[go: up one dir, main page]

JPH10100264A - Production of biodegradable foam molded object - Google Patents

Production of biodegradable foam molded object

Info

Publication number
JPH10100264A
JPH10100264A JP8254429A JP25442996A JPH10100264A JP H10100264 A JPH10100264 A JP H10100264A JP 8254429 A JP8254429 A JP 8254429A JP 25442996 A JP25442996 A JP 25442996A JP H10100264 A JPH10100264 A JP H10100264A
Authority
JP
Japan
Prior art keywords
foam particles
plasticizer
foam
particles
cellulose derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8254429A
Other languages
Japanese (ja)
Inventor
Kazunari Fujii
一成 藤井
Makoto Yoshida
吉田  誠
Yukikage Matsui
亨景 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Sogyo Co Ltd
Teijin Ltd
Original Assignee
Suzuki Sogyo Co Ltd
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Sogyo Co Ltd, Teijin Ltd filed Critical Suzuki Sogyo Co Ltd
Priority to JP8254429A priority Critical patent/JPH10100264A/en
Publication of JPH10100264A publication Critical patent/JPH10100264A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate in-mold molding and to enhance mechanical characteristics by bonding a plasticizer of a cellulose derivative to the surfaces of foam particles and thermally plasticizing the surfaces of foam particles to fuse the particles. SOLUTION: Before particles of foam composed of a cellulose derivative are filled into a mold to be thermally shaped, a plasticizer of a cellulose derivative is bonded to the surface of the foam particles in an amt. of 3-30% by wt., pref., 5-15% be wt. of the foam particles. The cellulose derivative constituting the foam particles is obtained by at least apartially esterfying or etherifying hydroxyl groups of cellulose and cellulose acetate into which an acety group is introduced is pref. For example, when the cellulose derivative is cellulose acetate, as the plasticizer, polyethylene glycol and glycerine are used in a mixed state. The plasticizer is bonded to the foam particles by a plasticizer spraying method or a method dripping the plasticizer while the foam particles are stirred.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生分解性発泡体成
形物の製造方法に関する。さらに詳しくは、断熱材、緩
衝材、食品包装材などの各種形態の成形体を容易に成形
することができ、しかも得られる成形体の寸法安定性や
機械的特性が良好な生分解性発泡体成形物の製造方法に
関する。
[0001] The present invention relates to a method for producing a biodegradable foam molded article. More specifically, a biodegradable foam that can easily form molded articles of various forms such as a heat insulating material, a cushioning material, and a food packaging material, and that has excellent dimensional stability and mechanical properties of the resulting molded article. The present invention relates to a method for producing a molded product.

【0002】[0002]

【従来の技術】従来、合成樹脂からなる発泡体は多種多
様のものが製造され、断熱材、緩衝材、食品包装容器な
どの幅広い分野で活用されてきた。近年、これら合成樹
脂発泡体の需要は年々増加する傾向にあり、このため廃
棄される量も年々増加して、環境問題、公害問題として
大きくクローズアップされてきている。しかし、廃棄合
成樹脂発泡体を再生利用するには社会的規模の様々な対
応が求められ、一方焼却処分するには有害ガスの発生防
止、高熱発生による焼却炉の劣化防止など山積みされて
いる問題が多く、廃棄処理の容易な発泡体の開発が強く
望まれている。
2. Description of the Related Art Conventionally, a wide variety of foams made of synthetic resins have been manufactured and utilized in a wide range of fields such as heat insulating materials, cushioning materials, and food packaging containers. In recent years, the demand for these synthetic resin foams has been increasing year by year, and as a result, the amount discarded has also been increasing year by year, and has been greatly highlighted as an environmental problem and a pollution problem. However, the recycling of waste synthetic resin foam requires a variety of measures on a social scale, while the incineration requires a lot of problems such as prevention of harmful gases and prevention of deterioration of incinerators due to high heat generation. Therefore, development of a foam which can be easily disposed of is strongly desired.

【0003】このような要求に対して、これら合成樹脂
(例えばポリスチレン)を生分解性樹脂で置換えた発泡
体が種々提案されている。例えば、特開平5−3063
49号公報、特開平5−269875号公報などには、
水を含浸させた生分解性樹脂チップを、油で加熱して発
泡ビーズまたは発泡ペレットをいったん成形した後、こ
れを型に詰めて熱賦形する方法、及び水を含浸させた生
分解性樹脂を型に詰め込み、型全体を油で加熱して発泡
させ、発泡体成形物を得る方法が開示されている。しか
し、これらの方法では、粒子間の接着性に乏しく成形物
の機械的特性が低いという問題がある。さらに、加熱媒
体として油を使用しているため、発泡体粒子間に油が残
存しやすく、これが徐々にしみ出して汚染するという問
題もある。
In response to such demands, various foams have been proposed in which these synthetic resins (for example, polystyrene) are replaced with biodegradable resins. For example, JP-A-5-3063
No. 49, JP-A-5-269875, etc.
A method of heating foamed beads or foamed pellets by heating oil-impregnated biodegradable resin chips with oil, then filling this into a mold and heat shaping, and a method of water-impregnated biodegradable resin. Is filled in a mold, and the entire mold is heated with oil to foam, thereby obtaining a foam molded article. However, these methods have a problem that the adhesion between particles is poor and the mechanical properties of the molded product are low. Furthermore, since oil is used as the heating medium, oil tends to remain between the foam particles, and there is a problem that the oil gradually exudes and contaminates.

