[go: up one dir, main page]

JPH10111217A - Optical axis adjusting equipment for aspherical mirror - Google Patents

Optical axis adjusting equipment for aspherical mirror

Info

Publication number
JPH10111217A
JPH10111217A JP26595696A JP26595696A JPH10111217A JP H10111217 A JPH10111217 A JP H10111217A JP 26595696 A JP26595696 A JP 26595696A JP 26595696 A JP26595696 A JP 26595696A JP H10111217 A JPH10111217 A JP H10111217A
Authority
JP
Japan
Prior art keywords
mirror
optical axis
light
axis
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26595696A
Other languages
Japanese (ja)
Other versions
JP3437722B2 (en
Inventor
Masahide Okazaki
雅英 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Screen Manufacturing Co Ltd filed Critical Dainippon Screen Manufacturing Co Ltd
Priority to JP26595696A priority Critical patent/JP3437722B2/en
Publication of JPH10111217A publication Critical patent/JPH10111217A/en
Application granted granted Critical
Publication of JP3437722B2 publication Critical patent/JP3437722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Of Optical Devices Or Fibers (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical axis adjusting equipment for an aspherical mirror wherein optical axis adjustment of high precision is enabled to various kinds of aspherical mirrors by using a simple equipment. SOLUTION: This light axis adjusting equipment consists of the following; a light source part 50, an objective 60 which once converges the casted light from the light source part 50, disperses it and makes it enter an off-axis parabolic mirror 10 as a mirror to be adjusted, a plane mirror 70 which reverses a luminous flux which is dispersed via the objective 60 and reflected by the off-axis parabolic mirror 10 in a backward luminous flux traveling in the reverse direction and introduces it to the off-axis parabolic mirror 10 again, and an observation optical system 80 which can observe, via the objective 60, the condition of a converged spot CS wherein the backward luminous flux which is reflected by the plane mirror 70, and further reflected by the off-axis parabolic mirror 10 is converged again by the off-axis parabolic mirror 10. When the arrangement of the off-axis parabolic mirror 10 is so slightly adjusted that the converged spot CS is minimized, the optical axis OA of an inspection equipment 100 side is made to coincide with the optical axis of the off-axis parabolic mirror 10, and arrangement adjustment of the off-axis parabolic mirror 10 is completed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非球面鏡(放物面
鏡、楕円面鏡、双曲面鏡等)用の光軸調整装置に関し、
軸中心鏡、軸外し鏡共に適用される光軸調整装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical axis adjusting device for an aspherical mirror (parabolic mirror, elliptical mirror, hyperboloid mirror, etc.)
The present invention relates to an optical axis adjusting device applied to both an axis center mirror and an off-axis mirror.

【0002】[0002]

【従来の技術】分光分析を行うための分光光度計やミラ
ープロジェクションタイプの半導体露光装置、そして、
高精度なイメージセッターにおいては、高精度な非球面
鏡が用いられる。これらの高精度な非球面鏡の性能を余
すところなく発揮させるためには、高精度な光軸調整が
欠かせない。さらに、これらの装置に用いられる非球面
鏡は、軸中心のない軸外し非球面鏡であることが多いた
め、光軸調整が困難なものとなっているが、このような
場合、例えば図11に示すような調整方法が用いられて
いる。
2. Description of the Related Art A spectrophotometer for performing spectroscopic analysis, a mirror projection type semiconductor exposure apparatus, and
In a high-precision imagesetter, a high-precision aspheric mirror is used. In order to make full use of the performance of these highly accurate aspheric mirrors, highly accurate optical axis adjustment is indispensable. Further, the aspherical mirror used in these devices is often an off-axis aspherical mirror having no axis center, which makes it difficult to adjust the optical axis. In such a case, for example, as shown in FIG. Such an adjustment method is used.

【0003】図示のように、被調整鏡が軸外し放物面鏡
10の場合、レンズ等を用いた光学系21とレーザー等
の光源装置22とを備えるコリメーター装置20によ
り、軸外し放物面鏡10の開口にほぼ等しい大きさの平
行光を発生させて軸外し放物面鏡10に一様に入射さ
せ、軸外し放物面10によって集光された集光スポット
CSの状態(コマ収差の発生状況)を拡大レンズ30で
拡大して投影板40等に投影する。そして、投影板40
を観察しながら集光スポットCSが最も小さくなるよう
に、軸外し放物面鏡10の配置を試行錯誤で調整する。
As shown in the figure, when the mirror to be adjusted is an off-axis parabolic mirror 10, an off-axis paraboloid is provided by a collimator device 20 having an optical system 21 using a lens and a light source device 22 such as a laser. A parallel light having a size substantially equal to the aperture of the surface mirror 10 is generated, uniformly incident on the off-axis parabolic mirror 10, and the state of the condensed spot CS collected by the off-axis paraboloid 10 (frame) The state of occurrence of aberration) is magnified by the magnifying lens 30 and projected onto the projection plate 40 or the like. Then, the projection plate 40
Is adjusted by trial and error so that the converging spot CS is minimized while observing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような方法では、軸外し放物面鏡10の開口が大きくな
ればなるほどコリメーター装置20の開口も大きくする
必要があるため、光軸調整装置が大がかりなものとなっ
てしまうし、このコリメーター装置20の性能により光
軸調整精度が左右され、十分な精度の光軸調整が達成で
きないといった場合も生じる。
However, in the above-described method, the larger the opening of the off-axis parabolic mirror 10 is, the larger the opening of the collimator device 20 must be. Becomes large, and the performance of the collimator device 20 affects the accuracy of optical axis adjustment, which may cause insufficient optical axis adjustment.

【0005】なお、図11に示す方法の他に、干渉を利
用して光軸調整を行う様々な方法があるが(例えば特公
平8−27444号公報)、干渉を利用する場合、被調
整鏡10の面精度が測定波長程度(例えば0.633μ
m)以下の限定された仕様の物である場合にしか適用で
きないという事情がある。
In addition to the method shown in FIG. 11, there are various methods for adjusting the optical axis using interference (for example, Japanese Patent Publication No. 8-27444). 10 is about the measurement wavelength (for example, 0.633 μm).
m) There is a situation that it can be applied only when the product has the following limited specifications.

