JPH0998513A - Charge / discharge control device for hybrid electric vehicle - Google Patents
Charge / discharge control device for hybrid electric vehicleInfo
- Publication number
- JPH0998513A JPH0998513A JP25664695A JP25664695A JPH0998513A JP H0998513 A JPH0998513 A JP H0998513A JP 25664695 A JP25664695 A JP 25664695A JP 25664695 A JP25664695 A JP 25664695A JP H0998513 A JPH0998513 A JP H0998513A
- Authority
- JP
- Japan
- Prior art keywords
- charging
- charge
- state
- power generation
- battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/62—Hybrid vehicles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Electric Propulsion And Braking For Vehicles (AREA)
- Hybrid Electric Vehicles (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
(57)【要約】
【課題】 本発明は、原動機で駆動される発電機をそな
えたハイブリッド電気自動車の充放電制御装置に関し、
初期電池走行距離を確保し、且つ、発電走行の走行割合
を抑制しながら、発電走行時に充電効率のよい充電率領
域で発電(充電)を行なえるようにする。
【解決手段】 車載の原動機により発電機を駆動してバ
ッテリを充電するための充電制御を行なうハイブリッド
電気自動車の充放電制御装置において、初期充電開始の
充電率及びこの初期充電終了の充電率を、充電効率のよ
い最適充電範囲よりもいずれも低く設定し、初期充電の
後に、この初期充電よりも充電開始の充電率や充電終了
の充電率が最適充電範囲に近い中間充電処理を経て、最
適充電範囲による充電に移行できるように構成する。
The present invention relates to a charge / discharge control device for a hybrid electric vehicle including a generator driven by a prime mover,
While ensuring an initial battery travel distance and suppressing the travel ratio of power generation travel, power generation (charging) can be performed in a charging rate region with good charging efficiency during power generation travel. In a charging / discharging control device for a hybrid electric vehicle that performs a charging control for driving a generator by a vehicle-mounted prime mover to charge a battery, a charging rate at the start of initial charging and a charging rate at the end of initial charging are Set lower than the optimum charging range with good charging efficiency, and after the initial charging, perform the intermediate charging process in which the charging rate at the start of charging and the charging rate at the end of charging are closer to the optimal charging range than this initial charging It is configured to be able to shift to charging by range.
Description
【0001】[0001]
【発明の属する技術分野】本発明は、自ら電気エネルギ
を発生させながら走行することができるように発電機と
この発電機を駆動する原動機とをそなえたハイブリッド
電気自動車に関し、特に、発電機を駆動した発電走行を
制御する、ハイブリッド電気自動車の充放電制御装置に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hybrid electric vehicle provided with a generator and a prime mover for driving the generator so that the vehicle can travel while generating electric energy. The present invention relates to a charging / discharging control device for a hybrid electric vehicle, which controls the running of electric power.
【0002】[0002]
【従来の技術】近年、自動車において、直接的には排出
ガスを出さない、いわゆる電気自動車が注目されつつあ
るが、電気自動車では、ガソリン自動車におけるガソリ
ン補給に相当するように、エネルギ源であるバッテリの
残存容量が減ったら充電を行なわなくてはならないが、
このバッテリの充電はガソリン補給のように手軽には行
なえないのが現状である。このため、バッテリの容量不
足により車両が路上で停止してしまったときには、これ
に対する処置が容易ではない。2. Description of the Related Art In recent years, so-called electric vehicles, which do not directly emit exhaust gas, have been attracting attention in automobiles. However, in electric vehicles, a battery, which is an energy source, corresponds to gasoline replenishment in a gasoline automobile. If the remaining capacity of the
The current situation is that this battery cannot be charged as easily as gasoline replenishment. For this reason, when the vehicle stops on the road due to insufficient battery capacity, it is not easy to take measures against the stop.
【0003】そこで、電気自動車自体に発電機を搭載し
た、いわゆるシリーズ式ハイブリッド電気自動車(以
下、ハイブリッド電気自動車と省略する)が考えられ、
このようなハイブリッド電気自動車に関しても種々の技
術が提案されている。このように発電機を搭載したハイ
ブリッド電気自動車では、バッテリに蓄えられている電
力でモータを作動させることにより車両を駆動する走行
モード(EV走行モード)と、発電機で発電を行ないな
がらこの発電電力により車両を駆動する走行モード(発
電走行モード又はHEV走行モード)とを選択できる。Therefore, a so-called series hybrid electric vehicle (hereinafter, abbreviated as a hybrid electric vehicle) in which a generator is mounted on the electric vehicle itself has been considered.
Various technologies have been proposed for such a hybrid electric vehicle. In a hybrid electric vehicle equipped with a generator as described above, a traveling mode (EV traveling mode) in which the vehicle is driven by operating the motor with the electric power stored in the battery and the generated electric power generated by the generator while being generated. The drive mode for driving the vehicle (power generation drive mode or HEV drive mode) can be selected by.
【0004】このようなハイブリッド電気自動車におけ
る発電の制御は、例えば特開昭50−21210号公報
のハイブリッド方式電気車両の発電制御方法及びその装
置に開示されているように、バッテリの残存容量に基づ
いて行なうのが一般的である。つまり、例えば図5に示
すように、外部充電により満充電されたバッテリを使っ
て発電を行なわないEV走行モード〔で示す初期電池
走行〕で走行していくと、次第に電池充電率(バッテリ
の残存容量)C(%)が減少する。そして、充電率Cが
所定値(発電開始充電率)C1まで減少すると発電機を
作動させてHEV走行モード〔で示すハイブリッド走
行〕に切り換える。勿論、残存容量Cが所定値C1まで
減少する前に外部充電により満充電されるとEV走行モ
ード〔で示す初期電池走行〕を続行できる。The control of power generation in such a hybrid electric vehicle is based on the remaining capacity of the battery, as disclosed in, for example, the power generation control method for hybrid electric vehicles and its apparatus disclosed in Japanese Patent Application Laid-Open No. 50-21210. It is common practice. That is, for example, as shown in FIG. 5, when the vehicle runs in the EV running mode [initial battery running indicated by], which does not generate power using the battery fully charged by external charging, the battery charge rate (battery remaining) gradually increases. Capacity) C (%) decreases. When the charging rate C decreases to a predetermined value (power generation start charging rate) C1, the generator is operated to switch to the HEV traveling mode [hybrid traveling]. Of course, if the vehicle is fully charged by external charging before the remaining capacity C decreases to the predetermined value C1, the EV running mode [initial battery running indicated by] can be continued.
【0005】なお、EV走行モードが長過ぎると、発電
機駆動用エンジンの排気ガス浄化触媒の温度が低下して
浄化能力が悪化してしまうのでこの点でも、EV走行モ
ードの継続時間は規制される。HEV走行モード時に
は、発電用エンジンを作動させて発電機のタービンを回
転駆動することで発電を行なうが、一般には発電効率が
高く又排気ガスも浄化し易いエンジン回転速度及び出力
トルク(発電負荷)で発電機を駆動して一定の発電出力
を得るようにしている。このような発電機による発電出
力は、通常走行を賄えるように一定レベル以上に設定さ
れている。If the EV traveling mode is too long, the temperature of the exhaust gas purifying catalyst of the engine for driving the generator is lowered and the purifying ability is deteriorated. In this respect also, the duration of the EV traveling mode is regulated. It In the HEV running mode, power is generated by operating the power generation engine and rotationally driving the turbine of the generator. Generally, the engine rotation speed and output torque (power generation load) have high power generation efficiency and exhaust gas can be easily purified. The generator is driven by to obtain a constant power output. The power output by such a generator is set to a certain level or higher so as to cover normal traveling.