【0004】この粒子間の接着を改善するため、接着剤
を用いて成形する方法も提案されているが、接着剤は生
分解性を有していないものが多く、このような接着剤で
発泡体粒子を被覆すると、生分解性が阻害されることと
なる。一方デンプンや膠などに代表される天然物由来の
接着剤は、生分解性の点では良好であるが、親水性であ
るため湿度の影響を受けやすく、吸湿・吸水により接着
性が極端に低下するため、使用環境の制限を受けるとい
う問題がある。
[0004] In order to improve the adhesion between particles, a method of molding with an adhesive has been proposed. However, many adhesives do not have biodegradability. If the body particles are coated, the biodegradability will be inhibited. Adhesives derived from natural products such as starch and glue, on the other hand, are good in biodegradability, but are easily affected by humidity because they are hydrophilic, and the adhesion is extremely reduced due to moisture absorption and water absorption Therefore, there is a problem that the usage environment is restricted.

【0005】また、特開平5−320405号公報、特
開平6−32928号公報には、ベンジル化セルロース
やセルロースアセテートなどのセルロース誘導体からな
る発泡体粒子の製造方法が開示され、得られた発泡体粒
子を型内に詰めて蒸気加熱により発泡体粒子間を融着せ
しめて成形体となすことも開示されている。しかし、セ
ルロース誘導体に可塑剤が配合されていない場合には、
蒸気加熱では十分に発泡体粒子間を融着させることは困
難である。一方セルロース誘導体に可塑剤が配合されて
いる場合には、発泡体粒子間を融着させるに十分な量の
可塑剤が存在すると、熱融着処理の際に発泡体粒子全体
が可塑化されるため、発泡体粒子が逆に収縮して得られ
る成形体の寸法安定性が悪化し、機械的特性も低下し、
さらには成形体使用時に該可塑剤が溶出して汚染すると
いう問題がある。また可塑剤の使用量を減らすと、セル
ロース誘導体の可塑化が難しくなって、成形時の発泡体
粒子間の融着が困難になるという問題がある。
[0005] JP-A-5-320405 and JP-A-6-32928 disclose a method for producing foam particles comprising a cellulose derivative such as benzylated cellulose or cellulose acetate. It is also disclosed that the particles are packed in a mold and fused between the foam particles by steam heating to form a molded body. However, when a plasticizer is not blended with the cellulose derivative,
It is difficult to sufficiently fuse the foam particles by steam heating. On the other hand, when a plasticizer is blended with the cellulose derivative, if there is a sufficient amount of the plasticizer for fusing between the foam particles, the entire foam particles are plasticized during the heat fusion treatment. Therefore, the dimensional stability of the molded body obtained by the foam particles being shrunk in reverse is deteriorated, the mechanical properties are also reduced,
Further, there is a problem that the plasticizer is eluted and contaminated when using the molded article. Further, when the amount of the plasticizer is reduced, there is a problem that the plasticization of the cellulose derivative becomes difficult, and the fusion between the foam particles during the molding becomes difficult.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来技
術の有する問題に鑑みなされたもので、その目的は、断
熱材、緩衝材、食品包装材などの各種成形体に賦形する
際の型内成形が容易であり、しかも機械的特性の良好な
生分解性発泡体成形物を製造することができる方法を提
供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art, and has as its object to form various shaped articles such as a heat insulating material, a cushioning material, and a food packaging material. It is an object of the present invention to provide a method capable of easily producing a biodegradable foam molded article having good mechanical properties and easy in-mold molding.

【0007】[0007]

【課題を解決するための手段】本発明者らの研究によれ
ば、上記本発明の目的は、「セルロース誘導体からなる
発泡体粒子を型内に充填して熱賦形するに際し、予め該
セルロース誘導体の可塑剤を発泡体粒子表面に3〜30
重量%(発泡体粒子重量基準)付着せしめ、該発泡体粒
子の表面を熱可塑化して融着させることを特徴とする生
分解性発泡体成形物の製造方法。」により達成される。
According to the study of the present inventors, the object of the present invention is to provide a method for preparing "foam particles comprising a cellulose derivative into a mold and heat shaping the foam particles beforehand. Derivative plasticizer is applied to the surface of foam particles by 3 to 30
% By weight (based on the weight of the foam particles), and the surface of the foam particles is thermoplasticized and fused. Is achieved.