【0006】そこで、この発明は、簡易な装置によって
各種の非球面鏡に対し高精度な光軸調整が可能な非球面
鏡用の光軸調整装置を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical axis adjusting device for an aspherical mirror which can adjust the optical axis of various aspherical mirrors with high accuracy by a simple device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
請求項1の非球面鏡用の光軸調整装置は、光源と、前記
光源側からの出射光を、一旦集束させた後発散させ、3
次元的に調整可能に配置された非球面型の被調整鏡に入
射させる対物レンズと、対物レンズを経て被調整鏡で反
射された光束を逆方向に進行する逆進光束に反転させて
被調整鏡に再び導く反射手段と、反射手段で反射された
後被調整鏡でさらに反射された逆進光束が被調整鏡によ
って再度集光される状態を対物レンズを介して観察可能
にする観察光学系とを備えることを特徴とする。
According to a first aspect of the present invention, there is provided an optical axis adjusting device for an aspherical mirror, wherein a light source and light emitted from the light source side are once focused and then diverged.
An objective lens to be made incident on an aspherical adjustable mirror arranged in a three-dimensionally adjustable manner, and the light flux reflected by the adjusted mirror via the objective lens is inverted into a backward traveling light flux that travels in the opposite direction, and is adjusted. A reflecting means for re-directing the light to the mirror, and an observation optical system for observing, via an objective lens, a state in which the backward traveling light beam reflected by the reflecting means and further reflected by the adjusted mirror is collected again by the adjusted mirror. And characterized in that:

【0008】また、請求項2の非球面鏡用の光軸調整装
置は、観察光学系が、撮像装置と、光源からの出射光を
対物レンズに入射させるとともに対物レンズを通過した
逆進光束を撮像装置に入射させる分岐手段とを備えるこ
とを特徴とする。
According to a second aspect of the present invention, there is provided an optical axis adjusting device for an aspherical mirror, wherein the observation optical system causes the imaging device and the light emitted from the light source to be incident on the objective lens, and captures the backward traveling light beam passing through the objective lens. And a branching means for making the light incident on the device.

【0009】また、請求項3の非球面鏡用の光軸調整装
置は、観察光学系が、撮像装置に入射させる逆進光束の
結像倍率を調節する倍率調整手段を備えることを特徴と
する。
According to a third aspect of the present invention, there is provided an optical axis adjusting device for an aspherical mirror, wherein the observation optical system includes a magnification adjusting means for adjusting an imaging magnification of a backward traveling light beam incident on the imaging device.

【0010】また、請求項4の非球面鏡用の光軸調整装
置は、撮像装置が、固体撮像素子と、この固体撮像素子
からの画像信号を表示するディスプレイ装置とを備える
ことを特徴とする。
According to a fourth aspect of the present invention, there is provided an optical axis adjusting device for an aspherical mirror, wherein the imaging device includes a solid-state imaging device and a display device for displaying an image signal from the solid-state imaging device.

【0011】また、請求項5の非球面鏡用の光軸調整装
置は、被調整鏡が、軸外し型の非球面鏡であり、観察光
学系が、光源側からの出射光を、対物レンズの入射瞳の
うちの光軸からずれた一部領域に入射させることを特徴
とする。
According to a fifth aspect of the present invention, in the optical axis adjusting apparatus for an aspherical mirror, the mirror to be adjusted is an off-axis type aspherical mirror, and the observation optical system transmits the light emitted from the light source to the incident light of the objective lens. The pupil is incident on a part of the pupil deviated from the optical axis.

【0012】[0012]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔第1実施形態〕図1は、第1実施形態に係る非球面鏡
用の光軸調整装置の構造を説明する斜視図である。
[First Embodiment] FIG. 1 is a perspective view illustrating the structure of an optical axis adjusting device for an aspherical mirror according to a first embodiment.

【0013】この光軸調整装置は、マルチビーム記録装
置に組み込まれる光記録ヘッドRHに組み込まれる軸外
し放物面鏡10の光軸調整に利用されるもので、光源部
50と、光源部50側からの出射光を、一旦集束させた
後に発散させ、被調整鏡である軸外し放物面鏡10に入
射させる対物レンズ60と、この対物レンズ60を経て
発散され軸外し放物面鏡10で反射された光束を逆方向
に進行する逆進光束に反転させて軸外し放物面鏡10に
再び導く平面鏡70と、平面鏡70で反射された後に軸
外し放物面鏡10でさらに反射された逆進光束がこの軸
外し放物面鏡10によって再度集光される集光スポット
CSの状態を対物レンズ60を介して観察可能にする観
察光学系80とを備える。なお、観察光学系80は、集
光スポットCSの像を電気信号に変換する撮像装置部8
1と、光源部50からの出射光を対物レンズ60に入射
させるとともに対物レンズ60を通過した軸外し放物面
鏡10からの逆進光束を撮像装置部81に入射させる分
岐手段である光アイソレーター82とを備える。
This optical axis adjusting apparatus is used for adjusting the optical axis of an off-axis parabolic mirror 10 incorporated in an optical recording head RH incorporated in a multi-beam recording apparatus. An objective lens 60 that once converges the emitted light from the side and then diverges the light and then enters the off-axis parabolic mirror 10 that is the adjusted mirror; and the off-axis parabolic mirror 10 that is diverged through this objective lens 60 The flat mirror 70 inverts the luminous flux reflected by the mirror to a reversing luminous flux traveling in the opposite direction and guides the reflected light back to the off-axis parabolic mirror 10, and further reflected by the off-axis parabolic mirror 10 after being reflected by the plane mirror 70. An observing optical system 80 is provided for observing, via the objective lens 60, the state of the converging spot CS where the reversely traveling light beam is condensed again by the off-axis parabolic mirror 10. Note that the observation optical system 80 is provided with the imaging device unit 8 that converts the image of the converging spot CS into an electric signal.
1 and an optical isolator which is a branching unit that causes light emitted from the light source unit 50 to be incident on the objective lens 60, and also allows the backward traveling light beam from the off-axis parabolic mirror 10 passing through the objective lens 60 to be incident on the imaging device unit 81. 82.

【0014】図2は、マルチビーム記録装置に組み込ま
れる光記録ヘッドRHの役割と構造を間単に説明するも
のである。調整台であるベース90上には、2次元的に
配置されたレーザーダイオード91aを備えるマルチビ
ーム光源91と、マルチビーム光源91からの記録用の
光線を反射して一旦集束させる軸外し放物面鏡10と、
軸外し放物面鏡10で反射された光線からマルチビーム
光源91の縮小投影像を形成する立体射影レンズ93
と、倍率調整用のズームレンズ94と、縮小投影像を回
転ドラムRDの周囲に取り付けられた感光材料FM上に
投影するアフォーカル縮小レンズ96とが、それらの配
置を精密に調整されて固定される。なお、回転ドラムR
Dは、主走査のため中心軸RAの回りで回転し、ベース
90は、副走査のため中心軸RAの方向に同期して移動
する。
FIG. 2 simply explains the role and structure of the optical recording head RH incorporated in the multi-beam recording apparatus. A multi-beam light source 91 having two-dimensionally arranged laser diodes 91a, and an off-axis parabolic surface for reflecting and temporarily converging a recording light beam from the multi-beam light source 91 on a base 90 serving as an adjustment table. Mirror 10;
A stereoscopic projection lens 93 for forming a reduced projection image of the multi-beam light source 91 from the light beam reflected by the off-axis parabolic mirror 10
The zoom lens 94 for adjusting the magnification and the afocal reduction lens 96 for projecting the reduced projection image onto the photosensitive material FM attached around the rotary drum RD are fixed with their arrangement precisely adjusted. You. The rotating drum R
D rotates around the central axis RA for main scanning, and the base 90 moves in synchronization with the direction of the central axis RA for sub-scanning.