【0006】つまり、発電走行モード時に、発電機によ
り一定の発電電力容量を得るようにする場合、この容量
が少ないと、高速走行時等の電力消費率(単位走行時間
当たりに走行に要する電力消費量)の高い走行時に、発
電電力が消費電力を下回って、バッテリの放電が継続し
てバッテリ上がりを生じてしまう。そこで、従来は、こ
の発電機により高電力消費率での電力を賄えるように発
電出力の大きさを十分大きく設定している。このため、
発電走行モード中は、通常は図5,図6に示すように、
バッテリの充電と放電とが繰り返されることになるので
ある。That is, when a certain amount of generated power is generated by the generator in the power generation running mode, if this capacity is small, the power consumption rate during high-speed running (power consumption required for running per unit running time) When the vehicle travels with a large amount of electricity, the generated power is less than the power consumption, and the battery continues to be discharged, causing the battery to run out. Therefore, conventionally, the magnitude of the power generation output is set to be sufficiently large so that the power at a high power consumption rate can be covered by the generator. For this reason,
During the power generation running mode, normally, as shown in FIGS.
The charging and discharging of the battery will be repeated.
【0007】つまり、発電走行時〔で示すハイブリッ
ド走行時〕には、図5に示すように、発電電力が消費電
力を上回って、バッテリが充電されていく。そして、バ
ッテリの充電率Cが所定値(発電停止充電率)C2まで
回復すると発電用エンジン及び発電機を停止させて、
で示す電池走行を行なう。そして、再びバッテリの放電
により車両を走行させると、バッテリの充電率Cが発電
開始充電率C1まで減少するので、再び発電用エンジン
及び発電機を作動させて、発電走行〔で示すハイブリ
ッド走行〕を行なう。That is, during power generation travel [during hybrid travel indicated by], as shown in FIG. 5, the generated power exceeds the power consumption, and the battery is charged. When the charging rate C of the battery recovers to a predetermined value (power generation stop charging rate) C2, the engine for power generation and the generator are stopped,
Run the battery indicated by. Then, when the vehicle is driven again by discharging the battery, the charging rate C of the battery decreases to the power generation start charging rate C1, so the engine for power generation and the generator are operated again, and power generation traveling [hybrid traveling] is performed. To do.
【0008】したがって、HEV走行モード時には、こ
のような発電用エンジン及び発電機の作動と停止、即
ち、発電走行と電池走行とを繰り返しながら走行するこ
とになる。Therefore, in the HEV running mode, the engine and generator for power generation are operated and stopped, that is, the electric power running and the battery running are repeated.
【0009】[0009]
【発明が解決しようとする課題】ところで、電気自動車
本来の利点は、前述のように駆動源のモータが排出ガス
を出さないことや内燃機関に比べて静粛性が高いことが
上げられ、図5に示すのハイブリッド走行ではこの利
点が生かせない。そこで、図5に示す走行モデルにおけ
るで示す初期の電池のみによる走行距離をできるだけ
拡大するようにすべく、発電開始充電率はなるべく低く
設定している。By the way, as described above, the essential advantages of the electric vehicle are that the motor of the driving source does not emit exhaust gas and that the motor is quieter than the internal combustion engine, as shown in FIG. This advantage cannot be used in the hybrid driving shown in (4). Therefore, the power generation start charging rate is set as low as possible in order to maximize the traveling distance with only the initial battery shown in the traveling model shown in FIG.
【0010】しかしながら、このように発電開始充電率
を低く設定すると電池の充電効率の悪い充電率領域で充
電を行なうことになってしまう場合があり、この場合、
ハイブリッド走行時の発電用内燃機関の燃費が悪化し
て、排気ガスの増大を招くおそれが発生する。だからと
いって、バッテリの充電率が極めて高い領域まで一気に
ハイブリッド走行による充電を行なったのでは、発電走
行率が高まってしまい上述のような電気自動車本来の利
点が得られない。However, if the power generation start charging rate is set low in this way, charging may occur in a charging rate region where the charging efficiency of the battery is poor. In this case,
There is a possibility that the fuel efficiency of the internal combustion engine for power generation during hybrid traveling deteriorates, leading to an increase in exhaust gas. However, if the battery is charged by the hybrid drive all at once in a region where the charge rate of the battery is extremely high, the power generation rate is increased, and the above-mentioned inherent advantages of the electric vehicle cannot be obtained.
【0011】本発明は、上述の課題に鑑み創案されたも
ので、初期電池走行距離を確保し、且つ、発電走行(ハ
イブリッド走行)の走行割合を抑制して、電気自動車本
来の排出ガスを出さずに静粛性が高いという利点を十分
に得ながら、発電走行時には充電効率の悪い充電率領域
での発電(充電)をできるだけ回避できるようにして、
発電用内燃機関の燃費の悪化を防止して排気ガスの低減
を図れるようにした、ハイブリッド電気自動車の充放電
制御装置を提供することを目的とする。The present invention was devised in view of the above-mentioned problems, and secures an initial battery traveling distance and suppresses the traveling ratio of power generation traveling (hybrid traveling) to generate the original exhaust gas of an electric vehicle. Without taking advantage of its high quietness, power generation (charging) can be avoided as much as possible in the charging rate region where charging efficiency is poor during power generation running,
An object of the present invention is to provide a charge / discharge control device for a hybrid electric vehicle, which can prevent deterioration of fuel efficiency of an internal combustion engine for power generation and reduce exhaust gas.
【0012】[0012]
【課題を解決するための手段】このため、請求項1記載
の本発明のハイブリッド電気自動車の充放電制御装置
は、車載のバッテリにより電動機を駆動して走行するた
めの放電制御ととともに、車載の原動機により発電機を
駆動して該バッテリを充電するための充電制御を行なう
ハイブリッド電気自動車の充放電制御装置において、該
バッテリの充電状態が、略満充電の状態から最適充電開
始状態よりも小さい初期充電開始状態まで放電したこと
を判定する初期充電開始状態判定手段と、該初期充電開
始状態判定手段からの判定信号を受けると該原動機を作
動させて発電を行なって該バッテリを最適充電終了状態
よりも小さい初期充電終了状態まで充電する初期充電制
御手段と、該初期充電終了後の放電により該バッテリの
充電状態が、該初期充電終了状態から、該最適充電開始
状態よりも小さく且つ該初期充電開始状態よりも大きい
中間充電開始状態まで放電したことを判定する中間充電
開始状態判定手段と、該中間充電開始状態判定手段から
の判定信号を受けると該原動機を作動させて発電を行な
って該バッテリを該最適充電終了状態よりも小さく該初
期充電終了状態よりも大きい中間充電終了状態まで充電
する中間充電制御手段と、該中間充電終了後の放電によ
り該バッテリの充電状態が、該中間充電終了状態から、
該最適充電開始状態まで放電したことを判定する最適充
電開始状態判定手段と、該最適充電開始状態判定手段か
らの判定信号を受けると該原動機を作動させて発電を行
なって該バッテリを該最適充電終了状態まで充電する最
適充電制御手段とをそなえていることを特徴としてい
る。Therefore, the charging / discharging control device for a hybrid electric vehicle according to the present invention according to the first aspect of the present invention has a discharge control for driving an electric motor by a battery mounted on the vehicle to drive the vehicle, as well as an onboard vehicle. In a charging / discharging control device for a hybrid electric vehicle that performs a charging control for driving a generator by a prime mover to charge the battery, an initial state in which the charging state of the battery is smaller than an optimal charging start state from a substantially fully charged state. An initial charge start state determination means for determining that the battery has been discharged to the charge start state, and when the determination signal from the initial charge start state determination means is received, the prime mover is operated to generate power to bring the battery from the optimum charge end state. Is smaller than the initial charge control state, and the charge state of the battery is determined by the discharge after the initial charge is completed. An intermediate charging start state determining means for determining that the battery has been discharged from the charging end state to an intermediate charging start state smaller than the optimum charging start state and larger than the initial charging start state, and the intermediate charging start state determining means. When the determination signal is received, the prime mover is operated to generate electric power to charge the battery to an intermediate charge end state that is smaller than the optimum charge end state and larger than the initial charge end state, and the intermediate charge control means. The state of charge of the battery due to discharge after the end of the intermediate charge end state,
The optimal charging start state determining means for determining that the battery has been discharged to the optimal charging start state, and when the determination signal from the optimal charging start state determining means is received, the prime mover is operated to generate power to optimally charge the battery. It is characterized by having an optimum charging control means for charging to the end state.