【0008】[0008]

【発明の実施の形態】以下、本発明についてさらに詳細
に説明する。本発明の発泡体粒子を構成するセルロース
誘導体とは、セルロース中の水酸基を少なくとも一部エ
ステル化又はエーテル化したものであり、導入される基
としては、アセチル基、プロピオニル基、ブチロイル
基、メチル基、エチル基、シアノエチル基、ベンジル
基、オクチル基などが例示される。なかでもアセチル基
が導入されたセルロースアセテートが好ましい。この場
合酢酸エステル化度は、セルロースに結合している酢酸
の重量割合で表される酢化度でいって45%以上、特に
酢化度が47〜60%(セルロース1単位当たりの結合
アセチル基の数は1.9〜2.8)のものが好ましい。
酢化度が45%未満の場合には、溶融温度が高くなりす
ぎるため。安定して発泡体粒子に溶融成形することが困
難となる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail. The cellulose derivative constituting the foam particles of the present invention is obtained by at least partially esterifying or etherifying a hydroxyl group in cellulose, and the introduced group includes an acetyl group, a propionyl group, a butyroyl group, and a methyl group. , Ethyl, cyanoethyl, benzyl, octyl and the like. Among them, cellulose acetate having an acetyl group introduced therein is preferred. In this case, the acetic acid esterification degree is an acetylation degree represented by a weight ratio of acetic acid bound to cellulose, which is 45% or more, particularly 47 to 60% (the number of bound acetyl groups per unit of cellulose). Is preferably 1.9 to 2.8).
If the acetylation degree is less than 45%, the melting temperature becomes too high. It is difficult to stably melt-mold the foam particles.

【0009】上記セルロース誘導体には、本発明の目的
を損なわない範囲で他の物質(可塑剤は除く)を配合し
てもよく、例えば熱安定剤、発泡調整剤、発泡助剤等が
挙げられる。なかでも、タルク、酸化ケイ素、酸化チタ
ン、酸化マグネシウム、酸化アルミニウム、ケイ酸カル
シウム等の無機系微粒子、セルロース粉末、キチン、キ
トサン、木粉、ステアリン酸金属塩等の有機系微粒子な
どの発泡調整剤、特にタルクは、該セルロース誘導体に
より好適な発泡性を付与することができるので、均一で
且つ高度に発泡した発泡体粒子が容易に得られる。かか
る発泡調整剤は、夫々単独で用いてもよく、2種類以上
を混合して用いてもよい。さらに発泡性を向上させた
り、発泡体粒子作成時に副生される酸性物質を中和させ
ると共にガスを発生させる目的で、例えば炭酸水素ナト
リウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリ
ウム、炭酸カルシウム等の無機微粒子を併用してもよ
い。
The above-mentioned cellulose derivative may be blended with other substances (excluding plasticizers) as long as the object of the present invention is not impaired, and examples thereof include a heat stabilizer, a foam regulator, and a foaming aid. . Among them, foaming regulators such as inorganic fine particles such as talc, silicon oxide, titanium oxide, magnesium oxide, aluminum oxide and calcium silicate, and organic fine particles such as cellulose powder, chitin, chitosan, wood powder, and metal stearate. Particularly, talc can impart more suitable foaming properties to the cellulose derivative, so that uniform and highly foamed foam particles can be easily obtained. Such foam control agents may be used alone or in combination of two or more. Furthermore, for the purpose of improving foamability, neutralizing acidic substances by-produced during the production of foam particles and generating gas, for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, calcium carbonate, etc. Inorganic fine particles may be used in combination.

【0010】これら発泡調整剤や発泡助剤等のセルロー
ス誘導体に対する配合量は、セルロース誘導体重量を基
準として2〜50重量%、好ましくは5〜30重量%の
範囲が適当である。2重量%未満ではこれら添加物を配
合した効果が現われず、例えば発泡調整剤の量が少ない
と不均一で粗い発泡セルが形成されやすく、一方50重
量%を越えるとこれら添加物の2次凝集が起こりやすく
なるため、やはり不均一で粗い発泡セルが形成されやす
くなり、またセルロース誘導体の分率が低下するため発
泡性も低下する。
The amount of these foaming regulators and foaming assistants to be added to the cellulose derivative is suitably in the range of 2 to 50% by weight, preferably 5 to 30% by weight, based on the weight of the cellulose derivative. If the amount is less than 2% by weight, the effect of adding these additives will not appear. For example, if the amount of the foaming regulator is small, uneven and coarse foamed cells are likely to be formed. Is likely to occur, so that non-uniform and coarse foam cells are likely to be formed, and the fraction of the cellulose derivative is reduced, so that the foamability is also reduced.