【0015】図3は、図1の光軸調整装置中の光学系の
配置を説明する図である。光源部50は、直線偏光光を
出射するHe−Neレーザー51と、He−Neレーザ
ー51からの出射光のビーム径を平行光のままで拡大す
るビームエキスパンダー52とから構成される。
FIG. 3 is a view for explaining the arrangement of the optical system in the optical axis adjusting device of FIG. The light source unit 50 includes a He-Ne laser 51 that emits linearly polarized light, and a beam expander 52 that expands the beam diameter of the light emitted from the He-Ne laser 51 while maintaining the parallel light.

【0016】光源部50からの出射光は、光アイソレー
ター82を介して対物レンズ60に導かれるが、この光
アイソレーター82は、光源部50からの特定偏光成分
(S偏光)の出射光を偏向させる偏光ビームスプリッタ
ーPBSと、偏光ビームスプリッターPBSで反射され
た出射光の偏光状態を直線偏光から円偏光に変化させる
λ/4板85とから構成される。なお、He−Neレー
ザー51は、その出射光の偏光方向が偏光ビームスプリ
ッターPBSの反射面に対して平行になるように設定さ
れる。
The light emitted from the light source unit 50 is guided to the objective lens 60 via the optical isolator 82, and the optical isolator 82 deflects the emitted light of a specific polarization component (S-polarized light) from the light source unit 50. It is composed of a polarizing beam splitter PBS and a λ / 4 plate 85 for changing the polarization state of the outgoing light reflected by the polarizing beam splitter PBS from linearly polarized light to circularly polarized light. The He-Ne laser 51 is set so that the polarization direction of the emitted light is parallel to the reflection surface of the polarization beam splitter PBS.

【0017】光アイソレーター82を通過した出射光
は、対物レンズ60を経て集束し、対物レンズ60の前
側焦点に集光点を一旦形成した後発散し、軸外し放物面
鏡10に一様に入射する。軸外し放物面鏡10に入射し
た光は、ほぼ平行光束として反射され、そのまま平面鏡
70に入射する。ここにおいて、対物レンズ60と軸外
し放物面鏡10と平面鏡70とは、いわばコリメーター
として機能している。平面鏡70に入射した光は、ほぼ
平行光束のまま逆進光束として反射され、再び逆方向か
ら軸外し放物面鏡10に入射する。軸外し放物面鏡10
で再度反射された逆進光束は、対物レンズ60の前側焦
点の近傍に一旦集束して集光スポットCSを形成した
後、対物レンズ60に逆方向から入射する。対物レンズ
60に入射した逆進光束は、ほぼ平行光に変換されてλ
/4板85及び偏光ビームスプリッターPBSを直進し
て、撮像装置部81に入射する。
The outgoing light that has passed through the optical isolator 82 is converged through the objective lens 60, once forms a converging point at the front focal point of the objective lens 60, diverges, and is uniformly distributed on the off-axis parabolic mirror 10. Incident. The light that has entered the off-axis parabolic mirror 10 is reflected as a substantially parallel light beam and directly enters the plane mirror 70. Here, the objective lens 60, the off-axis parabolic mirror 10, and the plane mirror 70 function as a so-called collimator. The light that has entered the plane mirror 70 is reflected as a backward traveling light beam while maintaining a substantially parallel light beam, and again enters the parabolic mirror 10 off-axis from the opposite direction. Off-axis parabolic mirror 10
The reversely traveling light flux reflected again at the point is once focused near the front focal point of the objective lens 60 to form a condensed spot CS, and then enters the objective lens 60 from the opposite direction. The backward traveling light beam incident on the objective lens 60 is converted into substantially parallel light and
The light travels straight through the 板 plate 85 and the polarizing beam splitter PBS, and is incident on the imaging device section 81.

【0018】撮像装置部81は、偏光ビームスプリッタ
ーPBSを通過した逆進光束を集束させる無限遠共役比
タイプの結像レンズ87と、結像レンズ87によって形
成された集光スポットCSの拡大像を光電変換する固体
撮像素子CCDを内蔵するCCDカメラ88とから構成
される。なお、CCDカメラ88からの画像信号は、軸
外し放物面鏡10の光軸調整時に観察しやすいようにデ
ィスプレイ装置89に表示される。
The imaging device section 81 forms an infinite conjugate ratio type image forming lens 87 for converging the backward traveling light beam having passed through the polarizing beam splitter PBS, and an enlarged image of the condensed spot CS formed by the image forming lens 87. And a CCD camera 88 having a solid-state imaging device CCD for photoelectric conversion. The image signal from the CCD camera 88 is displayed on the display device 89 so as to be easily observed when the optical axis of the off-axis parabolic mirror 10 is adjusted.

【0019】再び図1に戻って、軸外し放物面鏡10及
び平面鏡70の位置調整及び固定のための治具について
説明する。前者の軸外し放物面鏡10は、ベース90上
に設けた配置調整治具98に取り付けられており、3次
元的な位置の微調整が可能となっている。軸外し放物面
鏡10を支える支持板98aは、y軸に対して平行移動
可能であり、ピン98bに軸支されてx軸に平行な軸の
回りに回転可能になっている。また、配置調整治具98
全体は、x、z軸それぞれに対して平行移動可能であ
り、y軸に平行な軸の回りに回転可能になっている。一
方、後者の平面鏡70は、後の組立行程でマルチビーム
光源91(図2参照)を取り付けるための固定板70に
固定的に取り付けられていて、位置調整はできないが、
その反射面70aがマルチビーム光源91の基準面と一
致した状態、すなわち反射面70aが光軸OA(調整完
了後の軸外し放物面鏡10の光軸と一致する)に垂直な
状態で、ベース90上に固定されることになる。
Returning to FIG. 1, a jig for adjusting the position and fixing the off-axis parabolic mirror 10 and the plane mirror 70 will be described. The former off-axis parabolic mirror 10 is attached to an arrangement adjusting jig 98 provided on a base 90, and allows fine adjustment of a three-dimensional position. The support plate 98a supporting the off-axis parabolic mirror 10 is movable in parallel with respect to the y-axis, and is rotatably supported on a pin 98b about an axis parallel to the x-axis. Also, the arrangement adjusting jig 98
The whole is movable in parallel with respect to each of the x and z axes, and is rotatable about an axis parallel to the y axis. On the other hand, the latter plane mirror 70 is fixedly attached to the fixed plate 70 for attaching the multi-beam light source 91 (see FIG. 2) in a later assembling process.
In a state where the reflecting surface 70a coincides with the reference surface of the multi-beam light source 91, that is, in a state where the reflecting surface 70a is perpendicular to the optical axis OA (coincides with the optical axis of the off-axis parabolic mirror 10 after the adjustment is completed), It will be fixed on the base 90.

