantially in a secondary distribution around the resin. I do. At this time, the layer width in the fiber axial direction may or may not be uniform, but what is necessary is that the distribution of the refractive index in the axial direction is highest at the center and goes outward. Accordingly, the structure may be such that the relationship between the position and the refractive index at that location decreases in a secondary distribution.

【0020】AS樹脂の好ましいメルトフローインデッ
クスは、オリフィスの直径2mm、長さ8mmで、23
0℃、3.8Kg荷重にて0.2〜60g/10分の範
囲のものが使用でき、特に好ましくは1.0〜40g/
10分のものが好ましい。
The preferred melt flow index of the AS resin is 2 mm in diameter of the orifice, 8 mm in length, and 23
At a temperature of 0 ° C. and a load of 3.8 kg, those having a range of 0.2 to 60 g / 10 minutes can be used, and particularly preferably 1.0 to 40 g /
10 minutes is preferred.

【0021】次に、PMMA系樹脂とAS系樹脂の混合
から紡糸に至る工程の一具体例を説明する。先ず、樹脂
層の層数に応じた数のギヤポンプを準備し、夫々のギヤ
ポンプの回転数を予め計算された値に設定して、溶融さ
れたPMMA樹脂を計量する。一方、溶融されたAS樹
脂は、前述のPMMA系樹脂の各ギヤポンプの吐出ライ
ンと接続する各混合ギヤポンプにより、予め計量された
PMMA樹脂と混合する。この混合ギヤポンプの回転数
は、各層の断面積に比例して制御するようにする。
Next, a specific example of a process from mixing of a PMMA resin and an AS resin to spinning will be described. First, a number of gear pumps corresponding to the number of resin layers are prepared, and the rotational speed of each gear pump is set to a value calculated in advance, and the melted PMMA resin is measured. On the other hand, the molten AS resin is mixed with the previously measured PMMA resin by each mixing gear pump connected to the discharge line of each PMMA-based gear pump. The number of revolutions of the mixing gear pump is controlled in proportion to the sectional area of each layer.

【0022】ところで、PMMA樹脂のギヤポンプの回
転数の設定方法は、混合ギヤポンプで供給される混合樹
脂の屈折率と量から算出される。即ち、ファイバの中心
が最もAS濃度が高く、屈折率が高い混合樹脂を配置
し、その円周外側に向かって、屈折率がほぼ2次分布状
に低下するように屈折率分布をつけるべく、AS樹脂と
PMMA樹脂の割合を求め、それらの混合樹脂の全量か
らPMMA樹脂の数量が求められる。もちろん、実際の
操作に於いては微調整が伴うことはある。ここでAS樹
脂の数量もギヤポンプを用いて計量することは可能であ
るが、どちらかと言えば、AS樹脂はゲル化や着色し易
いため、それを避けた方が好ましい。
By the way, the method of setting the rotation speed of the PMMA resin gear pump is calculated from the refractive index and the amount of the mixed resin supplied by the mixed gear pump. That is, a mixed resin having the highest AS concentration at the center of the fiber and the highest refractive index is arranged, and a refractive index distribution is provided so that the refractive index decreases substantially in a quadratic distribution toward the outer circumference. The ratio of the AS resin and the PMMA resin is determined, and the quantity of the PMMA resin is determined from the total amount of the mixed resin. Of course, fine adjustments may be involved in the actual operation. Here, the quantity of the AS resin can be measured using a gear pump, but if anything, the AS resin is easily gelled or colored, so that it is preferable to avoid it.

【0023】このようにして各層に応じて設計された屈
折率勾配のついた樹脂が、設計された断面積分だけ「超
多層複合紡糸ダイ」に供給される。ここで「超多層複合
紡糸ダイ」とは少なくとも中心層を含め5層以上あるダ
イのことである。超多層複合紡糸ダイの構造は、図2の
ように層の数に応じたダイプレートがあり、そのダイプ
レートには、対応する層の樹脂をガイドするパイプが取
り付けてあるのが好ましい。ダイの層の数は多ければ多
いほど、屈折率勾配がなめらかになるので好ましいが、
設備費がかさむのと、1層あたりの樹脂の量が少なくな
るため、樹脂の劣化が起こり易くなるという欠点も出て
くるので、層の数としては5層から20層程度が好まし
い。このようにして、「超多層複合紡糸ダイ」に供給さ
れ、多層構造化された樹脂は、引落しを行い延伸して、
直径0.25〜2.0mm程度のファイバにする。
The resin having the refractive index gradient designed in accordance with each layer in this manner is supplied to the “ultra-multilayer composite spinning die” by the designed sectional integral. Here, the “ultra-multi-layer composite spinning die” refers to a die having at least five layers including a central layer. The structure of the super-multi-layer composite spinning die has a die plate corresponding to the number of layers as shown in FIG. 2, and it is preferable that a pipe for guiding the resin of the corresponding layer is attached to the die plate. It is preferable that the number of layers of the die is larger, since the refractive index gradient becomes smoother.
Since the equipment cost increases and the amount of resin per layer is reduced, there is a disadvantage that the resin is easily deteriorated. Therefore, the number of layers is preferably about 5 to 20 layers. In this way, the resin supplied to the “ultra-multilayer composite spinning die” and having a multilayer structure is drawn down and stretched,
The fiber has a diameter of about 0.25 to 2.0 mm.