【0013】請求項2記載の本発明のハイブリッド電気
自動車の充放電制御装置は、請求項1記載の構成におい
て、該中間充電開始状態及び該中間充電終了状態が、次
第に充電状態を増大させるようにして複数組設けられる
とともに、該中間充電制御手段が、これらの複数の中間
充電開始状態及び中間充電終了状態に応じて複数回の中
間充電制御を行なうように構成されて、該最適充電制御
手段が、これらの複数回の中間充電制御を経て最適充電
制御を行なうように構成されていることを特徴としてい
る。According to a second aspect of the present invention, there is provided a charge / discharge control device for a hybrid electric vehicle according to the first aspect, wherein the intermediate charging start state and the intermediate charging end state gradually increase the charging state. And a plurality of sets of the intermediate charge control means are provided, and the intermediate charge control means is configured to perform the intermediate charge control a plurality of times in accordance with the plurality of intermediate charge start states and intermediate charge end states. It is characterized in that the optimal charging control is performed through the intermediate charging control performed a plurality of times.
【0014】請求項3記載の本発明のハイブリッド電気
自動車の充放電制御装置は、請求項1又は2記載の構成
において、該中間充電制御手段による中間充電の最終回
に、該最適充電開始状態までは達しない最終中間充電開
示状態から該最適充電終了状態に到達するまで充電を行
なうように構成されていることを特徴としている。According to a third aspect of the present invention, there is provided a charge / discharge control device for a hybrid electric vehicle according to the first or second aspect, wherein the intermediate charge control means performs the final intermediate charge until the optimum charge start state is reached. It is characterized in that charging is performed from the final intermediate charging disclosure state that does not reach to the optimum charging end state.
【0015】[0015]
【発明の実施の形態】以下、図1〜図4を参照して、図
面により、本発明の一実施形態としてのハイブリッド電
気自動車の充放電制御装置について説明する。図1にお
いて、1はバッテリであり、このバッテリ1は車両に搭
載された発電機6(後述する)又は車両に装備されない
外部充電器(図示略)により繰り返し充電することがで
きる。2はバッテリ1から電力を供給されるモータ(走
行用電動機)であり、このモータ2により自動車の駆動
輪3A,3Bが駆動される。BEST MODE FOR CARRYING OUT THE INVENTION A charge / discharge control device for a hybrid electric vehicle as an embodiment of the present invention will be described below with reference to FIGS. In FIG. 1, reference numeral 1 is a battery, and the battery 1 can be repeatedly charged by a generator 6 (described later) mounted on the vehicle or an external charger (not shown) not equipped on the vehicle. Reference numeral 2 denotes a motor (a traveling electric motor) supplied with electric power from the battery 1. The motor 2 drives the drive wheels 3A and 3B of the automobile.
【0016】モータ2の出力は、モータコントローラ
(電動機制御手段)4により、ドライバの出力要求操作
(即ち、図示しないアクセルペダルの踏込み状態)やモ
ータ2の現作動状態等に基づいて、制御される。また、
モータコントローラ4では、図示しないブレーキペダル
の踏込み等から制動指令を検出すると、モータ2を発電
機に切り換えて、駆動輪3A,3Bからの回転エネルギ
で発電を行ないながら制動力を与える回生制動を行なえ
るようになっている。The output of the motor 2 is controlled by a motor controller (electric motor control means) 4 on the basis of a driver's output request operation (that is, a depressing state of an accelerator pedal (not shown)) or a current operating state of the motor 2. . Also,
When the motor controller 4 detects a braking command from depression of a brake pedal (not shown) or the like, the motor 2 is switched to a generator, and regenerative braking can be performed by applying a braking force while generating electric power with the rotational energy from the drive wheels 3A and 3B. It has become so.
【0017】5は、APU(Auxiliary Power Unit,補
助発電ユニット)であり、発電機6とこの発電機6を駆
動する原動機である発電用内燃機関(以下、エンジンと
いう)7とから構成される。このAPU5では、発電機
6で発電された電力によりバッテリ1を充電しうるよう
にバッテリ1に接続されている。このAPU5(発電機
6及びエンジン7)の制御は、モータコントローラ4の
制御とともに、走行マネージメントコントローラ9によ
って行なわれる。Reference numeral 5 denotes an APU (Auxiliary Power Unit), which is composed of a generator 6 and a power generating internal combustion engine (hereinafter referred to as engine) 7 which is a prime mover for driving the generator 6. The APU 5 is connected to the battery 1 so that the battery 1 can be charged with the electric power generated by the generator 6. The control of the APU 5 (the generator 6 and the engine 7) is performed by the traveling management controller 9 together with the control of the motor controller 4.
【0018】走行マネージメントコントローラ9には、
ハード的にはその主要部としてCPU(図示略)そなえ
るとともに、固定値データ等を記憶するROM(図示
略)等をそなえており、上述の発電機6及びエンジン7
やモータコントローラ4の制御のための演算や制御信号
の出力を行なうようになっている。本電気自動車では、
この走行マネージメントコントローラ9内のAPU制御
部10を通じて、エンジン7を作動させて発電機6で発
電された電力でバッテリ1を充電させながらモータ2を
作動させることにより車両を駆動する走行(ハイブリッ
ド走行又は発電走行又はHEV走行という)と、エンジ
ン7を停止させてバッテリ1に蓄えられている電力でモ
ータ2を作動させることにより車両を駆動する走行(電
池走行又はEV走行という)とのいずれかに切り替えら
れるようになっている。The running management controller 9 includes
In terms of hardware, it has a CPU (not shown) as its main part, and also has a ROM (not shown) for storing fixed value data and the like.
Also, the calculation for controlling the motor controller 4 and the output of the control signal are performed. In this electric vehicle,
Through the APU controller 10 in the travel management controller 9, the vehicle is driven by operating the engine 7 to operate the motor 2 while charging the battery 1 with the electric power generated by the generator 6 (hybrid travel or Power generation traveling or HEV traveling) and traveling traveling the vehicle by driving the motor 2 by stopping the engine 7 and operating the electric power stored in the battery 1 (referred to as battery traveling or EV traveling). It is designed to be used.
【0019】APU制御部10では、記憶手段11と、
演算手段12と、判定手段13と、指令手段14とがそ
なえられ、検出されたバッテリ1の充電率(残存容量)
Cが記憶手段11に記憶された初期発電開始充電率C1
まで低下すると判定手段13で発電走行を行なうよう判
定し、指令手段14で発電走行(ハイブリッド走行)を
指令する。The APU control unit 10 includes a storage unit 11 and
The calculating unit 12, the determining unit 13, and the commanding unit 14 are provided, and the detected charging rate (remaining capacity) of the battery 1 is provided.
C is the initial power generation start charging rate C1 stored in the storage unit 11.
When it decreases to, the determination means 13 determines to perform power generation travel, and the command means 14 commands power generation travel (hybrid travel).
【0020】そして、この発電走行に入ると、残存容量
検出手段(残存容量計)8からの検出情報に基づいて、
図2に示すような特性で、発電走行と電池走行とを繰り
返すようになっている。つまり、初期の電池走行をでき
るだけ増やせるように、略満充電の状態からはじめての
発電走行を開始する充電率即ち初期発電開始充電率(初
期充電開始状態の充電率)Cs0はできるだけ低い値に
設定されている。即ち、充電効率の最もよい発電領域
(充電領域)は、図2に示す最適発電開始充電率(最適
充電開始状態の充電率)Cs1から最適発電終了充電率
(最適充電終了状態の充電率)Ce1の間であるが、初
期発電開始充電率(初期充電開始状態の充電率)Cs0
は、この領域よりも大きく低い充電率に設定されてい
る。Then, when this power generation running is started, based on the detection information from the remaining capacity detecting means (remaining capacity meter) 8,
With the characteristics shown in FIG. 2, power generation traveling and battery traveling are repeated. That is, in order to increase the initial battery running as much as possible, the charging rate for starting the first power running from the substantially fully charged state, that is, the initial power generation start charging rate (charging rate in the initial charging start state) Cs0 is set to the lowest possible value. ing. That is, the power generation region (charge region) with the highest charging efficiency is from the optimum power generation start charging rate (charge rate in the optimum charge start state) Cs1 to the optimum power generation end charge rate (charge rate in the optimum charge end state) Ce1 shown in FIG. However, the initial power generation start charge rate (charge rate in the initial charge start state) Cs0
Is set to a charging rate that is much lower than this region.