【0020】なお、軸外し放物面鏡10と平面鏡70と
を載置しているベース90は、光源部50、対物レンズ
60、及び観察光学系80からなる検査装置100に対
して、適当な基準面を利用して位置合わせされており、
この位置合わせ後に、軸外し放物面鏡10の光軸調整が
行われる。さらに、ベース90を検査装置100に対し
て位置合わせする以前には、予め検査装置100自体に
ついても、これを構成するHe−Neレーザー51、ビ
ームエキスパンダー52、偏光ビームスプリッターPB
S等の各要素について精密な位置合わせを行っている。
The base 90 on which the off-axis parabolic mirror 10 and the plane mirror 70 are mounted is suitable for the inspection apparatus 100 including the light source unit 50, the objective lens 60, and the observation optical system 80. It is aligned using the reference plane,
After this alignment, the optical axis of the off-axis parabolic mirror 10 is adjusted. Further, before the base 90 is aligned with the inspection apparatus 100, the inspection apparatus 100 itself is also preliminarily adjusted with respect to the He-Ne laser 51, the beam expander 52, and the polarization beam splitter PB.
Precise positioning is performed for each element such as S.

【0021】図4は、対物レンズ60に光源部50側か
ら入射させる入射光IBの状態を説明する図である。観
察光学系80は、入射光IBを対物レンズ60の入射瞳
のうちの光軸OAからずれた一部領域に入射させる。こ
の結果、対物レンズ60で集束された入射光IBは、光
軸OAからずれた方向から対物レンズ60の前側焦点で
ある集光点CPに入射することになるが、これにより、
軸外し放物面鏡10のみを一様に無駄なく照明すること
ができる。ここで、入射光IBが対物レンズ60に入射
する位置の調整は、偏光ビームスプリッターPBSを光
軸OA方向に沿って微動させることにより行う。具体的
には、偏光ビームスプリッターPBSで反射された入射
光IBの光路が当初光軸OA及びその近傍上にあったも
のとすると、偏光ビームスプリッターPBSを対物レン
ズ60から遠ざける方向に移動させることで、この移動
量に対応した量dだけ、入射光IBが対物レンズ60に
入射する位置を光軸OAからずらすことができ、これに
対応して、対物レンズ60の入射瞳のうちの光軸OAか
らずれた一部領域にのみ入射光IBを入射させることが
できる。
FIG. 4 is a view for explaining the state of incident light IB which is incident on the objective lens 60 from the light source section 50 side. The observation optical system 80 causes the incident light IB to enter a part of the entrance pupil of the objective lens 60 that is shifted from the optical axis OA. As a result, the incident light IB focused by the objective lens 60 is incident on the focal point CP, which is the front focal point of the objective lens 60, from a direction shifted from the optical axis OA.
Only the off-axis parabolic mirror 10 can be uniformly illuminated without waste. Here, the position where the incident light IB is incident on the objective lens 60 is adjusted by finely moving the polarizing beam splitter PBS along the optical axis OA. Specifically, assuming that the optical path of the incident light IB reflected by the polarizing beam splitter PBS is initially on the optical axis OA and its vicinity, the polarizing beam splitter PBS is moved in a direction away from the objective lens 60. The position at which the incident light IB enters the objective lens 60 can be shifted from the optical axis OA by an amount d corresponding to this movement amount, and accordingly, the optical axis OA of the entrance pupil of the objective lens 60 is correspondingly shifted. The incident light IB can be made incident only on a part of the area deviated from the distance.

【0022】図1及び図3に示す光軸調整装置を利用し
た光軸調整は、基本的には、軸外し放物面鏡10によっ
て対物レンズ60の前方に形成される集光スポットCS
の状態を観察光学系80で観察しながら、軸外し放物面
鏡10の位置を配置調整治具98を利用して微調整する
ことによって行う。すなわち、対物レンズ60によって
当初形成された集光点CPが平面鏡70を介して軸外し
放物面鏡10で2度反射されることによって形成される
集光スポットCSに関し、そのコマ収差の発生状況等を
ディスプレイ装置89を利用して観察する。そして、こ
の集光スポットCSが最も小さくなるように、軸外し放
物面鏡10の配置を微調整する。集光スポットCSが最
も小さくなったときは、集光スポットCSが対物レンズ
60の前側焦点である集光点CPと一致し、検査装置1
00側の光軸OAと軸外し放物面鏡10の光軸とが一致
して、軸外し放物面鏡10の配置調整が完了した状態と
なっている。
The optical axis adjustment using the optical axis adjustment apparatus shown in FIGS. 1 and 3 is basically performed by using a condensing spot CS formed in front of the objective lens 60 by the off-axis parabolic mirror 10.
The position of the off-axis parabolic mirror 10 is finely adjusted by using the arrangement adjusting jig 98 while observing the state by the observation optical system 80. That is, regarding the condensed spot CS formed by reflecting the condensed point CP initially formed by the objective lens 60 twice on the off-axis parabolic mirror 10 via the plane mirror 70, the state of occurrence of coma aberration Are observed using the display device 89. Then, the arrangement of the off-axis parabolic mirror 10 is finely adjusted so that the converging spot CS is minimized. When the focal spot CS becomes the smallest, the focal spot CS coincides with the focal point CP which is the front focal point of the objective lens 60, and the inspection apparatus 1
The optical axis OA on the 00 side coincides with the optical axis of the off-axis parabolic mirror 10, and the adjustment of the arrangement of the off-axis parabolic mirror 10 is completed.

【0023】図5〜図7は、図1の光軸調整装置を用い
た具体的光軸調整の概要を説明するための図であり、軸
外し放物面鏡10の調整ずれと集光スポットCSの状態
との関係をシミュレーションしたいわゆるスポットダイ
ヤグラムである。図5は、軸外し放物面鏡10を対物レ
ンズ60に対し光軸OA方向にのみ変位させた場合の集
光スポットCSの状態を示し、図6は、軸外し放物面鏡
10を対物レンズ60に対し光軸OA方向に垂直なx、
y方向のいずれか一方のみに変位させた場合を示し、図
7は、軸外し放物面鏡10を対物レンズ60に対し光軸
OA方向に垂直なx、y方向の双方に変位させた場合を
示す。なお、図において、軸外し放物面鏡10に収差は
ないものとし、さらに検査装置100にも収差がないも
のとして、集光スポットCSの状態を示してある。ま
た、軸外し放物面鏡10の光軸OAをx,y方向のいず
れか一方のみに変位させた場合(図6)や、x,y方向
の双方に変位させた場合(図7)においては、光を観察
光学系80に入射させるために、軸外し放物面鏡10の
光軸OAをわずかに傾斜させている。
FIGS. 5 to 7 are diagrams for explaining an outline of a concrete optical axis adjustment using the optical axis adjusting device of FIG. 1. FIG. This is a so-called spot diagram that simulates the relationship with the state of CS. FIG. 5 shows the state of the converging spot CS when the off-axis parabolic mirror 10 is displaced only in the direction of the optical axis OA with respect to the objective lens 60. FIG. X perpendicular to the optical axis OA direction with respect to the lens 60,
FIG. 7 illustrates a case where the off-axis parabolic mirror 10 is displaced in only one of the y direction and the off-axis parabolic mirror 10 in both the x and y directions perpendicular to the optical axis OA direction with respect to the objective lens 60. Is shown. In the drawing, the off-axis parabolic mirror 10 is assumed to have no aberration, and the inspection apparatus 100 is assumed to have no aberration. Further, in the case where the optical axis OA of the off-axis parabolic mirror 10 is displaced in only one of the x and y directions (FIG. 6), and in the case where it is displaced in both the x and y directions (FIG. 7). The optical axis OA of the off-axis parabolic mirror 10 is slightly inclined to make the light incident on the observation optical system 80.