【0011】本発明で用いられる、上述のセルロース誘
導体からなる発泡体粒子は、その見かけ密度が0.01
〜0.12g/cm3 、好ましくは0.014〜0.0
64g/cm3 、またその長軸と短軸の比(長軸/短
軸)が1〜10、好ましくは1〜3の範囲にあることが
好ましい。見かけ密度が0.01g/cm3 未満の場合
には、得られる発泡体成形物の強度をはじめとする機械
的特性が低下し、逆に0.12g/cm3 を越える場合
には、発泡体成形物の硬度が大きくなり緩衝材、断熱
材、充填材としての特性が不十分となる。また、長軸/
短軸比が10を越える場合には粒子というよりも棒又は
紐状となるため、型内に均一に充填することが難しくな
り、得られる成形体に密度斑が生じやすい。なお、ここ
でいう見かけ密度は、発泡体粒子重量を発泡体粒子の体
積で除したものであり、また長軸/短軸比は発泡体粒子
の最も長い軸方向と最も短い軸方向の長さの比である。
The foam particles comprising the above-mentioned cellulose derivative used in the present invention have an apparent density of 0.01.
0.10.12 g / cm 3 , preferably 0.014 to 0.0
It is preferable that the ratio of the major axis to the minor axis (major axis / minor axis) is in the range of 1 to 10, preferably 1 to 3 , 64 g / cm 3 . When the apparent density is less than 0.01 g / cm 3 , the mechanical properties such as the strength of the obtained foam molded article are reduced. Conversely, when the apparent density exceeds 0.12 g / cm 3 , The hardness of the molded product increases, and the properties as a cushioning material, a heat insulating material, and a filler become insufficient. In addition, long axis /
If the short axis ratio exceeds 10, the particles become rods or strings rather than particles, so that it is difficult to uniformly fill the mold, and density irregularities are likely to occur in the obtained molded product. Here, the apparent density is obtained by dividing the weight of the foam particles by the volume of the foam particles, and the long axis / short axis ratio is the length of the longest axis direction and the shortest axis direction of the foam particles. Is the ratio of

【0012】また、発泡体粒子の大きさは、短軸方向の
切断面積を円に換算したときの直径が3〜20mm、好
ましくは5〜10mmの範囲にあることが好ましい。こ
の範囲未満では発泡体粒子が小さくなりすぎて取扱い性
が悪化し、一方これより大きくなりすぎると、型内に充
填・熱賦形して得られる成形物に大きな空洞部ができや
すくなる。
The size of the foam particles is preferably such that the diameter of the cut area in the short axis direction is 3 to 20 mm, preferably 5 to 10 mm when converted to a circle. If the amount is less than this range, the foam particles become too small and the handleability deteriorates. On the other hand, if it is too large, a molded product obtained by filling and heat shaping in a mold tends to have a large cavity.

【0013】以上に述べた発泡体粒子の製造は特に限定
されず、任意の方法により製造すればよい。セルロース
アセテートを例にあげると、セルロースアセテート10
0重量部に、必要に応じて発泡調製剤、発泡助剤などを
2〜50重量部添加した混合物に、該セルロースアセテ
ート100重量部に対して発泡材としての水を3〜10
0重量部、好ましくは5〜50重量部の割合で含有さ
せ、この混合物を温度120〜250℃、好ましくは1
80〜220℃で加熱溶融混練し、次いで径0.5〜5
mmの細孔を有するダイから押出す。溶融混練時間は、
単位時間当たりの吐出量、溶融混練温度などにより異な
ってくるので一概に決定することはできないが、該混合
物が均一に溶融混練されるに十分な時間であればよい。
また吐出部のダイ温度は、前記溶融混練温度と同じでも
よいが、吐出できる範囲内で該温度よりも低温にしても
よい。
The production of the above-mentioned foam particles is not particularly limited, and may be produced by any method. Taking cellulose acetate as an example, cellulose acetate 10
0 to 100 parts by weight of a cellulose acetate and water as a foaming material are added to 3 to 10 parts by weight of a mixture obtained by adding 2 to 50 parts by weight of a foaming agent, a foaming aid, and the like as needed.
0 parts by weight, preferably 5 to 50 parts by weight, and the mixture is heated to a temperature of 120 to 250 ° C, preferably 1 to 50 parts by weight.
Heat-melt and knead at 80-220 ° C, then diameter 0.5-5
Extrude from a die with a pore size of mm. Melt kneading time is
Since it differs depending on the discharge amount per unit time, the melting and kneading temperature, and the like, it cannot be unconditionally determined, but it is sufficient that the mixing time is sufficient to uniformly melt and knead the mixture.
The die temperature of the discharge section may be the same as the melt-kneading temperature, but may be lower than the temperature within a range where discharge is possible.

【0014】ここで溶融混練に使用される押出機は、高
温高圧下となって水分がセルロースアセテート中に無理
やり溶解されるようになっている限り、どのようなタイ
プの押出機でもよいが、通常は1軸又は2軸のスクリュ
ータイプの押出機が用いられる。
The extruder used for melt-kneading may be any type of extruder as long as water is forcibly dissolved in cellulose acetate under high temperature and high pressure. A single-screw or twin-screw extruder is used.