【0021】また、発電走行を長く連続させると必然的
に発電走行率が高まってしまうので、一回の連続した発
電走行を規制するべく、初期発電終了充電率(初期充電
終了状態の充電率)Ce0についても、最適発電範囲
(Cs1〜Ce1の間)よりも低く設定されている。勿
論、最適発電範囲(Cs1〜Ce1の間)が初期発電開
始充電率Cs0に近ければ、初期発電終了充電率Ce0
を、最適発電範囲(Cs1〜Ce1の間)の範囲内に設
定することも考えられ、初期発電終了充電率(初期充電
終了状態の充電率)Ce0は、少なくとも、最適発電終
了充電率Ce1以下に設定する。Further, since the power generation running rate inevitably increases if the power generation running is continued for a long time, the initial power generation end charging rate (the charge rate in the initial charging end state) is regulated in order to regulate one continuous power generating running. Ce0 is also set lower than the optimum power generation range (between Cs1 and Ce1). Of course, if the optimum power generation range (between Cs1 and Ce1) is close to the initial power generation start charge rate Cs0, the initial power generation end charge rate Ce0
May be set within the range of the optimum power generation range (between Cs1 and Ce1), and the initial power generation end charge rate (charge rate in the initial charge end state) Ce0 is at least equal to or less than the optimum power generation end charge rate Ce1. Set.
【0022】そして、判定手段13には、充電率が初期
発電開始充電率Cs0に達したことを判定する初期充電
開始状態判定手段13Aがそなえられ、指示手段14に
は初期充電開始状態判定手段13Aで充電率が初期発電
開始充電率Cs0に達したことを判定されたら、充電率
が初期発電終了充電率Ce0に達するまでの間だけ発電
走行を指令する初期発電指令手段(初期充電制御手段)
14Aがそなえられている。The determination means 13 is provided with an initial charge start state determination means 13A for determining that the charge rate has reached the initial power generation start charge rate Cs0, and the instruction means 14 is provided for the initial charge start state determination means 13A. When it is determined that the charging rate has reached the initial power generation start charging rate Cs0, the initial power generation command means (initial charging control means) for instructing the power generation running only until the charging rate reaches the initial power generation end charging rate Ce0.
14A is provided.
【0023】この初期発電指令手段14Aの制御によっ
て、初期発電終了充電率Ce0まで充電できたら、初期
の発電走行を終了する。これにより、再びバッテリ1の
放電がはじまり、次に、バッテリ1の充電率が中間発電
開始充電率(中間充電開始状態の充電率)Csまで放電
したら、その後、バッテリ1の充電率が中間発電終了充
電率(中間充電終了状態の充電率)Ceに達するまでの
間だけ中間発電走行を行なう。By the control of the initial power generation command means 14A, when the initial power generation end charging rate Ce0 can be charged, the initial power generation running is terminated. As a result, the discharge of the battery 1 is started again, and next, when the charging rate of the battery 1 is discharged to the intermediate power generation start charging rate (charging rate in the intermediate charging start state) Cs, thereafter, the charging rate of the battery 1 ends the intermediate power generation. The intermediate power generation running is performed only until the charging rate (the charging rate in the intermediate charging end state) Ce is reached.
【0024】このため、判定手段13には、充電率が中
間発電開始充電率Csに達したことを判定する中間充電
開始状態判定手段13Bがそなえられ、指示手段14に
は中間充電開始状態判定手段13Bで充電率が中間発電
開始充電率Csに達したことを判定されたら、充電率が
中間発電終了充電率Ceに達するまでの間だけ発電走行
を指令する中間発電指令手段(中間充電制御手段)14
Bがそなえられている。Therefore, the determination means 13 is provided with an intermediate charge start state determination means 13B for determining that the charge rate has reached the intermediate power generation start charge rate Cs, and the instruction means 14 is provided with the intermediate charge start state determination means. If it is determined in 13B that the charging rate has reached the intermediate power generation start charging rate Cs, intermediate power generation command means (intermediate charging control means) that commands power generation running only until the charging rate reaches the intermediate power generation end charging rate Ce. 14
B is provided.
【0025】ところで、中間発電開始充電率Cs及び中
間発電終了充電率Ceは、中間発電の回数により異な
り、例えば図2に示すように、初期発電の後に中間発電
を3回、即ち、全部で4回発電走行を行なったところで
最適発電に入るようにするには、例えば次式によって、
第1回中間発電開始充電率Cs(1),第2回中間発電
開始充電率Cs(2),第3回中間発電開始充電率Cs
(3)をそれぞれ設定することができる。第1回中間発
電終了充電率Ce(1),第2回中間発電終了充電率C
e(2),第3回中間発電終了充電率Ce(3)をそれ
ぞれ設定することができる。 Cs(1)=Cs0+(Cs1−Cs0)/4 =(3・Cs0+Cs1)/4 Cs(2)=Cs(1)+(Cs1−Cs0)/4 =(2・Cs0+2・Cs1)/4 Cs(3)=Cs(2)+(Cs1−Cs0)/4 =(Cs0+3・Cs1)/4 Ce(1)=Ce0+(Ce1−Ce0)/4 =(3・Ce0+Ce1)/4 Ce(2)=Ce(1)+(Ce1−Ce0)/4 =(2・Ce0+2・Ce1)/4 Ce(3)=Ce(2)+(Ce1−Ce0)/4 =(Ce0+3・Ce1)/4 このような各中間発電開始充電率Cs(1),Cs
(2),Cs(3)及び各中間発電終了充電率Ce
(1),Ce(2),Ce(3)は、演算手段12で演
算されるが、予め演算された値を記憶手段11に記憶す
るようにしてもよい。The intermediate power generation start charging rate Cs and the intermediate power generation end charging rate Ce differ depending on the number of times of intermediate power generation. For example, as shown in FIG. 2, the intermediate power generation is performed three times after the initial power generation, that is, a total of 4 times. In order to start optimum power generation after running once, for example, using the following formula,
1st intermediate power generation start charge rate Cs (1), 2nd intermediate power start charge rate Cs (2), 3rd intermediate power start charge rate Cs
(3) can be set respectively. 1st intermediate power generation end charging rate Ce (1), 2nd intermediate power generation end charging rate C
e (2) and the third intermediate power generation end charging rate Ce (3) can be set respectively. Cs (1) = Cs0 + (Cs1-Cs0) / 4 = (3.Cs0 + Cs1) / 4 Cs (2) = Cs (1) + (Cs1-Cs0) / 4 = (2.Cs0 + 2.Cs1) / 4 Cs ( 3) = Cs (2) + (Cs1-Cs0) / 4 = (Cs0 + 3.Cs1) / 4 Ce (1) = Ce0 + (Ce1-Ce0) / 4 = (3.Ce0 + Ce1) / 4 Ce (2) = Ce (1) + (Ce1-Ce0) / 4 = (2.Ce0 + 2.Ce1) / 4 Ce (3) = Ce (2) + (Ce1-Ce0) / 4 = (Ce0 + 3.Ce1) / 4 Intermediate power generation start charging rate Cs (1), Cs
(2), Cs (3) and each intermediate power generation end charging rate Ce
Although (1), Ce (2), and Ce (3) are calculated by the calculation means 12, the values calculated in advance may be stored in the storage means 11.