【0024】[0024]

【実施例】以下、本発明の一実施例を説明する。An embodiment of the present invention will be described below.

【0025】図1にPMMA樹脂とAS樹脂の混合供給
工程図を示し、図2に複合紡糸ダイの図を示す。
FIG. 1 is a diagram showing a process of mixing and supplying PMMA resin and AS resin, and FIG. 2 is a diagram of a composite spinning die.

【0026】酸素不在下に連続溶液重合したメチルメタ
クリレート98重量%とアクリル酸メチル2重量%の共
重合体で、nd20℃が1.492、メルトフローイン
デックスが9g/10分のPMMA樹脂を、210℃で
脱揮押出機からギヤポンプP1〜P9に供給した。ギヤ
ポンプP1〜P9の吐出配管は、それぞれ混合ギヤポン
プP11〜P19の供給側に接続されており、ギヤポン
プP1〜P9で計量されたPMMA樹脂は混合ギヤポン
プP11〜P19に供給される。このギヤポンプP1〜
P9の吐出量はそれぞれ表1の通りとした。
A copolymer of 98% by weight of methyl methacrylate and 2% by weight of methyl acrylate continuously polymerized in the absence of oxygen and having a ND of 20.degree. C. of 1.492 and a melt flow index of 9 g / 10 min. At ℃, it was supplied from a devolatilizing extruder to gear pumps P1 to P9. The discharge pipes of the gear pumps P1 to P9 are connected to the supply sides of the mixing gear pumps P11 to P19, respectively, and the PMMA resin measured by the gear pumps P1 to P9 is supplied to the mixing gear pumps P11 to P19. This gear pump P1
The discharge amount of P9 was as shown in Table 1.

【0027】一方、酸素不在下に連続溶液重合したスチ
レン80重量%とアクリロニトリル20重量%の共重合
体で、nd20℃が1.575、メルトフローインデッ
クスが10g/10分の樹脂を、210℃で脱揮押出機
から直接混合ギヤポンプP11〜P19に供給した。そ
して、P11〜P19の吐出量、すなわち混合樹脂量は
表1の通り設定した。
On the other hand, a copolymer of 80% by weight of styrene and 20% by weight of acrylonitrile continuously polymerized in the absence of oxygen and having a nd of 20 ° C. of 1.575 and a melt flow index of 10 g / 10 min. The mixture was directly supplied from the devolatilizing extruder to the mixing gear pumps P11 to P19. The discharge amounts of P11 to P19, that is, the amount of mixed resin, were set as shown in Table 1.

【0028】混合ギアポンプP11〜P19の吐出配管
は、夫々図2に示される「超多層複合紡糸ダイ」の受入
口H1〜H9に接続した。これらの工程中、樹脂温度は
210℃に保った。「超多層複合紡糸ダイ」の出口から
排出されたストランドを引き伸ばし、延伸処理を行い、
9層構造を有する直径1.0mmのプラスチック光ファ
イバを得た。そして、本プラスチック光ファイバに黒色
ポリエチレンで被覆を行い、ケーブルを得た。
The discharge pipes of the mixing gear pumps P11 to P19 were respectively connected to receiving ports H1 to H9 of the “super multi-layer composite spinning die” shown in FIG. During these steps, the resin temperature was kept at 210 ° C. Stretching the strand discharged from the outlet of the "super multi-layer composite spinning die", performing a stretching process,
A 1.0 mm diameter plastic optical fiber having a nine-layer structure was obtained. Then, the present plastic optical fiber was coated with black polyethylene to obtain a cable.