【0015】次に、ダイ細孔から吐出された溶融セルロ
ースアセテートは、その温度及び水分量によって発泡
(膨化)開始位置は異なってくるが、通常ダイ部より
0.1mm離れた位置から発泡が開始されており、この
発泡過程にあるものを切断するのが好ましい。このよう
にセルロースアセテートが固化する前の溶融可塑化状態
で切断することにより、新たに形成される切断面は、切
断後さらに膨化する過程でその表面が滑らかとなるた
め、表面が滑らかで、しかも発泡体粒子も角が丸まった
ものが得られ、型内充填性が向上するので好ましい。
Next, the starting position of foaming (expansion) of the molten cellulose acetate discharged from the die pores differs depending on the temperature and the amount of water, but foaming usually starts from a position 0.1 mm away from the die portion. It is preferable to cut the material in the foaming process. By cutting in the melt plasticized state before the cellulose acetate is solidified in this way, the newly formed cut surface becomes smoother in the process of further expansion after cutting, so the surface is smooth, and Foamed particles are also preferred because rounded corners can be obtained and the filling property in the mold is improved.

【0016】溶融セルロース誘導体を押出すダイ細孔の
形状は丸、三角、四角、矩形、星形、中空などいずれで
あってもよく、目的に応じて適宜選択すればよい。
The shape of the die pores for extruding the molten cellulose derivative may be any of a circle, a triangle, a square, a rectangle, a star, and a hollow, and may be appropriately selected depending on the purpose.

【0017】本発明においては、上述のセルロース誘導
体からなる発泡体粒子表面には、型内に充填して熱賦形
する前に、該セルロース誘導体の可塑剤を、発泡体粒子
を基準として3〜30重量%、好ましくは5〜15重量
%付着させておくことが肝要である。かくすることによ
り、曲げ強度が0.8Kg/cm2 以上、特に1.0K
g/cm2 以上といった著しく優れた特性を有する発泡
体成形物が得られ、またその破断面も発泡体セルが破壊
されるほど発泡体粒子間は強固に接着される。曲げ強度
可塑剤付着量が3重量%未満の場合には、熱賦形時、発
泡体粒子表面の熱可塑化効果が不十分となって接着斑が
生じやすく、また発泡体粒子間の接触面積も低下しやす
いため、十分な接着が得られなくなろ。その結果、得ら
れる発泡体成形物は、使用中に発泡体粒子が脱落すると
いう問題が生じやすい。一方、30重量%を越える場合
には、発泡体粒子間の接着性は向上するものの、可塑剤
が発泡体粒子内部まで浸透するため、熱賦形時の発泡体
粒子の収縮が大きくなり、得られる成形体の寸法安定性
や密度斑などが悪化するだけでなく、使用中に可塑剤が
溶出して被包装物などを汚損するという問題が生じる。
In the present invention, the plasticizer of the cellulose derivative is added to the surface of the foam particles composed of the above-mentioned cellulose derivative for 3 to 3 days based on the foam particles before filling in a mold and heat shaping. It is important that 30% by weight, preferably 5 to 15% by weight be adhered. By doing so, the bending strength is 0.8 kg / cm 2 or more, especially 1.0 kg / cm 2.
A foam molded article having remarkably excellent properties such as g / cm 2 or more is obtained, and the fracture surface of the foam particles is so strongly adhered that the foam cells are broken. When the flexural strength plasticizer adhesion amount is less than 3% by weight, the thermoplasticizing effect on the surface of the foam particles during heat shaping is insufficient, and adhesion unevenness is likely to occur, and the contact area between the foam particles is increased. Is likely to decrease, so that sufficient adhesion cannot be obtained. As a result, the obtained foam molded article is likely to have a problem that the foam particles fall off during use. On the other hand, when the content exceeds 30% by weight, although the adhesiveness between the foam particles is improved, the plasticizer penetrates into the inside of the foam particles, so that the shrinkage of the foam particles at the time of heat shaping becomes large, and the resulting In addition to the deterioration of the dimensional stability and density unevenness of the molded article to be obtained, a problem arises in that the plasticizer is eluted during use and the packaged article is soiled.

【0018】発泡体粒子に可塑剤を付着せしめるには、
従来公知のどのような方法を用いてもよく、例えば可塑
剤をスプレーで吹き付ける方法、発泡体粒子を撹拌しな
がら可塑剤を滴下する方法、可塑剤を満たした浴液中に
発泡体粒子を浸漬する方法、あるいはメッシュ状やパン
チングプレートのような多孔性の型内に発泡体粒子をあ
らかじめ充填した後可塑剤を満たした浴液中に浸漬する
方法などを挙げることができ、用いる可塑剤の種類、付
着量などに応じて適宜選択すればよい。
In order to attach a plasticizer to the foam particles,
Any conventionally known method may be used, for example, a method of spraying a plasticizer with a spray, a method of dropping a plasticizer while stirring foam particles, and immersing foam particles in a bath liquid filled with a plasticizer. Or a method in which foam particles are pre-filled in a porous mold such as a mesh or punching plate and then dipped in a bath solution filled with a plasticizer. May be selected as appropriate according to the amount of adhesion and the like.