【0026】このように、各中間発電開始充電率Cs
(1),Cs(2),Cs(3)及び各中間発電終了充
電率Ce(1),Ce(2),Ce(3)を設定するこ
とで、中間発電を行なう充電率領域は、次第に最適発電
範囲(Cs1〜Ce1の間)へ近づいて、第3回中間発
電終了充電率Ce(3)に達した後、再びバッテリ1の
放電がはじまり、今度は、バッテリ1の充電率が最適発
電開始充電率(最適充電開始状態の充電率)Cs1まで
放電したら、その後は、バッテリ1の充電率が最適発電
終了充電率(最適充電終了状態の充電率)Ce1に達す
るまでの間、最適発電走行を行なう。この後は、再び最
適発電開始充電率Cs1まで放電したら最適発電終了充
電率Ce1に達するまで最適発電走行を行なうように、
発電走行(最適発電走行)と電池走行とを繰り返す。In this way, each intermediate power generation start charging rate Cs
By setting (1), Cs (2), Cs (3) and each intermediate power generation end charging rate Ce (1), Ce (2), Ce (3), the charging rate region for performing intermediate power generation is gradually increased. After approaching the optimum power generation range (between Cs1 and Ce1) and reaching the third intermediate power generation end charging rate Ce (3), discharging of the battery 1 starts again, and this time, the charging rate of the battery 1 is optimum power generation. After discharging to the start charge rate (charge rate in the optimum charge start state) Cs1, thereafter, the optimum power generation running is performed until the charge rate of the battery 1 reaches the optimum power generation end charge rate (charge rate in the optimum charge end state) Ce1. Do. After this, after discharging again to the optimum power generation start charging rate Cs1, the optimum power generation running is performed until the optimum power generation ending charge rate Ce1 is reached.
Power generation traveling (optimum power generation traveling) and battery traveling are repeated.
【0027】このため、判定手段13には、充電率が最
適発電開始充電率Cs1に達したことを判定する最適充
電開始状態判定手段13Cがそなえられ、指示手段14
には最適発電開始状態判定手段13Cで充電率が最適発
電開始充電率Cs1に達したことを判定されたら、充電
率が最適発電終了充電率Ce1に達するまでの間だけ発
電走行を指令する最適発電指令手段(最適充電制御手
段)14Cがそなえられている。Therefore, the judging means 13 is provided with an optimum charging start state judging means 13C for judging that the charging rate has reached the optimum power generation start charging rate Cs1, and the instructing means 14 is provided.
When the optimal power generation start state determination means 13C determines that the charging rate has reached the optimal power generation start charging rate Cs1, the optimal power generation that commands power generation running only until the charging rate reaches the optimal power generation end charging rate Ce1. A command means (optimum charge control means) 14C is provided.
【0028】なお、本実施形態では、3回の中間発電走
行を経て最低発電走行に移行するようになっているが、
中間発電走行の回数はこれに限定されず、1回であって
もよく、図4に示すように2回であってもよく、また、
3回よりも多くてもよい。さらに、この実施形態では、
初期発電から中間発電を経て最適発電に至る開始充電率
や終了充電率を各発電後とに等しい率だけ増加させてい
るが、初期発電に対する第1回中間発電、第2回中間発
電に対する第3回中間発電、第3回中間発電に対する最
適発電の各開始充電率,各終了充電率は、例えば図4に
示すように、一般的に次第に増加していけばよく、また
部分的には等しくてもよい。In the present embodiment, the intermediate power generation run is repeated three times, and then the minimum power generation run is executed.
The number of times of intermediate power generation travel is not limited to this, and may be once or twice as shown in FIG.
May be more than 3 times. Further, in this embodiment,
The starting charge rate and the ending charge rate from initial power generation to intermediate power generation to optimum power generation are increased by the same rate as after each power generation, but the first intermediate power generation for the initial power generation and the third intermediate power generation for the second intermediate power generation The start charge rate and the end charge rate of the optimum power generation for the third intermediate power generation and the third intermediate power generation generally have to be gradually increased as shown in FIG. 4, and are partially equal. Good.
【0029】また、最終中間発電による発電終了充電率
を最適発電終了充電率Ce1としもよい。これにより、
速やかに最適充電に移行できる。本発明の一実施形態と
しての電気自動車は、上述のように構成されているの
で、図2に示すようなモードで電池走行と発電走行とが
制御される。この制御を、例えば全部でn回発電走行を
行なったところで最適発電に入るようにした場合につい
て、図3のフローチャートに基づいて説明すると以下の
ようになる。Further, the power generation end charging rate by the final intermediate power generation may be the optimum power generation end charging rate Ce1. This allows
You can quickly shift to optimal charging. Since the electric vehicle as one embodiment of the present invention is configured as described above, battery running and power generation running are controlled in the mode shown in FIG. This control will be described below with reference to the flowchart of FIG. 3, for example, in the case where the optimum power generation is started after the power generation traveling is performed n times in total.
【0030】つまり、満充電直後に制御を開始したら、
まず、初期発電開始充電率Cs0,初期発電終了充電率
Ce0,最適発電開始充電率Cs1,最適発電終了充電
率Ce1として、移行回数をn、さらにカウンタの値を
0として(ステップS10)、はじめに、始めの発電開
始充電率Cs,発電終了充電率Ceとして、それぞれ初
期発電開始充電率Cs0,初期発電終了充電率Ce0を
設定する(ステップS20)。That is, if control is started immediately after full charge,
First, with the initial power generation start charging rate Cs0, the initial power generation ending charging rate Ce0, the optimum power generation starting charging rate Cs1, and the optimum power generation ending charging rate Ce1, the number of transitions is set to n, and the counter value is set to 0 (step S10). The initial power generation start charge rate Cs0 and the initial power generation end charge rate Ce0 are set as the first power generation start charge rate Cs and the power generation end charge rate Ce, respectively (step S20).
【0031】そして、まずは電池走行(初期電池走行)
を行ない(ステップS30)、電池の充電率を監視しな
がら、充電率が発電開始充電率Csまで下がったか否か
を判定する(ステップS40)。充電率が発電開始充電
率Csまで下がったら、APU(補助発電ユニット)5
を始動して(ステップS50)、発電走行を行なう(ス
テップS60)。First, battery running (initial battery running)
(Step S30), it is determined whether the charging rate has dropped to the power generation start charging rate Cs while monitoring the charging rate of the battery (Step S40). When the charging rate falls to the power generation start charging rate Cs, APU (auxiliary power generation unit) 5
Is started (step S50), and power generation traveling is performed (step S60).
【0032】そして、電池の充電率を監視しながら、充
電率が発電終了充電率Ceまで上昇したか否かを判定す
る(ステップS70)。充電率が発電終了充電率Ceま
で上昇したら、APU5を停止して(ステップS8
0)、次にカウンタの値がn未満かを判定する(ステッ
プS90)。カウンタの値がn未満なら、ステップS1
00に進み、次回の発電開始充電率Cs,発電終了充電
率Ceを、次式により算出する。 Cs=Cs+(Cs1−Cs0)/n Ce=Ce+(Ce1−Ce0)/n そして、カウンタの値をインクリメントして(ステップ
S110)、再びステップS30に戻り、新たな発電開
始充電率Cs,発電終了充電率Ceに基づいて、APU
5の始動による(ステップS50)発電走行(ステップ
S60)、及び、APU5の停止、即ち発電走行停止
(ステップS80)を行なう。このような処理を繰り返
して、次第に発電開始充電率Cs,発電終了充電率Ce
を増加させていくと、これをn回繰り返した時点で、発
電開始充電率Cs,発電終了充電率Ceが最適発電開始
充電率Cs1,最適発電終了充電率Ce1となって、こ
れ以後は、最適発電を繰り返すようになる。Then, while monitoring the charge rate of the battery, it is determined whether or not the charge rate has risen to the power generation end charge rate Ce (step S70). When the charge rate rises to the power generation end charge rate Ce, the APU 5 is stopped (step S8).