【0024】図5(a)に示すように、軸外し放物面鏡
10が対物レンズ60に対し光軸OA方向にわずかに近
づいている場合、集光スポットCSはほぼ均一に円形に
広がる。一方、図5(c)に示すように、軸外し放物面
鏡10が対物レンズ60に対し光軸OA方向にわずかに
離れている場合も、集光スポットCSはほぼ均一に円形
に広がる。図5(b)に示すように、軸外し放物面鏡1
0が対物レンズ60に対し完全に位置合わせされた状態
では、集光スポットCSはほぼ点状となる。
As shown in FIG. 5A, when the off-axis parabolic mirror 10 is slightly closer to the objective lens 60 in the direction of the optical axis OA, the condensed spot CS spreads almost uniformly in a circular shape. On the other hand, as shown in FIG. 5C, even when the off-axis parabolic mirror 10 is slightly separated from the objective lens 60 in the direction of the optical axis OA, the focused spot CS spreads almost uniformly in a circular shape. As shown in FIG. 5B, off-axis parabolic mirror 1
In a state where 0 is completely aligned with the objective lens 60, the condensed spot CS is almost dot-shaped.

【0025】図6(a)に示すように、軸外し放物面鏡
10の光軸がx方向(軸外しの方向)のみにわずかにず
れている場合、集光スポットCSは一点から長円状に広
がる。一方、図6(b)に示すように、軸外し放物面鏡
10の光軸がy方向のみにわずかにずれている場合、集
光スポットCSは一点から3角形状に広がる。
As shown in FIG. 6A, when the optical axis of the off-axis parabolic mirror 10 is slightly displaced only in the x direction (off-axis direction), the converging spot CS becomes an ellipse from one point. Spread in shape. On the other hand, as shown in FIG. 6B, when the optical axis of the off-axis parabolic mirror 10 is slightly shifted only in the y direction, the condensed spot CS spreads in a triangular shape from one point.

【0026】図7(a)〜(e)は、軸外し放物面鏡1
0の光軸OAがx,y方向の双方にわずかに変位した場
合に、対物レンズ60に対する光軸OAの変位量に対す
る集光スポットCSの変化を示し、対物レンズ60にわ
ずかに近づいている状態からわずかに離れる状態までを
(a)から(e)の順で示している。
FIGS. 7A to 7E show off-axis parabolic mirrors 1.
When the optical axis OA of 0 is slightly displaced in both the x and y directions, the change of the condensing spot CS with respect to the displacement of the optical axis OA with respect to the objective lens 60 is shown, and the state is slightly closer to the objective lens 60. (A) to (e) are shown in the order from (a) to (e).

【0027】このように、図5〜図7は、軸外し放物面
鏡10の調整ずれによって生じる集光スポットCSの状
態を理論的に示すものであるが、これを利用すれば、集
光スポットCSのコマ収差の発生状況から軸外し放物面
鏡10の調整ずれの方向及び量をある程度逆算できるこ
とがわかる。
As described above, FIGS. 5 to 7 theoretically show the state of the converging spot CS caused by the misalignment of the off-axis parabolic mirror 10. It can be seen from the situation of occurrence of coma of the spot CS that the direction and amount of the misalignment of the off-axis parabolic mirror 10 can be calculated to some extent.

【0028】〔第2実施形態〕図8は、第2実施形態に
係る非球面鏡用の光軸調整装置の構造を説明する図であ
る。なお、第2実施形態は、第1実施形態の変形例であ
るので、同一部分については同一符号を付して重複説明
を省略する。
[Second Embodiment] FIG. 8 is a view for explaining the structure of an optical axis adjusting device for an aspherical mirror according to a second embodiment. Since the second embodiment is a modification of the first embodiment, the same portions are denoted by the same reference numerals, and redundant description will be omitted.

【0029】第2実施形態の光軸調整装置は、軸中心鏡
タイプの放物面鏡110の光軸調整のための装置であ
る。このため、平面鏡170は、放物面鏡110の形状
に対応して光軸OAの周囲に配置されており、光軸OA
が通る中心部には、開口170aが形成されている。
The optical axis adjusting apparatus of the second embodiment is an apparatus for adjusting the optical axis of a parabolic mirror 110 of the axial center mirror type. For this reason, the plane mirror 170 is arranged around the optical axis OA corresponding to the shape of the parabolic mirror 110, and the optical axis OA
An opening 170a is formed in the center through which.

【0030】なお、光アイソレーター82は、入射光I
Bを対物レンズ60の入射瞳のほぼ全体に入射させる。
つまり、光ビームスプリッターPBSで反射された入射
光IBの光路の中心は光軸OA上にあり、軸中心鏡タイ
プの放物面鏡110は光軸OAを中心として均一に照明
される。
The optical isolator 82 receives the incident light I
B is made to enter almost the entire entrance pupil of the objective lens 60.
That is, the center of the optical path of the incident light IB reflected by the light beam splitter PBS is on the optical axis OA, and the parabolic mirror 110 of the axial center mirror type is uniformly illuminated about the optical axis OA.

【0031】図8の光軸調整装置において、放物面鏡1
10の調整ずれと集光スポットCSの状態との関係は、
図5〜図7に示すものとは異なるものとなるが、集光ス
ポットCSが最も小さくなるように軸外し放物面鏡11
0の配置を微調整することに変わりはない。
In the optical axis adjusting device shown in FIG.
The relationship between the adjustment deviation of 10 and the state of the focusing spot CS is
Although different from those shown in FIGS. 5 to 7, the off-axis parabolic mirror 11 is set so that the focused spot CS is minimized.
There is no change in fine-tuning the arrangement of zeros.

【0032】〔第3実施形態〕図9は、第3実施形態に
係る非球面鏡用の光軸調整装置の構造を説明する図であ
る。第3実施形態は、第1実施形態の変形例である。
[Third Embodiment] FIG. 9 is a view for explaining the structure of an optical axis adjusting device for an aspherical mirror according to a third embodiment. The third embodiment is a modification of the first embodiment.