【0019】また、可塑剤は原液のまま付着させてもよ
いが、水、アルコールなどの溶媒で一旦希釈した後、こ
の希釈溶液を付着してもよい。かくすることにより、付
着液の粘度を低下させることができ、特に付着量が少な
い領域ではその付着斑が抑制できるのでより好ましい。
しかし、希釈しすぎて濃度が薄くなると、付着せしめる
液量が増え、また粘度も低くなりすぎるため、可塑剤が
発泡体粒子内部に浸透しやすくなり、発泡体粒子表面と
内部との可塑化温度の差が小さくなって、本発明の効果
が発現し難くなる。したがって、付着液の濃度は、付着
せしめる可塑剤の種類、付着量、使用溶媒の種類などに
より適宜選択することが望ましい。
The plasticizer may be applied as it is as a stock solution. Alternatively, the plasticizer may be once diluted with a solvent such as water or alcohol, and then the diluted solution may be applied. By doing so, the viscosity of the adhesion liquid can be reduced, and particularly in a region where the amount of adhesion is small, the uneven adhesion can be suppressed, which is more preferable.
However, if the concentration is too low and the concentration is too low, the amount of liquid to be attached increases and the viscosity also becomes too low, so that the plasticizer easily penetrates into the inside of the foam particles, and the plasticizing temperature between the surface and the inside of the foam particles is increased. , The effect of the present invention is less likely to be exhibited. Therefore, it is desirable that the concentration of the adhesion liquid is appropriately selected depending on the type of the plasticizer to be adhered, the amount of the adhesion, the type of the solvent used, and the like.

【0020】本発明で用いられる可塑剤は、加熱により
セルロース誘導体を可塑化する働きのある物であれば特
に限定されない。例えばセルロース誘導体がセルロース
アセテートの場合には、ポリエチレングリコール、ポリ
メチレングリコール、グリセリン等の多価アルコール;
フタル酸ジメチル、フタル酸ジエチル、フタル酸ジプロ
ピル、フタル酸ジプロピル、フタル酸ジブチル、フタル
酸ジアミン、フタル酸ジメトキシエチルなどのフタル酸
エステル;リン酸トリブチル、リン酸トリフェニル、リ
ン酸トリクレジル等のリン酸エステル;セバシン酸ジエ
チル、セバシン酸ジブチル、セバシン酸ジオクチル等の
セバシン酸エステル;アジピン酸ジオクチル、アジピン
酸ブチルブチルオクチル、アジピン酸ブチルベンジル等
のアジピン酸エステル;クエン酸トリブチル、クエン酸
トリ−2−エチルヘキシル、クエン酸アセチルトリブチ
ル、クエン酸アセチルトリオクチルなどのクエン酸エス
テル;酒石酸ジイソブチル、ステアリン酸ブチル、オレ
イン酸ブチル、大豆油、ひまし油、樟脳などの可塑剤を
例示することができる。これらの可塑剤はそれぞれ単独
で用いてもよく、例えばポリエチレングリコールとグリ
セリンのように2種以上を混合して用いてもよい。
The plasticizer used in the present invention is not particularly limited as long as it has a function of plasticizing the cellulose derivative by heating. For example, when the cellulose derivative is cellulose acetate, polyhydric alcohols such as polyethylene glycol, polymethylene glycol, and glycerin;
Phthalates such as dimethyl phthalate, diethyl phthalate, dipropyl phthalate, dipropyl phthalate, dibutyl phthalate, diamine phthalate and dimethoxyethyl phthalate; phosphoric acids such as tributyl phosphate, triphenyl phosphate and tricresyl phosphate Esters: Sebacic esters such as diethyl sebacate, dibutyl sebacate and dioctyl sebacate; Adipates such as dioctyl adipate, butyl butyl octyl adipate and butyl benzyl adipate; tributyl citrate and tri-2-ethylhexyl citrate Citrates such as acetyl tributyl citrate, acetyl trioctyl citrate; and plasticizers such as diisobutyl tartrate, butyl stearate, butyl oleate, soybean oil, castor oil, and camphor. That. These plasticizers may be used alone, or may be used as a mixture of two or more kinds such as polyethylene glycol and glycerin.

【0021】可塑剤を付着させた発泡体粒子を型内に充
填して熱賦形する際の温度は、付着させた可塑剤の種類
及びその付着量により最適温度が変化するが、あまりに
低温すぎると発泡体粒子間の接着不良が発生しやすく、
逆にあまりに高温すぎると可塑剤の熱劣化、着色、発泡
体粒子の収縮などが生じやすいため、120〜200℃
の範囲で可塑剤の種類・付着量に応じて適宜選択するこ
とが大切である。
The optimum temperature at which the foam particles with the plasticizer adhered are filled into a mold and subjected to thermal shaping varies depending on the type of plasticizer adhered and the amount of the plasticizer adhered, but the temperature is too low. Poor adhesion between the foam particles and
On the other hand, if the temperature is too high, thermal degradation of the plasticizer, coloring, shrinkage of the foam particles, and the like are likely to occur.
It is important to select appropriately according to the type and the amount of the plasticizer in the range of.

【0022】熱賦形の方法についても、熱プレスによる
方法、加熱バス中で加熱する方法、熱風熱処理機により
熱風を吹付ける方法などが挙げられる。
Examples of the heat shaping method include a method using a hot press, a method using a heating bath, and a method using a hot air heat treatment machine to blow hot air.