0), and then it is determined whether the counter value is less than n (step S90). If the counter value is less than n, step S1
00, the next power generation start charging rate Cs and power generation end charging rate Ce are calculated by the following equations. Cs = Cs + (Cs1-Cs0) / n Ce = Ce + (Ce1-Ce0) / n Then, the value of the counter is incremented (step S110), and the process returns to step S30 again to start a new power generation charge rate Cs, power generation end. APU based on the charging rate Ce
Power generation running (step S60) by starting 5 (step S50) and stopping of APU5, that is, power generation running stop (step S80). By repeating such processing, the power generation start charge rate Cs and the power generation end charge rate Ce are gradually increased.
When this is repeated n times, the power generation start charge rate Cs and the power generation end charge rate Ce become the optimum power generation start charge rate Cs1 and the optimum power generation end charge rate Ce1. Power generation will be repeated.
【0033】この結果、例えば図2に示すように、バッ
テリ1の充電率が十分に低下するまで、初期発電走行
(満充電後の発電走行)を続行して、バッテリ1の充電
率が初期発電充電率Cs0まで低下したところで、はじ
めて発電走行を行なうようになる。このように、初期の
電池のみによる走行距離を大きく確保しているので、排
出ガスを出さないことや内燃機関に比べて静粛性が高い
という、電気自動車本来の利点が十分に生かされるよう
になる利点がある。As a result, as shown in FIG. 2, for example, the initial power generation running (power generation running after full charge) is continued until the charging rate of the battery 1 is sufficiently reduced, and the charging rate of the battery 1 is initially generated. Only when the charging rate reaches Cs0, the electric power generation is started. In this way, since the mileage is secured by only the initial battery, the original advantages of electric vehicles, such as no emission of gas and higher quietness than internal combustion engines, will be fully utilized. There are advantages.
【0034】そして、初期発電開始後は、発電走行のあ
まり長く続行させないようにしながら、即ち、ある程度
の充電率に達したところで発電走行するので、発電走行
割合の増加を防止でき、上述のような排出ガスを出さず
に静粛性が高いという電気自動車本来の利点が十分に生
かされる。そして、このような発電走行は、1回又は複
数回の中間発電走行を経て、最適発電走行に移行するの
で、発電走行に頼らなくてはならない場合には、この発
電を最も効率よく行なうことができ、発電走行時の発電
用内燃機関の燃費を向上させて、排気ガスの低減を図れ
るようになるという利点が得られる。After the initial power generation is started, the power generation traveling is prevented from being continued for too long, that is, the power generation traveling at a certain charge rate, so that it is possible to prevent an increase in the power generation traveling ratio. The original advantage of the electric vehicle, which does not emit exhaust gas and is highly quiet, is fully utilized. In such power generation running, the intermediate power generation running is performed once or a plurality of times, and then the optimum power running is performed. Therefore, when it is necessary to rely on the power running, this power generation can be performed most efficiently. Therefore, there is an advantage that the fuel consumption of the internal combustion engine for power generation during power generation traveling can be improved and exhaust gas can be reduced.
【0035】また、電池走行モードの続行時間を比較的
未自覚できるので、発電機駆動用エンジンの排気ガス浄
化触媒の温度を所要範囲内に保ちやすく、触媒の排気ガ
ス浄化能力を良好に保持するのに都合がよい。Further, since the duration of the battery running mode can be relatively unknown, it is easy to keep the temperature of the exhaust gas purifying catalyst of the generator driving engine within the required range, and the exhaust gas purifying ability of the catalyst is kept good. It is convenient for you.
【0036】[0036]
【発明の効果】以上詳述したように、請求項1記載の本
発明のハイブリッド電気自動車の充放電制御装置によれ
ば、車載のバッテリにより電動機を駆動して走行するた
めの放電制御ととともに、車載の原動機により発電機を
駆動して該バッテリを充電するための充電制御を行なう
ハイブリッド電気自動車の充放電制御装置において、該
バッテリの充電状態が、略満充電の状態から最適充電開
始状態よりも小さい初期充電開始状態まで放電したこと
を検出する初期充電開始状態検出手段と、該初期充電開
始状態検出手段からの検出信号を受けると該原動機を作
動させて発電を行なって該バッテリを最適充電終了状態
よりも小さい初期充電終了状態まで充電する初期充電制
御手段と、該初期充電終了後の放電により該バッテリの
充電状態が、該初期充電終了状態から、該最適充電開始
状態よりも小さく且つ該初期充電開始状態よりも大きい
中間充電開始状態まで放電したことを検出する中間充電
開始状態検出手段と、該中間充電開始状態検出手段から
の検出信号を受けると該原動機を作動させて発電を行な
って該バッテリを該最適充電終了状態よりも小さく該初
期充電終了状態よりも大きい中間充電終了状態まで充電
する中間充電制御手段と、該中間充電終了後の放電によ
り該バッテリの充電状態が、該中間充電終了状態から、
該最適充電開始状態まで放電したことを検出する最適充
電開始状態検出手段と、該最適充電開始状態検出手段か
らの検出信号を受けると該原動機を作動させて発電を行
なって該バッテリを該最適充電終了状態まで充電する最
適充電制御手段とをそなえるという構成により、初期電
池走行距離を確保し、且つ、発電走行の走行割合を抑制
して、電気自動車本来の排出ガスを出さずに静粛性が高
いという利点を十分に得ながら、発電走行時には、充電
効率の悪い充電率領域での発電(充電)を回避できるよ
うになり、発電用内燃機関の燃費の悪化を防止すること
ができるようになって、排気ガスの低減を図れるように
なるという利点が得られる。As described in detail above, according to the charge / discharge control device for a hybrid electric vehicle of the present invention as set forth in claim 1, in addition to the discharge control for driving the electric motor by the on-vehicle battery to drive the vehicle, In a charge / discharge control device for a hybrid electric vehicle that performs a charge control for driving a generator by a vehicle-mounted prime mover to charge the battery, the state of charge of the battery is from a state of substantially full charge to a state of optimum charge start. An initial charge start state detecting means for detecting that the battery has been discharged to a small initial charge start state, and upon receiving a detection signal from the initial charge start state detecting means, operate the prime mover to generate electric power to optimally terminate the battery. Initial charging control means for charging to an initial charging end state smaller than the state, and the charging state of the battery due to discharging after completion of the initial charging An intermediate charge start state detecting means for detecting discharge from a charge end state to an intermediate charge start state smaller than the optimum charge start state and larger than the initial charge start state, and the intermediate charge start state detecting means. When the detection signal is received, the prime mover is operated to generate electric power to charge the battery to an intermediate charge end state that is smaller than the optimum charge end state and larger than the initial charge end state, and the intermediate charge control means. The state of charge of the battery due to discharge after the end of the intermediate charge end state,
Optimal charging start state detecting means for detecting that the battery has been discharged to the optimal charging start state, and when the detection signal from the optimal charging start state detecting means is received, the prime mover is operated to generate electricity to optimally charge the battery. With the configuration that is equipped with the optimal charging control means for charging to the end state, the initial battery traveling distance is secured, the traveling ratio of power generation traveling is suppressed, and the quietness is high without emitting the original exhaust gas of the electric vehicle. While obtaining the full advantage, it becomes possible to avoid power generation (charging) in the charging rate region where charging efficiency is poor during power generation traveling, and it is possible to prevent deterioration of fuel efficiency of the internal combustion engine for power generation. The advantage is that exhaust gas can be reduced.