【0029】本プラスチック光ファイバを構成する各層
の屈折率ndは表1に示す通りであり、これを図示する
と図3のようになる。すなわち、本プラスチック光ファ
イバは、中心が最も屈折率が高く、その円周外側に向か
って屈折率がほぼ2次分布状に低下しているものであ
る。
The refractive index nd of each layer constituting the plastic optical fiber is as shown in Table 1, which is shown in FIG. That is, in the present plastic optical fiber, the refractive index is highest at the center, and the refractive index decreases almost in a secondary distribution toward the outer circumference.

【0030】本プラスチック光ファイバの伝送損失は6
50nmにて300dB/kmであった。また、本プラ
スチック光ファイバの伝送帯域は1GHz/50m以上
が認められた。
The transmission loss of the plastic optical fiber is 6
It was 300 dB / km at 50 nm. The transmission band of the present plastic optical fiber was 1 GHz / 50 m or more.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
グレーデッドインデックス型プラスチック光ファイバに
準ずるマルチステップインデックス型プラスチック光フ
ァイバを、安定した品質で経済的に大量生産することが
できる。
As described above, according to the present invention,
A multi-step index type plastic optical fiber similar to a graded index type plastic optical fiber can be mass-produced economically with stable quality.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に係るPMMA樹脂とAS樹脂
の混合供給工程を説明するための図である。
FIG. 1 is a view for explaining a mixed supply process of a PMMA resin and an AS resin according to an embodiment of the present invention.

【図2】本発明の実施例に係る「超多層複合紡糸ダイ」
を概略的に示した断面図である。
FIG. 2 shows a “super multi-layer composite spinning die” according to an embodiment of the present invention.
It is sectional drawing which showed roughly.

【図3】本発明の実施例に係るプラスチック光ファイバ
を構成する各層の屈折率を示す図である。
FIG. 3 is a diagram showing a refractive index of each layer constituting a plastic optical fiber according to an example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 メチルメタクリレートを主体としたPM
MA系樹脂を第1成分樹脂とし、該樹脂とミッシブルに
混合して透明な樹脂を形成することが出来、屈折率nd
20℃がPMMA系樹脂の値より絶対値において0.0
1以上異なる樹脂を第2成分樹脂とし、これらの単独成
分樹脂または混合樹脂を、中心が最も屈折率が高く、そ
の円周外側に向かって屈折率がほぼ2次分布状に低下す
るように、少なくとも5層以上に同心円状に配置したこ
とを特徴とするマルチステップインデックス型プラスチ
ック光ファイバ。
1. A PM mainly composed of methyl methacrylate
A MA-based resin is used as a first component resin, and can be mixed with the resin in a miscible manner to form a transparent resin.
20 ° C. is 0.0 in absolute value from the value of PMMA resin.
A resin that is at least one different from the second component resin is used as the second component resin, and these single component resins or the mixed resin are mixed such that the refractive index is the highest at the center and the refractive index decreases substantially in a secondary distribution toward the outer circumference. A multi-step index type plastic optical fiber, which is concentrically arranged in at least five layers.
【請求項2】 第2成分樹脂がスチレンとアクリルニト
リルを主体とするAS系樹脂であることを特徴とする請
求項1に記載のマルチステップインデックス型プラスチ
ック光ファイバ。
2. The multi-step index type plastic optical fiber according to claim 1, wherein the second component resin is an AS resin mainly composed of styrene and acrylonitrile.
【請求項3】 スチレンとアクリルニトリルを主体とす
るAS系樹脂が、スチレン構造単位が78〜85重量
%、アクリルニトリル構造単位が22〜15重量%の共
重合体であることを特徴とする請求項2に記載のマルチ
ステップインデックス型プラスチック光ファイバ。
3. The AS resin mainly composed of styrene and acrylonitrile is a copolymer having a styrene structural unit of 78 to 85% by weight and an acrylonitrile structural unit of 22 to 15% by weight. Item 3. A multi-step index type plastic optical fiber according to item 2.
【請求項4】 請求項1〜3のいずれかに記載のマルチ
ステップインデックス型プラスチック光ファイバの製造
方法であって、 溶融状態の第1成分樹脂と第2成分樹脂を、計量性と、
混合性と移送性能を有するギヤポンプを用いて両成分樹
脂の混合割合を調節し、屈折率を調整し、少なくとも5
層以上の「超多層複合紡糸ダイ」に供給し、中心に最も
屈折率が高い混合樹脂を配置し、その円周外側に向かっ
て、屈折率がほぼ2次分布状に低下するように多段階、
同心円状に配置したマルチステップインデックス型プラ
スチック光ファイバの連続的製造方法。
4. The method for producing a multi-step index type plastic optical fiber according to claim 1, wherein the first component resin and the second component resin in a molten state are measured with:
The mixing ratio of both components is adjusted by using a gear pump having mixing and transfer performance, the refractive index is adjusted, and at least 5
Multi-layer composite spinning die with more than one layer is supplied, and the mixed resin with the highest refractive index is placed at the center, and multi-step so that the refractive index decreases almost in a secondary distribution toward the outer circumference. ,
A method for continuously manufacturing concentrically arranged multi-step index type plastic optical fibers.
JP26390296A 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof Expired - Lifetime JP3762489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26390296A JP3762489B2 (en) 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26390296A JP3762489B2 (en) 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH10111414A true JPH10111414A (en) 1998-04-28
JP3762489B2 JP3762489B2 (en) 2006-04-05