【0023】[0023]

【実施例】以下、実施例をあげて本発明をさらに詳細に
説明する。なお、実施例中における各評価項目は、以下
の測定方法にしたがった。 <接着性(曲げ強度、破断面の破壊状況>JIS K7
221に準拠し、幅5cm×高さ4cm×有効長20c
mの試験体をインテスコ製圧縮試験機を用いて、その曲
げ強度を測定した。またその破断面の破壊状況を、素材
破壊(発泡セルの破壊)の有無により目視判定した。曲
げ強度が0.8kg/cm2 以上で接着力が発泡体粒子
の素材強度を上回り、破断面において発泡体セルの破壊
が生じるため、曲げ強度0.8kg/cm2 以上の水準
を合格とした。 <収縮率>30cm×30cm×5cmの板状の成形型
を使用し、得られた発泡体成形物のサイズから収縮率を
算出した。この値が5%以下を合格とした。
The present invention will be described in more detail with reference to the following examples. In addition, each evaluation item in an Example followed the measuring method below. <Adhesiveness (Bending strength, fracture status of fracture surface)> JIS K7
221 standard, width 5cm x height 4cm x effective length 20c
The bending strength of the m specimen was measured using a compression tester manufactured by Intesco. The state of destruction of the fractured surface was visually determined based on the presence or absence of material destruction (destruction of foam cells). Flexural strength exceeds the material strength of the adhesive strength foam particles 0.8 kg / cm 2 or more, since the destruction of the foam cells in the fracture surface occurs, the bending strength 0.8 kg / cm 2 or more levels was passed . <Shrinkage> The shrinkage was calculated from the size of the obtained molded foam using a plate-shaped mold of 30 cm × 30 cm × 5 cm. When this value was 5% or less, it was regarded as acceptable.

【0024】[実施例1〜4、比較例1、2]帝人
(株)製セルロースジアセテート90重量%と富士タル
ク(株)製TALC(商品名LMR−400)10重量
%とからなる発泡体粒子(長軸/短軸比=1.5、短軸
方向の切断面積:円換算で直径約6mm)に、可塑剤と
してポリエチレングリコール(PEG:平均分子量40
0)を、発泡体粒子重量に対して表1記載の割合となる
ようにスプレーガンで付着せしめ、次いで型内に充填し
て熱風乾燥機で150℃下20分間熱成形した。得られ
た発泡成形体の密度はいずれも約0.045g/cm3
であった。また成形体の接着性及び収縮率は表1に示す
とおりであった。
Examples 1-4, Comparative Examples 1 and 2 Foam comprising 90% by weight of cellulose diacetate manufactured by Teijin Limited and 10% by weight of TALC (trade name: LMR-400) manufactured by Fuji Talc Ltd. Particles (major axis / minor axis ratio = 1.5, cut area in the minor axis direction: about 6 mm in diameter in circle) were treated with polyethylene glycol (PEG: average molecular weight 40) as a plasticizer.
0) was applied by a spray gun so as to have a ratio shown in Table 1 with respect to the weight of the foam particles, then filled in a mold, and thermoformed at 150 ° C. for 20 minutes with a hot air drier. The density of each of the obtained foamed molded articles was about 0.045 g / cm 3.
Met. The adhesiveness and shrinkage of the molded product were as shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】本発明で用いられる発泡体粒子は、素材
自体が生分解性及び易焼却性を有しているため、環境に
優しく、焼却処理しても有毒ガスや焼却炉劣化の問題が
ない。しかも発泡体粒子表面には可塑剤が予め付着され
ているので、型内に充填して熱賦形する際、容易に発泡
体粒子間を融着させることができ、機械的特性に優れた
発泡体成形物が得られる。したがって、本発明の方法に
よる発泡体成形物は、その特徴を生かして各種分野に使
用することができるものである。
The foam particles used in the present invention are environmentally friendly because the material itself has biodegradability and easy incineration, and even if incinerated, there is a problem of toxic gas and incinerator deterioration. Absent. In addition, since a plasticizer is preliminarily attached to the surface of the foam particles, the foam particles can be easily fused to each other when filled in a mold and subjected to thermal shaping, and foaming with excellent mechanical properties can be achieved. A molded body is obtained. Therefore, the foam molded article according to the method of the present invention can be used in various fields by utilizing its features.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 亨景 大阪府茨木市耳原3丁目4番1号 帝人株 式会社大阪研究センター内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Torukei Matsui 3-4-1, Amihara, Ibaraki-shi, Osaka Teijin Limited Osaka Research Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 セルロース誘導体からなる発泡体粒子を
型内に充填して熱賦形するに際し、予め該セルロース誘
導体の可塑剤を発泡体粒子表面に3〜30重量%(発泡
体粒子重量基準)付着せしめ、該発泡体粒子の表面を熱
可塑化して融着させることを特徴とする生分解性発泡体
成形物の製造方法。
When filling foam particles made of a cellulose derivative into a mold and performing heat shaping, 3 to 30% by weight (based on the weight of the foam particles) of a plasticizer of the cellulose derivative is previously added to the surface of the foam particles. A method for producing a biodegradable foam molded article, wherein the molded article is adhered, and the surfaces of the foam particles are thermoplasticized and fused.
【請求項2】 セルロース誘導体がセルロースアセテー
トである請求項1記載の生分解性発泡体成形物の製造方
法。
2. The method for producing a biodegradable foam molded article according to claim 1, wherein the cellulose derivative is cellulose acetate.
【請求項3】 発泡体粒子の見かけ密度が0.01〜
0.12g/cm3 、長軸/短軸比が1〜10である請
求項1又は2記載の生分解性発泡体成形物の製造方法。
3. The foam particles have an apparent density of 0.01 to 0.01.
Method for producing a 0.12 g / cm 3, the long axis / short axis ratio of 1 to 10 claim 1 or 2 biodegradable foam molded product according.
JP8254429A 1996-09-26 1996-09-26 Production of biodegradable foam molded object Pending JPH10100264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8254429A JPH10100264A (en) 1996-09-26 1996-09-26 Production of biodegradable foam molded object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8254429A JPH10100264A (en) 1996-09-26 1996-09-26 Production of biodegradable foam molded object