【0037】請求項2記載の本発明のハイブリッド電気
自動車の充放電制御装置によれば、請求項1記載の構成
において、該中間充電開始状態及び該中間充電終了状態
が、次第に充電状態を増大させるようにして複数組設け
られるとともに、該中間充電制御手段が、これらの複数
の中間充電開始状態及び中間充電終了状態に応じて複数
回の中間充電制御を行なうように構成されて、該最適充
電制御手段が、これらの複数回の中間充電制御を経て最
適充電制御を行なうように構成されることにより、初期
電池走行距離の確保及び発電走行の走行割合の抑制を確
実に行ないながら、発電走行時における充電効率の悪化
を回避して、発電用内燃機関の燃費の悪化を防止するよ
うにして、発電走行時における排気ガスの低減を図れる
ようになる利点が得られる。According to the charging / discharging control device for a hybrid electric vehicle of the present invention described in claim 2, in the configuration of claim 1, the intermediate charging start state and the intermediate charging end state gradually increase the charging state. Thus, a plurality of sets are provided, and the intermediate charging control means is configured to perform intermediate charging control a plurality of times in accordance with the plurality of intermediate charging start states and intermediate charging end states, and the optimum charging control is performed. The means is configured to perform the optimal charging control through the intermediate charging control performed a plurality of times, thereby ensuring the initial battery traveling distance and suppressing the traveling ratio of the power generation traveling, and at the time of the power generation traveling. The advantage of being able to avoid the deterioration of charging efficiency and prevent the deterioration of fuel efficiency of the internal combustion engine for power generation and to reduce exhaust gas during power generation running It is.
【0038】請求項3記載の本発明のハイブリッド電気
自動車の充放電制御装置よれば、請求項1又は2記載の
構成において、該中間充電制御手段による中間充電の最
終回に、該最適充電開始状態までは達しない最終中間充
電開示状態から該最適充電終了状態に到達するまで充電
を行なうように構成されることにより、最適充電状態に
速やかに移行することができる。According to the charge / discharge control device for a hybrid electric vehicle of the present invention as set forth in claim 3, in the configuration of claim 1 or 2, the optimum charging start state is provided at the final time of the intermediate charging by the intermediate charging control means. By being configured to perform the charging from the final intermediate charging disclosure state that does not reach until the optimal charging end state is reached, it is possible to quickly shift to the optimal charging state.
【図1】本発明の一実施形態にかかるハイブリッド電気
自動車を示す構成図である。FIG. 1 is a configuration diagram showing a hybrid electric vehicle according to an embodiment of the present invention.
【図2】本発明の一実施形態としてのハイブリッド電気
自動車の充放電制御装置による充放電制御を説明する図
であって、バッテリの残存容量状況を示す図である。FIG. 2 is a diagram illustrating charge / discharge control by a charge / discharge control device for a hybrid electric vehicle according to an embodiment of the present invention, and is a diagram showing a state of charge of a battery.
【図3】本発明の一実施形態としてのハイブリッド電気
自動車の充放電制御装置による充放電制御を説明する図
であって、バッテリの残存容量状況を示す図である。FIG. 3 is a diagram illustrating charge / discharge control by a charge / discharge control device for a hybrid electric vehicle according to an embodiment of the present invention, and is a diagram showing a state of charge of a battery.
【図4】本発明の一実施形態としてのハイブリッド電気
自動車の充放電制御装置による充放電制御を説明するフ
ローチャートである。FIG. 4 is a flowchart illustrating charge / discharge control by a charge / discharge control device for a hybrid electric vehicle according to an embodiment of the present invention.
【図5】従来のハイブリッド電気自動車の走行時におけ
る充放電制御を説明するためのバッテリの残存容量状況
を示す図である。FIG. 5 is a diagram showing a state of charge of a battery for explaining charge / discharge control during traveling of a conventional hybrid electric vehicle.
【図6】従来のハイブリッド電気自動車の走行時におけ
るバッテリの充放電制御を説明する図である。FIG. 6 is a diagram illustrating battery charge / discharge control during traveling of a conventional hybrid electric vehicle.
【符号の説明】 1 バッテリ 2 走行用モータ(走行用電動機) 3A,3B 駆動輪 4 モータコントローラ(電動機制御手段) 5 APU(Auxiliary Power Unit,補助発電ユニッ
ト) 6 発電機 7 原動機としての発電用内燃機関(エンジン) 8 残存容量検出手段(残存容量計) 9 走行マネージメントコントローラ 10 APU制御部 11 記憶手段 12 演算手段 13 判定手段 13A 初期充電開始状態判定手段 13B 中間充電開始状態判定手段 13C 最適充電開始状態判定手段 14 指令手段 14A 初期発電指令手段(初期充電制御手段) 14B 中間発電指令手段(中間充電制御手段) 14C 最適発電指令手段(最適充電制御手段)[Explanation of reference numerals] 1 battery 2 traveling motor (traveling electric motor) 3A, 3B drive wheels 4 motor controller (electric motor control means) 5 APU (Auxiliary Power Unit, auxiliary power generation unit) 6 generator 7 internal combustion for power generation as a prime mover Engine (engine) 8 Remaining capacity detecting means (remaining capacity meter) 9 Running management controller 10 APU control section 11 Storage means 12 Computing means 13 Judging means 13A Initial charging start state judging means 13B Intermediate charging start state judging means 13C Optimal charging start state Judgment means 14 Command means 14A Initial power generation command means (initial charge control means) 14B Intermediate power generation command means (intermediate charge control means) 14C Optimal power generation command means (optimal charge control means)
Claims (3)
走行するための放電制御ととともに、車載の原動機によ
り発電機を駆動して該バッテリを充電するための充電制
御を行なうハイブリッド電気自動車の充放電制御装置に
おいて、 該バッテリの充電状態が、略満充電の状態から最適充電
開始状態よりも小さい初期充電開始状態まで放電したこ
とを判定する初期充電開始状態判定手段と、 該初期充電開始状態判定手段からの判定信号を受けると
該原動機を作動させて発電を行なって該バッテリを最適
充電終了状態よりも小さい初期充電終了状態まで充電す
る初期充電制御手段と、 該初期充電終了後の放電により該バッテリの充電状態
が、該初期充電終了状態から、該最適充電開始状態より
も小さく且つ該初期充電開始状態よりも大きい中間充電
開始状態まで放電したことを判定する中間充電開始状態
判定手段と、 該中間充電開始状態判定手段からの判定信号を受けると
該原動機を作動させて発電を行なって該バッテリを該最
適充電終了状態よりも小さく該初期充電終了状態よりも
大きい中間充電終了状態まで充電する中間充電制御手段
と、 該中間充電終了後の放電により該バッテリの充電状態
が、該中間充電終了状態から、該最適充電開始状態まで
放電したことを判定する最適充電開始状態判定手段と、 該最適充電開始状態判定手段からの判定信号を受けると
該原動機を作動させて発電を行なって該バッテリを該最
適充電終了状態まで充電する最適充電制御手段とをそな
えていることを特徴とする、ハイブリッド電気自動車の
充放電制御装置。1. A charging / discharging of a hybrid electric vehicle that performs discharge control for driving an electric motor to drive the vehicle by an on-vehicle battery and charge control for driving a generator by an on-vehicle prime mover to charge the battery. In the control device, an initial charge start state determination means for determining that the state of charge of the battery is discharged from a substantially full charge state to an initial charge start state smaller than the optimum charge start state, and the initial charge start state determination means. Receiving a determination signal from the motor, the prime mover is operated to generate electric power to charge the battery to an initial charging end state smaller than the optimum charging end state, and the battery is discharged by discharging after the initial charging end state. Of the intermediate charge from the initial charge end state to a value smaller than the optimum charge start state and larger than the initial charge start state. The intermediate charge start state determining means for determining that the battery has been discharged to the electric charge start state, and when the determination signal from the intermediate charge start state determining means is received, the prime mover is operated to generate power to bring the battery into the optimum charge end state. An intermediate charge control means for charging to an intermediate charge end state that is smaller than the initial charge end state, and the state of charge of the battery due to discharge after the intermediate charge end state is changed from the intermediate charge end state to the optimum charge start state. The optimal charging start state determining means for determining that the battery has been discharged to a state, and the prime mover is operated to generate power by receiving the determination signal from the optimal charging start state determining means to charge the battery to the optimal charging end state. A charging / discharging control device for a hybrid electric vehicle, comprising:
状態が、次第に充電状態を増大させるようにして複数組
設けられるとともに、該中間充電制御手段が、これらの
複数の中間充電開始状態及び中間充電終了状態に応じて
複数回の中間充電制御を行なうように構成されて、該最
適充電制御手段が、これらの複数回の中間充電制御を経
て最適充電制御を行なうように構成されていることを特
徴とする、請求項1記載のハイブリッド電気自動車の充
放電制御装置。2. A plurality of sets of the intermediate charge start state and the intermediate charge end state are provided so as to gradually increase the charge state, and the intermediate charge control means is provided for the intermediate charge start state and the intermediate charge start state. The optimal charging control means is configured to perform the intermediate charging control a plurality of times according to the charging completion state, and the optimal charging control means is configured to perform the optimal charging control through the plurality of intermediate charging controls. The charge / discharge control device for a hybrid electric vehicle according to claim 1, which is characterized in that.