【0033】第3実施形態の光軸調整装置は、軸外し楕
円鏡210の光軸調整のための装置である。このため、
平面鏡70の代わりに軸外し配置された球面鏡270を
用いている。この場合、対物レンズ60等は、被調整鏡
である軸外し楕円鏡210の一方の焦点となるべき点が
対物レンズ60の集光点CPと一致するように、予め位
置決めされて配置されている。また、球面鏡270も、
軸外し楕円鏡210の他方の焦点となるべき点がこの球
面鏡270の焦点と一致するように、対物レンズ60に
対して予め位置決めされて配置されている。この第3実
施形態でも、入射光IBを対物レンズ60の入射瞳のう
ちの光軸OAからずれた一部領域に入射させる。つま
り、入射光IBのビーム径を絞って、偏光ビームスプリ
ッターPBSを図示の位置から対物レンズ60から遠ざ
ける方向に移動させて、対物レンズ60の入射瞳のうち
の光軸OAからずれた一部領域にのみ入射光IBを入射
させる。
The optical axis adjusting apparatus according to the third embodiment is an apparatus for adjusting the optical axis of the off-axis elliptical mirror 210. For this reason,
Instead of the plane mirror 70, an off-axis spherical mirror 270 is used. In this case, the objective lens 60 and the like are positioned and arranged in advance so that one of the focal points of the off-axis elliptical mirror 210, which is the adjusted mirror, coincides with the focal point CP of the objective lens 60. . Also, the spherical mirror 270
The off-axis elliptical mirror 210 is positioned and arranged in advance with respect to the objective lens 60 such that the other focal point of the elliptical mirror 210 coincides with the focal point of the spherical mirror 270. Also in the third embodiment, the incident light IB is made to enter a part of the entrance pupil of the objective lens 60 that is shifted from the optical axis OA. That is, the beam diameter of the incident light IB is narrowed, and the polarizing beam splitter PBS is moved in a direction away from the objective lens 60 from the position shown in the drawing, so that a part of the entrance pupil of the objective lens 60 shifted from the optical axis OA. The incident light IB is made incident only on.

【0034】なお、第3実施形態の光軸調整装置は、軸
中心鏡タイプの楕円鏡310の光軸調整のための装置と
しても利用できる。この場合、入射光IBの中心を光軸
OAと一致させるとともに、球面鏡270を光軸OAの
周囲に配置するか、軸外し楕円鏡310の他方の焦点と
なるべき点に光軸OAに垂直に配置される平面鏡に置き
換える。
The optical axis adjusting device according to the third embodiment can also be used as a device for adjusting the optical axis of the elliptical mirror 310 of the axial center mirror type. In this case, the center of the incident light IB is made coincident with the optical axis OA, and the spherical mirror 270 is arranged around the optical axis OA, or the off-axis elliptical mirror 310 is perpendicular to the optical axis OA at the other focal point. Replace with the placed plane mirror.

【0035】〔第4実施形態〕図10は、第4実施形態
に係る非球面鏡用の光軸調整装置の構造を説明する図で
ある。第4実施形態は、第1実施形態の変形例である。
[Fourth Embodiment] FIG. 10 is a view for explaining the structure of an optical axis adjusting device for an aspherical mirror according to a fourth embodiment. The fourth embodiment is a modification of the first embodiment.

【0036】第4実施形態の光軸調整装置は、軸外し双
曲面鏡410の光軸調整のための装置である。このた
め、平面鏡70の代わりに軸外し配置された球面鏡47
0を用いている。この場合、対物レンズ60等は、被調
整鏡である軸外し双曲面鏡410の実像側焦点となるべ
き点が対物レンズ60の集光点CPと一致するように、
予め位置決めされて配置されている。また、球面鏡47
0も、軸外し双曲面鏡410の虚像側焦点となるべき点
が球面鏡470の焦点と一致するように、対物レンズ6
0に対して予め位置決めされて配置されている。この第
4実施形態でも、入射光IBを対物レンズ60の入射瞳
のうちの光軸OAからずれた一部領域に入射させる。つ
まり、入射光IBのビーム径を絞って、偏光ビームスプ
リッターPBSを図示の位置から対物レンズ60から遠
ざける方向に移動させて、対物レンズ60の入射瞳のう
ちの光軸OAからずれた一部領域にのみ入射光IBを入
射させる。
The optical axis adjusting apparatus according to the fourth embodiment is an apparatus for adjusting the optical axis of the off-axis hyperbolic mirror 410. For this reason, the spherical mirror 47 arranged off-axis instead of the plane mirror 70
0 is used. In this case, the objective lens 60 and the like are adjusted such that the point to be the real image side focal point of the off-axis hyperboloid mirror 410 as the adjusted mirror coincides with the focal point CP of the objective lens 60.
They are positioned and arranged in advance. Also, the spherical mirror 47
0, the objective lens 6 is set so that the point to be the virtual image side focal point of the off-axis hyperboloid mirror 410 coincides with the focal point of the spherical mirror 470.
0 and are positioned in advance. Also in the fourth embodiment, the incident light IB is incident on a part of the entrance pupil of the objective lens 60 that is shifted from the optical axis OA. That is, the beam diameter of the incident light IB is narrowed, and the polarizing beam splitter PBS is moved in a direction away from the objective lens 60 from the position shown in the drawing, so that a part of the entrance pupil of the objective lens 60 shifted from the optical axis OA. The incident light IB is made incident only on.

【0037】なお、第4実施形態の光軸調整装置は、軸
中心鏡タイプの双曲面鏡510の光軸調整のための装置
としても利用することができる。この場合、球面鏡47
0を光軸OAの周囲に配置され中央に開口を有する球面
鏡570とする。
The optical axis adjusting device of the fourth embodiment can also be used as a device for adjusting the optical axis of the axial center mirror type hyperboloid mirror 510. In this case, the spherical mirror 47
0 is a spherical mirror 570 that is arranged around the optical axis OA and has an opening at the center.

【0038】以上、実施形態に即してこの発明を説明し
たが、この発明は、上記実施形態に限定されるものでは
ない。例えば偏光ビームスプリッターPBS及びλ/4
板85に代えて半透鏡を用いて光アイソレーター82を
構成することもできる。
Although the present invention has been described with reference to the embodiment, the present invention is not limited to the above embodiment. For example, polarizing beam splitter PBS and λ / 4
The optical isolator 82 can be configured by using a semi-transparent mirror instead of the plate 85.

【0039】また、必要に応じて、結像レンズ87を交
換してCCDカメラ88に投影される集光スポットCS
の像の拡大率を変更することもできる。
If necessary, the image forming lens 87 is exchanged and the condensed spot CS projected on the CCD camera 88 is changed.
The magnification of the image can be changed.