Publications (1)

Publication Number Publication Date
JPH10100264A true JPH10100264A (en) 1998-04-21

Family

ID=17264870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8254429A Pending JPH10100264A (en) 1996-09-26 1996-09-26 Production of biodegradable foam molded object

Country Status (1)

Country Link
JP (1) JPH10100264A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012723A1 (en) * 1997-09-05 1999-03-18 Teijin Limited Biodegradable cellulose acetate foams and process for producing the same
CN112654408A (en) * 2018-09-28 2021-04-13 陶氏环球技术有限责任公司 Foam control agent for preventing hydroxyethyl cellulose derivative and method for processing food
CN115701981A (en) * 2020-07-13 2023-02-14 株式会社大赛璐 Cellulose acetate particle, cosmetic composition, and method for producing cellulose acetate particle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999012723A1 (en) * 1997-09-05 1999-03-18 Teijin Limited Biodegradable cellulose acetate foams and process for producing the same
US6221924B1 (en) 1997-09-05 2001-04-24 Teijin Limited Biodegradable cellulose acetate foam and process for its production
CN112654408A (en) * 2018-09-28 2021-04-13 陶氏环球技术有限责任公司 Foam control agent for preventing hydroxyethyl cellulose derivative and method for processing food
CN115701981A (en) * 2020-07-13 2023-02-14 株式会社大赛璐 Cellulose acetate particle, cosmetic composition, and method for producing cellulose acetate particle

Similar Documents

Publication Publication Date Title
JP2749918B2 (en) Biodegradable product and method for producing the same
EP0670863B1 (en) Biodegradable compositions comprising starch
EP0758669A2 (en) Composition comprising destructured starch suitable for producing articles of biodegradable plastics material
JP2010260923A (en) Foaming resin composition and foam
US6221924B1 (en) Biodegradable cellulose acetate foam and process for its production
EP1090064A1 (en) Foamed thermoplastic film made from biodegradable materials
JP3253135B2 (en) Biodegradable resin foam
JPH10100264A (en) Production of biodegradable foam molded object
JP2001200084A (en) Cellulose acetate based resin foam with biodegradability and also excellent mechanical property and heat moldability, and cellulose acetate based resin foam molded article with biodegradability and also excellent mechanical property and dimensional stability
JP2003011201A (en) Foamed molded object and method for manufacturing the same
JP2001181429A (en) Cellulose acetate-based resin foam excellent in biodegradability, mechanical property and thermal shape-retaining property and production method, and molded product of cellulose acetate-based resin foam excellent in biodegradability, mechanical property and dimensional stability and production method
JP2002371153A (en) Biodegradable foamed molded body and method for manufacturing the same
JP3921548B2 (en) Cellulose acetate biodegradable foam and method for producing the same
JP2009292891A (en) Resin composition for forming loosened foam and loosened foam
JP3318216B2 (en) Biodegradable foam particles and method for producing the same
JP3113706B2 (en) Method for producing biodegradable foam
JPH10265607A (en) Production of biodegradable foam molding
JP2000190411A (en) Biodegradable resin extrusion foam excellent in secondary molding processability and biodegradable resin foamed molded product using the same and production of them
JP2000086793A (en) Cellulose acetate foam and its production
JP3531922B2 (en) Method for producing molded article of expanded aliphatic polyester resin particles
JP2965887B2 (en) Method for producing cellulose acetate foam
JP2000334848A (en) Production of cellulosic foam molding
JP3860346B2 (en) Non-eluting biodegradable resin extrusion foam molded article, biodegradable resin foam molded article using the same, and production method thereof
JP3860346B6 (en) Non-eluting biodegradable resin extrusion foam molded article, biodegradable resin foam molded article using the same, and production method thereof
JP3344752B2 (en) Method for producing biodegradable resin foam