終回に、該最適充電開始状態までは達しない最終中間充
電開示状態から該最適充電終了状態に到達するまで充電
を行なうように構成されていることを特徴とする、請求
項1又は2記載のハイブリッド電気自動車の充放電制御
装置。3. The final charging of the intermediate charging by the intermediate charging control means is configured to perform charging from the final intermediate charging disclosure state that does not reach the optimal charging start state to the optimal charging end state. The charge / discharge control device for a hybrid electric vehicle according to claim 1 or 2, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7256646A JP3013764B2 (en) | 1995-10-03 | 1995-10-03 | Charge and discharge control device for hybrid electric vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7256646A JP3013764B2 (en) | 1995-10-03 | 1995-10-03 | Charge and discharge control device for hybrid electric vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0998513A true JPH0998513A (en) | 1997-04-08 |
JP3013764B2 JP3013764B2 (en) | 2000-02-28 |
Family
ID=17295507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7256646A Expired - Lifetime JP3013764B2 (en) | 1995-10-03 | 1995-10-03 | Charge and discharge control device for hybrid electric vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3013764B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008201262A (en) * | 2007-02-20 | 2008-09-04 | Toyota Motor Corp | Hybrid vehicle |
JP2009124792A (en) * | 2007-11-12 | 2009-06-04 | Osaka Gas Co Ltd | Power supply system |
JP2011068211A (en) * | 2009-09-24 | 2011-04-07 | Toyota Motor Corp | Hybrid vehicle and method of controlling the same |
US8378627B2 (en) | 2009-08-05 | 2013-02-19 | Denso Corporation | Electric supply controller, electric supply system and method for controlling electric supply to charger and vehicle |
JP2013060056A (en) * | 2011-09-12 | 2013-04-04 | Mitsubishi Motors Corp | Control device for hybrid vehicle |
JP2013074723A (en) * | 2011-09-28 | 2013-04-22 | Daihatsu Motor Co Ltd | Vehicle use power generation control device |
JP2013154715A (en) * | 2012-01-27 | 2013-08-15 | Toyota Motor Corp | Charge/discharge control apparatus for electric storage means |
JP2013216264A (en) * | 2012-04-11 | 2013-10-24 | Honda Motor Co Ltd | Power generation control apparatus for hybrid vehicle |
JP2013241129A (en) * | 2012-05-22 | 2013-12-05 | Honda Motor Co Ltd | Electric power generation control device for hybrid vehicle |
WO2016117236A1 (en) * | 2015-01-21 | 2016-07-28 | 日本電気株式会社 | Power generating system, power generation control method and program |
JP2018150038A (en) * | 2013-08-21 | 2018-09-27 | ジャガー ランド ローバー リミテッドJaguar Land Rover Limited | Controller for hybrid electric vehicle and method |
US10384549B2 (en) | 2016-03-30 | 2019-08-20 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
-
1995
- 1995-10-03 JP JP7256646A patent/JP3013764B2/en not_active Expired - Lifetime
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008201262A (en) * | 2007-02-20 | 2008-09-04 | Toyota Motor Corp | Hybrid vehicle |
US8256547B2 (en) | 2007-02-20 | 2012-09-04 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
JP2009124792A (en) * | 2007-11-12 | 2009-06-04 | Osaka Gas Co Ltd | Power supply system |
US8378627B2 (en) | 2009-08-05 | 2013-02-19 | Denso Corporation | Electric supply controller, electric supply system and method for controlling electric supply to charger and vehicle |
JP2011068211A (en) * | 2009-09-24 | 2011-04-07 | Toyota Motor Corp | Hybrid vehicle and method of controlling the same |
JP2013060056A (en) * | 2011-09-12 | 2013-04-04 | Mitsubishi Motors Corp | Control device for hybrid vehicle |
JP2013074723A (en) * | 2011-09-28 | 2013-04-22 | Daihatsu Motor Co Ltd | Vehicle use power generation control device |
JP2013154715A (en) * | 2012-01-27 | 2013-08-15 | Toyota Motor Corp | Charge/discharge control apparatus for electric storage means |
JP2013216264A (en) * | 2012-04-11 | 2013-10-24 | Honda Motor Co Ltd | Power generation control apparatus for hybrid vehicle |
JP2013241129A (en) * | 2012-05-22 | 2013-12-05 | Honda Motor Co Ltd | Electric power generation control device for hybrid vehicle |
JP2018150038A (en) * | 2013-08-21 | 2018-09-27 | ジャガー ランド ローバー リミテッドJaguar Land Rover Limited | Controller for hybrid electric vehicle and method |
WO2016117236A1 (en) * | 2015-01-21 | 2016-07-28 | 日本電気株式会社 | Power generating system, power generation control method and program |
US10384549B2 (en) | 2016-03-30 | 2019-08-20 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
US10946752B2 (en) | 2016-03-30 | 2021-03-16 | Toyota Jidosha Kabushiki Kaisha | Hybrid vehicle |
Also Published As
Publication number | Publication date |
---|---|
JP3013764B2 (en) | 2000-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1136311B1 (en) | Electric energy charging control apparatus and method for hybrid vehicle | |
JP3904192B2 (en) | Vehicle drive device | |
US7015676B2 (en) | Battery control apparatus | |
CN102883934B (en) | The controlling device and there is the motor vehicle driven by mixed power of this control device of motor vehicle driven by mixed power | |
CN103596798B (en) | The control method of elec. vehicle and elec. vehicle | |
EP2774802B1 (en) | Vehicle and vehicle control method | |
JP5716693B2 (en) | Hybrid vehicle | |
CN102905949B (en) | Elec. vehicle and control method thereof | |
US8570000B2 (en) | Vehicle power-generation control apparatus | |
CN102958775B (en) | The control setup of motor vehicle driven by mixed power and there is the motor vehicle driven by mixed power of this control setup | |
US8504232B2 (en) | Electrically powered vehicle and method for controlling the same | |
JP5200797B2 (en) | Control method and apparatus for hybrid vehicle | |
US11648850B2 (en) | Plug-in hybrid electric vehicle and charging control method therefor | |
CN102883933A (en) | Hybrid-vehicle control device and hybrid vehicle provided therewith | |
JP3951847B2 (en) | Vehicle control device, control method, program for realizing the control method, and recording medium recording the program | |
US10910972B2 (en) | Control apparatus and onboard system | |
CN107532528B (en) | Control unit for alternator, method for controlling drive of alternator, and power management system for engine vehicle | |
JP3013764B2 (en) | Charge and discharge control device for hybrid electric vehicles | |
US11312360B2 (en) | Control system for vehicle | |
CN113924238B (en) | Electric device control method and electric device | |
JP2019151305A (en) | Control device for hybrid vehicle | |
JP2973657B2 (en) | Power distribution system for series hybrid vehicles | |
CN116997493B (en) | Hybrid vehicle control method and hybrid vehicle control device | |
US20230271598A1 (en) | Method for Controlling Vehicle and System for Controlling Vehicle | |
JPH08154308A (en) | Hybrid electric vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19991116 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071217 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081217 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091217 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101217 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111217 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121217 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131217 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term |