【0040】[0040]

【発明の効果】以上のように、請求項1の非球面鏡用の
光軸調整装置によれば、光源と、光源側からの出射光
を、一旦集束させた後発散させ、3次元的に調整可能に
配置された非球面型の被調整鏡に入射させる対物レンズ
と、対物レンズを経て被調整鏡で反射された光束を逆方
向に進行する逆進光束に反転させて被調整鏡に再び導く
反射手段と、反射手段で反射された後被調整鏡でさらに
反射された逆進光束が被調整鏡によって再度集光される
状態を対物レンズを介して観察可能にする観察光学系と
を備えることとしているので、被調整鏡の3次元的配置
を調整しながら逆進光束が被調整鏡によって再度集光さ
れる状態を対物レンズを介して観察することにより、被
調整鏡の精密な光軸調整が可能となる。この際、請求項
1の装置では、コリメーター装置等を特別に設ける必要
がないので、簡易な装置によって各種の非球面鏡に対し
高精度な光軸調整が可能となる。また、光源からの光が
観察光学系に達するまでに、被調整鏡において順方向と
逆方向とで2度反射されるので、被調整鏡によって生じ
る波面の変化は、コリメーター装置等を用いた光軸調整
に比較して2倍となるので、調整精度は、このようなコ
リメーター装置等を用いた場合に比べて2倍となること
が期待され、より精密な調整が可能となる。
As described above, according to the optical axis adjusting device for an aspherical mirror of the first aspect, the light source and the light emitted from the light source side are once focused, then diverged, and adjusted three-dimensionally. An objective lens which is made incident on an aspherical adjustable mirror arranged so as to be capable of being inverted, and a light flux reflected by the adjusted mirror via the objective lens is inverted into a backward traveling light flux which travels in the opposite direction and is guided again to the adjusted mirror. A reflecting means, and an observation optical system which enables observation of, via an objective lens, a state in which the backward traveling light flux further reflected by the adjusted mirror after being reflected by the reflecting means is collected again by the adjusted mirror. By adjusting the three-dimensional arrangement of the adjusted mirror and observing, via the objective lens, the state in which the backward traveling light beam is again condensed by the adjusted mirror, precise optical axis adjustment of the adjusted mirror can be performed. Becomes possible. In this case, in the device of the first aspect, it is not necessary to provide a collimator device or the like in particular, so that the optical axis can be adjusted with high accuracy with respect to various aspherical mirrors by a simple device. Also, before the light from the light source reaches the observation optical system, the light is reflected twice in the adjusted mirror in the forward direction and the reverse direction, so that the change in the wavefront caused by the adjusted mirror is measured using a collimator or the like. Since it is twice as large as the optical axis adjustment, the adjustment accuracy is expected to be twice as large as that when such a collimator device or the like is used, and more precise adjustment is possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施形態の光軸調整装置の構造を
示す斜視図である。
FIG. 1 is a perspective view showing a structure of an optical axis adjusting device according to a first embodiment of the present invention.

【図2】被調整鏡がセットされたステージ図及び側面図
である。
FIGS. 2A and 2B are a stage diagram and a side view on which a mirror to be adjusted is set. FIGS.

【図3】図1の光軸調整装置の光学系の配置を説明する
図である。
FIG. 3 is a diagram illustrating an arrangement of an optical system of the optical axis adjusting device in FIG. 1;

【図4】図3の光学系を通る光の光路を説明する図であ
る。
FIG. 4 is a diagram illustrating an optical path of light passing through the optical system of FIG.

【図5】図1の光軸調整装置を用いた光軸調整を説明す
る図である。
FIG. 5 is a diagram illustrating optical axis adjustment using the optical axis adjustment device of FIG. 1;

【図6】図1の光軸調整装置を用いた光軸調整を説明す
る図である。
FIG. 6 is a diagram illustrating optical axis adjustment using the optical axis adjustment device of FIG. 1;

【図7】図1の光軸調整装置を用いた光軸調整を説明す
る図である。
FIG. 7 is a diagram illustrating optical axis adjustment using the optical axis adjustment device of FIG. 1;

【図8】第2実施形態の光軸調整装置の光学系を示す図
である。
FIG. 8 is a diagram illustrating an optical system of an optical axis adjustment device according to a second embodiment.

【図9】第3実施形態の光軸調整装置の光学系を示す図
である。
FIG. 9 is a diagram illustrating an optical system of an optical axis adjusting device according to a third embodiment.

【図10】第4実施形態の光軸調整装置の光学系を示す
図である。
FIG. 10 is a diagram illustrating an optical system of an optical axis adjusting device according to a fourth embodiment.

【図11】従来の光軸調整方法を説明する図である。FIG. 11 is a diagram illustrating a conventional optical axis adjustment method.

【符号の説明】[Explanation of symbols]

10 軸外し放物面鏡 50 光源部 60 対物レンズ 70 平面鏡 80 観察光学系 81 撮像装置部 82 光アイソレーター 87 結像レンズ 88 CCDカメラ 90 ベース 98 配置調整治具 100 検査装置 CS 集光スポット DESCRIPTION OF SYMBOLS 10 Off-axis parabolic mirror 50 Light source part 60 Objective lens 70 Plane mirror 80 Observation optical system 81 Imaging device part 82 Optical isolator 87 Imaging lens 88 CCD camera 90 Base 98 Arrangement jig 100 Inspection device CS Focusing spot