Family

ID=17395855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26390296A Expired - Lifetime JP3762489B2 (en) 1996-10-04 1996-10-04 Multi-step index type plastic optical fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3762489B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085923A1 (en) * 2004-03-08 2005-09-15 Fuji Photo Film Co., Ltd. Multistep index optical fiber
WO2006132395A1 (en) * 2005-06-08 2006-12-14 Fujifilm Corporation Plastic optical medium and production method thereof
JP2009237544A (en) * 2008-03-07 2009-10-15 Toray Ind Inc Optical waveguide film and method of manufacturing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085923A1 (en) * 2004-03-08 2005-09-15 Fuji Photo Film Co., Ltd. Multistep index optical fiber
US7366389B2 (en) 2004-03-08 2008-04-29 Fujifilm Corporation Multistep index optical fiber
WO2006132395A1 (en) * 2005-06-08 2006-12-14 Fujifilm Corporation Plastic optical medium and production method thereof
JP2006343455A (en) * 2005-06-08 2006-12-21 Fujifilm Holdings Corp Manufacturing method of plastic optical material
US7813610B2 (en) 2005-06-08 2010-10-12 Fujifilm Corporation Plastic optical medium and production method thereof
JP2009237544A (en) * 2008-03-07 2009-10-15 Toray Ind Inc Optical waveguide film and method of manufacturing the same

Also Published As

Publication number Publication date
JP3762489B2 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
EP0615141B1 (en) METHOD OF MANUFACTURING PLASTICS OPTICAL WAVEGUIDEs
US5916495A (en) Plastic optical fiber preform, and process and apparatus for producing the same
US6106745A (en) Method of making graded index polymeric optical fibers
JPH10111414A (en) Multistep index type plastic optical fiber and its production
JP2762417B2 (en) Manufacturing method of optical transmission body
JP2000053712A (en) Production of methyl methacrylate polymer and production of plastic optical fiber
JPH10133036A (en) Multistep index type plastic optical fiber and its production
JPH11505628A (en) Method of manufacturing graded index polymer optical fiber
CN1236333C (en) Gradational plastic optical fibre multi-layer compound extrusion moulding process
JPS62215204A (en) Production of plastic optical transmission body
JP3258605B2 (en) Multi-step refractive index distribution plastic optical fiber
EP0864109B1 (en) Method of making graded index polymeric optical fibres
JPH01265207A (en) Production of light transmission body
JPH09218312A (en) Production of preform for graded index plastic optical fiber
CN1246347C (en) Method for mfg. plastic optical fiber prefabricated products
JP3002656B2 (en) Manufacturing method of refractive index distribution type optical transmitter
JPS5981602A (en) Columnar body of synthetic resin for transmitting image and its manufacture
JP3444317B2 (en) Plastic optical fiber
JPH08334605A (en) Plastic light transmission body and melt spinning device
JPH075331A (en) Method for manufacturing plastic optical fiber preform
JP2000193839A (en) Distributed refraction factor optical fiber, optical fiber cable, optical fiber with plug, and manufacture of distributed refraction factor optical fiber
JPH08334635A (en) Plastic light transmission body and its production
JPH09258042A (en) Refractive index distributed plastic optical fiber and its production
JPH08334604A (en) Plastic light transmission body and its production
JP3419711B2 (en) Optical transmission body manufacturing method and spinneret

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

EXPY Cancellation because of completion of term