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光源と、 前記光源側からの出射光を、一旦集束させた後発散さ
せ、3次元的に調整可能に配置された非球面型の被調整
鏡に入射させる対物レンズと、 前記対物レンズを経て前記被調整鏡で反射された光束を
逆方向に進行する逆進光束に反転させて前記被調整鏡に
再び導く反射手段と、 前記反射手段で反射された後前記被調整鏡でさらに反射
された前記逆進光束が前記被調整鏡によって再度集光さ
れる状態を前記対物レンズを介して観察可能にする観察
光学系とを備えることを特徴とする非球面鏡用の光軸調
整装置。
A light source; an objective lens that once converges light emitted from the light source side, diverges the light, and makes the light incident on an aspherical type adjustable mirror arranged so as to be three-dimensionally adjustable; A reflecting unit that inverts the light flux reflected by the adjusted mirror through the objective lens into a backward traveling light flux that travels in the opposite direction and guides the reflected light back to the adjusted mirror; and An optical axis adjusting device for an aspherical mirror, further comprising: an observation optical system that enables observation of the state in which the reflected backward traveling light beam is collected again by the adjusted mirror through the objective lens. .
【請求項2】 前記観察光学系は、撮像装置と、前記光
源からの前記出射光を前記対物レンズに入射させるとと
もに前記対物レンズを通過した前記逆進光束を前記撮像
装置に入射させる分岐手段とを備えることを特徴とする
請求項1記載の非球面鏡用の光軸調整装置。
2. The observation optical system includes: an imaging device; and a branching unit that causes the emitted light from the light source to enter the objective lens and causes the backward traveling light flux passing through the objective lens to enter the imaging device. The optical axis adjusting device for an aspheric mirror according to claim 1, further comprising:
【請求項3】 前記観察光学系は、前記撮像装置に入射
させる前記逆進光束の結像倍率を調節する倍率調整手段
を備えることを特徴とする請求項1記載の非球面鏡用の
光軸調整装置。
3. The optical axis adjustment for an aspherical mirror according to claim 1, wherein the observation optical system includes a magnification adjusting unit that adjusts an imaging magnification of the backward traveling light beam incident on the imaging device. apparatus.
【請求項4】 前記撮像装置は、固体撮像素子と、当該
固体撮像素子からの画像信号を表示するディスプレイ装
置とを備えることを特徴とする請求項1記載の非球面鏡
用の光軸調整装置。
4. The optical axis adjusting device for an aspherical mirror according to claim 1, wherein the imaging device includes a solid-state imaging device and a display device that displays an image signal from the solid-state imaging device.
【請求項5】 前記被調整鏡は、軸外し型の非球面鏡で
あり、前記観察光学系は、前記光源側からの出射光を、
前記対物レンズの入射瞳のうちの光軸からずれた一部領
域に入射させることを特徴とする請求項1記載の非球面
鏡用の光軸調整装置。
5. The mirror to be adjusted is an off-axis aspherical mirror, and the observation optical system outputs light emitted from the light source side.
2. The optical axis adjusting device for an aspherical mirror according to claim 1, wherein the light is incident on a part of the entrance pupil of the objective lens which is shifted from the optical axis.
JP26595696A 1996-10-07 1996-10-07 Optical axis adjustment device for aspheric mirror Expired - Fee Related JP3437722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26595696A JP3437722B2 (en) 1996-10-07 1996-10-07 Optical axis adjustment device for aspheric mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26595696A JP3437722B2 (en) 1996-10-07 1996-10-07 Optical axis adjustment device for aspheric mirror

Publications (2)

Publication Number Publication Date
JPH10111217A true JPH10111217A (en) 1998-04-28
JP3437722B2 JP3437722B2 (en) 2003-08-18

Family

ID=17424401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26595696A Expired - Fee Related JP3437722B2 (en) 1996-10-07 1996-10-07 Optical axis adjustment device for aspheric mirror

Country Status (1)

Country Link
JP (1) JP3437722B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
CN102607811A (en) * 2012-03-23 2012-07-25 中国科学院西安光学精密机械研究所 System and method for determining optical axis of aspheric reflector
CN103487911A (en) * 2013-10-11 2014-01-01 复旦大学 Precision positioning and adjusting device for off-axis optical element
CN104280220A (en) * 2014-10-23 2015-01-14 成都福誉科技有限公司 Optical detecting platform
CN107561654A (en) * 2017-10-24 2018-01-09 西安北方光电科技防务有限公司 For photelectric receiver optical axis and the visualization adjusting apparatus of mechanical axis debugging
CN109374261A (en) * 2018-11-22 2019-02-22 中国航空工业集团公司洛阳电光设备研究所 A kind of multi-light axis consistency detection device and method based on target switching
CN111442910A (en) * 2020-04-23 2020-07-24 中国科学院西安光学精密机械研究所 High-precision multi-optical axis consistency measurement system and method
CN114184140A (en) * 2021-12-02 2022-03-15 绍兴市柯桥区职业教育中心 Off-axis aspherical mirror detection device, detection system and error analysis method
CN119469692A (en) * 2025-01-17 2025-02-18 长春通视光电技术股份有限公司 Off-axis concave parabolic reflector detection system and method based on aberration-free point method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7119895B2 (en) 2000-11-28 2006-10-10 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for adjusting optical component, and optical unit
CN102607811A (en) * 2012-03-23 2012-07-25 中国科学院西安光学精密机械研究所 System and method for determining optical axis of aspheric reflector
CN102607811B (en) * 2012-03-23 2014-10-15 中国科学院西安光学精密机械研究所 System and method for determining optical axis of aspheric reflector
CN103487911B (en) * 2013-10-11 2015-10-28 复旦大学 From axle optical element precision positioning adjusting gear
CN103487911A (en) * 2013-10-11 2014-01-01 复旦大学 Precision positioning and adjusting device for off-axis optical element
CN104280220B (en) * 2014-10-23 2016-10-05 成都福誉科技有限公司 A kind of optical detecting platform
CN104280220A (en) * 2014-10-23 2015-01-14 成都福誉科技有限公司 Optical detecting platform
CN107561654A (en) * 2017-10-24 2018-01-09 西安北方光电科技防务有限公司 For photelectric receiver optical axis and the visualization adjusting apparatus of mechanical axis debugging
CN107561654B (en) * 2017-10-24 2024-02-13 西安北方光电科技防务有限公司 Visual adjusting device for debugging optical axis and mechanical axis of photoelectric receiver
CN109374261A (en) * 2018-11-22 2019-02-22 中国航空工业集团公司洛阳电光设备研究所 A kind of multi-light axis consistency detection device and method based on target switching
CN111442910A (en) * 2020-04-23 2020-07-24 中国科学院西安光学精密机械研究所 High-precision multi-optical axis consistency measurement system and method
CN114184140A (en) * 2021-12-02 2022-03-15 绍兴市柯桥区职业教育中心 Off-axis aspherical mirror detection device, detection system and error analysis method
CN119469692A (en) * 2025-01-17 2025-02-18 长春通视光电技术股份有限公司 Off-axis concave parabolic reflector detection system and method based on aberration-free point method

Also Published As

Publication number Publication date
JP3437722B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
KR100474100B1 (en) Confocal microscope and height measurement method using the same
US7889428B2 (en) External laser light introducing device
US4758089A (en) Holographic interferometer
US6115175A (en) UV image forming optical system
JP3437722B2 (en) Optical axis adjustment device for aspheric mirror
US3963353A (en) Monolithic beam splitter mirror arrangement
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
JPH0812127B2 (en) Curvature radius measuring device and method
JPH11160018A (en) Non-contact measuring apparatus
JP2710519B2 (en) Multi-beam recorder
US5416538A (en) Object-surface-shape measuring apparatus
JP2984635B2 (en) Method and apparatus for inspecting appearance of high-precision pattern
JP2864171B2 (en) Observation optical system
JP4027752B2 (en) Lens point image observation apparatus and method
JPH11153754A (en) Illuminating optical system and axicon prism
JP3174318B2 (en) Lens eccentricity measuring device
JP2902417B2 (en) Interferometer for measuring wavefront aberration
JP2005140589A (en) Interferometer
JP2004101427A (en) Interferometer device
JP3448663B2 (en) Projection exposure equipment
JP3215730B2 (en) Lens eccentricity measuring device
JP2681372B2 (en) Alignment method of an inspected lens in an interferometer and its adjusting device
JP2010223775A (en) Interferometer
JPH0784187A (en) Pupil projection optical system
JP3214063B2 (en) Hologram interferometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees