JPH0998135A - Optical transmitter-receiver and optical transmission/ reception system - Google Patents
Optical transmitter-receiver and optical transmission/ reception systemInfo
- Publication number
- JPH0998135A JPH0998135A JP7255927A JP25592795A JPH0998135A JP H0998135 A JPH0998135 A JP H0998135A JP 7255927 A JP7255927 A JP 7255927A JP 25592795 A JP25592795 A JP 25592795A JP H0998135 A JPH0998135 A JP H0998135A
- Authority
- JP
- Japan
- Prior art keywords
- optical signal
- transmission
- reception
- optical
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 273
- 230000005540 biological transmission Effects 0.000 title claims abstract description 183
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 82
- 239000013307 optical fiber Substances 0.000 claims abstract description 35
- 230000010287 polarization Effects 0.000 claims description 21
- 230000002457 bidirectional effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 2
- 230000005577 local transmission Effects 0.000 description 2
- 108091008695 photoreceptors Proteins 0.000 description 2
- 238000005549 size reduction Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Optical Communication System (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、光ファイバよりな
る伝送路に接続され光信号の受信及び送信を行なう光送
受信装置及び該光送受信装置を用いた光送受信システム
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical transmitter / receiver connected to a transmission line made of an optical fiber for receiving and transmitting an optical signal, and an optical transmitter / receiver system using the optical transmitter / receiver.
【0002】[0002]
【従来の技術】光の波長分割多重(WDM: Wavelength Di
vision Multiplexing)伝送は、光送受信システムの伝送
容量を増加するのみならず、双方向伝送や異種信号の同
時伝送を可能にする等、光送受信システムの柔軟なサー
ビス要求に応えられるものであり、中継伝送系、加入者
系及び構内伝送系等のさまざまの光送受信システムへの
適用が考えられる。2. Description of the Related Art Wavelength division multiplexing (WDM) of light
vision multiplexing) transmission not only increases the transmission capacity of the optical transmission / reception system, but also enables bidirectional transmission and simultaneous transmission of different types of signals, which can meet the flexible service requirements of the optical transmission / reception system. It can be applied to various optical transmission / reception systems such as a transmission system, a subscriber system, and a local transmission system.
【0003】特に、データや多チャンネルの映像情報等
を光送受信基地局から一般家庭まで光ファイバよりなる
伝送路によって伝送する加入者系光送受信システムが提
案され、検討されている。加入者系光送受信システムに
おいては、波長多重される異種の光信号を同時に受信す
るための複数の受光装置と、家庭から送受信基地局に向
けたリクエストやデータをおくるための発光装置とが加
入者用端末に備えられることが必要となる。In particular, a subscriber optical transmission / reception system for transmitting data, multi-channel video information and the like from an optical transmission / reception base station to a general home through a transmission line made of an optical fiber has been proposed and studied. In a subscriber optical transmission / reception system, a plurality of light receiving devices for simultaneously receiving different wavelength-multiplexed optical signals and a light emitting device for sending a request or data from a home to a transmitting / receiving base station are subscribers. It is necessary to be equipped in the terminal for use.
【0004】そこで、従来の加入者系光送受信システム
においては、送信時には例えば1.3μmの波長の送信
用光信号を用いると共に、受信時には1.5μmの波長
の受信用光信号を用いている。Therefore, in the conventional subscriber optical transmission / reception system, a transmission optical signal having a wavelength of 1.3 μm, for example, is used at the time of transmission and a reception optical signal having a wavelength of 1.5 μm is used at the time of reception.
【0005】[0005]
【発明が解決しようとする課題】ところが、現在のとこ
ろ、光信号を直接に増幅する手段としては波長1.5μ
mの光を増幅する光増幅器しか開発されていない。この
ため、送信時に用いられる波長1.3μmの送信用光信
号の強度は、波長1.5μmの受信用光信号を増幅する
光増幅器を逆方向に通過する際に大きく低下するという
問題がある。However, at present, as a means for directly amplifying an optical signal, a wavelength of 1.5 μm is used.
Only an optical amplifier for amplifying m light has been developed. Therefore, there is a problem that the intensity of the transmission optical signal having a wavelength of 1.3 μm used at the time of transmission is greatly reduced when passing through the optical amplifier for amplifying the reception optical signal having a wavelength of 1.5 μm in the reverse direction.
【0006】従って、光信号を確実に増幅するために
は、送信時にも受信時にも波長1.5μmの光信号を用
いることが必要になる。ところが、波長1.5μmの光
信号は長い距離を伝送させると歪んでしまうという問題
がある。このため、光送受信システムに用いられる光信
号としては波長1.3μmの光が好ましい。Therefore, in order to surely amplify the optical signal, it is necessary to use an optical signal having a wavelength of 1.5 μm both during transmission and during reception. However, there is a problem that an optical signal having a wavelength of 1.5 μm is distorted when it is transmitted over a long distance. Therefore, light having a wavelength of 1.3 μm is preferable as the optical signal used in the optical transmission / reception system.
【0007】そこで、送信時にも受信時にも波長1.3
μmの光信号を用いることができるようにするため、図
5に示すような光送受信システムを考慮した。Therefore, the wavelength of 1.3 is used for both transmission and reception.
In order to be able to use an optical signal of μm, an optical transmission / reception system as shown in FIG. 5 was considered.
【0008】図5において、51はレーザ光源、52は
送信側レンズ系、53は3dBカプラー、54は光ファ
イバ、55は受光素子、56は受信側レンズ系である。
図5に示す光送受信システムにおいては、家庭から送受
信基地局へ伝送される送信用光信号と、送受信基地局か
ら家庭へ伝送される受信用光信号との双方向の通信を行
なうため、送信用光信号と受信用光信号とを分岐する必
要がある。そこで、前記の光送受信システムにおいて
は、送信用光信号が伝送される送信用経路と受信用光信
号が伝送される受信用経路との分岐部に3dBカプラー
53を配置している。In FIG. 5, reference numeral 51 is a laser light source, 52 is a transmitting side lens system, 53 is a 3 dB coupler, 54 is an optical fiber, 55 is a light receiving element, and 56 is a receiving side lens system.
In the optical transmission / reception system shown in FIG. 5, since the transmission optical signal transmitted from the home to the transmission / reception base station and the reception optical signal transmitted from the transmission / reception base station to the home are bidirectionally transmitted, It is necessary to split the optical signal and the receiving optical signal. Therefore, in the above optical transmission / reception system, the 3 dB coupler 53 is arranged at the branch portion between the transmission path for transmitting the transmission optical signal and the reception path for transmitting the reception optical signal.
【0009】送信時には、レーザ光源51から出射され
る送信用光信号は、送信側レンズ系52を通過した後、
3dBカプラー53を経て、光ファイバ54に入射さ
れ、その後、送受信基地局に伝送される。また、受信時
には、送受信基地局より出力される受信用光信号は、光
ファイバ54から出射された後、3dBカプラー53を
経て、受信側レンズ系56を通過して、受光素子55に
集光される。At the time of transmission, the optical signal for transmission emitted from the laser light source 51 passes through the lens system 52 on the transmission side,
It is incident on the optical fiber 54 via the 3 dB coupler 53, and then transmitted to the transmitting / receiving base station. In addition, at the time of reception, the reception optical signal output from the transmission / reception base station is emitted from the optical fiber 54, then passes through the 3 dB coupler 53, passes through the reception side lens system 56, and is focused on the light receiving element 55. It
【0010】ところで、3dBカプラー53は、該3d
Bカプラー53に入射される光を2つの出射口にそれぞ
れ50%づつ分岐させて出射する。従って、送信時に
は、レーザ光源51から出射される送信用光信号のうち
最高でも50%しか光ファイバ54に入射されないと共
に、受信時には、光ファイバ54から出射される受信用
光信号のうちの50%以下の光信号が受光素子55に到
達するに過ぎない。By the way, the 3 dB coupler 53 is
The light incident on the B coupler 53 is split into two output ports, each split by 50% and output. Therefore, at the time of transmission, at most 50% of the transmission optical signal emitted from the laser light source 51 is incident on the optical fiber 54, and at the time of reception, 50% of the reception optical signal emitted from the optical fiber 54. The following optical signals only reach the light receiving element 55.
【0011】このように、3bBカプラー53により光
信号を分岐すると、送信用光信号及び受信用光信号の強
度が大きく低下すると言う問題が避けられない。In this way, when the optical signal is branched by the 3bB coupler 53, the problem that the intensities of the transmitting optical signal and the receiving optical signal are greatly lowered cannot be avoided.
【0012】もっとも、より強力な光信号を出力するレ
ーザ光源を用いると、送信用光信号の低下を補うことが
できるが、このためには、高出力なレーザ光源が必要に
なり、コストが高くつくので、各家庭に配置される光送
受信装置には適しない。[0012] However, if a laser light source that outputs a stronger optical signal is used, it is possible to compensate for the decrease in the optical signal for transmission, but for this purpose, a high-output laser light source is required and the cost is high. Therefore, it is not suitable for an optical transmitter / receiver installed in each home.
【0013】また、受光感度を向上させるために、送受
信基地局から出力される送信用光信号の強度を増加させ
ることが考慮されるが、高出力な光信号の場合、光ファ
イバ内で発生する非線形現象、すなわちブリリアン散乱
やレーリー散乱等によって、光信号の質が低下するた
め、映像情報等の光信号を伝送するときには、光信号が
劣化するという問題がある。このため、送受信基地局か
ら高出力な送信用光信号を伝送することは困難である。Further, in order to improve the light receiving sensitivity, it is considered to increase the intensity of the transmitting optical signal output from the transmitting / receiving base station, but in the case of a high output optical signal, it is generated in the optical fiber. Since the quality of the optical signal deteriorates due to a non-linear phenomenon, that is, Brillian scattering or Rayleigh scattering, there is a problem that the optical signal is deteriorated when transmitting the optical signal such as video information. Therefore, it is difficult to transmit a high-power optical signal for transmission from the transmission / reception base station.
【0014】前記に鑑み、本発明は、光信号の送信用経
路と受信用経路との分岐部における光信号の強度損失を
低減することにより、低損失化、小型化及び低コスト化
を実現できる光送受信装置及び該光送受信装置を用いた
光送受信システムを提供することを目的とする。In view of the above, the present invention can realize low loss, downsizing, and cost reduction by reducing the intensity loss of the optical signal at the branch portion between the optical signal transmission path and the optical signal reception path. An object of the present invention is to provide an optical transmitter / receiver and an optical transmitter / receiver system using the optical transmitter / receiver.
【0015】[0015]
【課題を解決するための手段】請求項1の発明が講じた
解決手段は、光送受信装置を、送信用光信号を出力する
発光手段と、送受信基地局から出力された受信用光信号
が入力される受光手段と、前記送信用光信号が伝送され
る送信用経路と前記受信用光信号が伝送される受信用経
路との分岐部に配置され、印加される電圧により屈折率
が光信号を反射させる第1の屈折率と光信号を透過させ
る第2の屈折率とに可変である屈折率可変手段と、前記
屈折率可変手段が前記第1の屈折率を持つような第1の
電圧及び前記屈折率可変手段が前記第2の屈折率を持つ
ような第2の電圧を前記屈折率可変手段に可変的に印加
する印加電圧可変電源とを備えている構成とするもので
ある。According to a first aspect of the present invention, there is provided an optical transmitter / receiver, a light emitting means for outputting an optical signal for transmission, and an optical signal for reception output from a transmitting / receiving base station. Is disposed at a branch portion between the light receiving means, the transmission path through which the transmission optical signal is transmitted and the reception path through which the reception optical signal is transmitted, and the refractive index changes the optical signal by the applied voltage. A refractive index varying means that is variable between a first refractive index for reflecting and a second refractive index for transmitting an optical signal; a first voltage such that the refractive index varying means has the first refractive index; The refraction index changing means is provided with an applied voltage variable power source for variably applying a second voltage having the second refraction index to the refraction index changing means.
【0016】請求項1の構成により、印加電圧可変電源
により第1の電圧を屈折率可変手段に印加すると、該屈
折率可変手段の屈折率は光信号を反射させる第1の屈折
率となり、第2の電圧を印加すると、屈折率可変手段の
屈折率は光信号を透過させる第2の屈折率となり、印加
電圧可変電源により屈折率可変手段に印加する電圧を変
化させることによって光信号の経路を選択できる。従っ
て、屈折率可変手段に第2の電圧を印加して第2の屈折
率にすると、発光手段から出力された送信用光信号を送
受信基地局に向かって透過させたり又は送受信基地局か
ら出力された受信用光信号を受光手段に向かって透過さ
せたりすることができ、また、屈折率可変手段に第1の
電圧を印加して第1の屈折率にすると、送受信基地局か
ら出力された受信用光信号を受光手段に向かって反射さ
せたり又は発光手段から出力された送信用光信号を送受
信基地局に向かって反射させたりすることができる。According to the structure of claim 1, when the first voltage is applied to the refractive index variable means by the applied voltage variable power source, the refractive index of the refractive index variable means becomes the first refractive index for reflecting the optical signal. When a voltage of 2 is applied, the refractive index of the refractive index variable means becomes the second refractive index that allows the optical signal to pass therethrough, and the voltage applied to the refractive index variable means by the applied voltage variable power supply changes the optical signal path. You can choose. Therefore, when the second voltage is applied to the refractive index changing means to set the second refractive index, the optical signal for transmission output from the light emitting means is transmitted to the transmitting / receiving base station or is output from the transmitting / receiving base station. The received optical signal can be transmitted toward the light receiving means, and when the first voltage is applied to the refractive index varying means to make it have the first refractive index, the reception signal output from the transmitting / receiving base station is received. The optical signal for use can be reflected toward the light receiving means, or the optical signal for transmission output from the light emitting means can be reflected toward the transmitting / receiving base station.
【0017】請求項2の発明は、請求項1の構成におけ
る屈折率可変手段を液晶板に限定するものである。According to a second aspect of the invention, the refractive index varying means in the structure of the first aspect is limited to the liquid crystal plate.
【0018】請求項3の発明が講じた解決手段は、光送
受信装置を、所定の偏光面を持つ送信用光信号を出力す
る発光手段と、送受信基地局から出力された受信用光信
号が入力される受光手段と、前記送信用光信号が伝送さ
れる送信用経路と前記受信用光信号が伝送される受信用
経路との分岐部に配置され、前記送信用光信号を透過さ
せる一方、前記受信用光信号のうちのほぼ半分を前記受
光手段に向かって反射させる液晶板とを備えている構成
とするものである。According to a third aspect of the present invention, a light emitting means for outputting a transmission optical signal having a predetermined polarization plane and a reception optical signal output from a transmission / reception base station are input to an optical transmission / reception device. The light receiving means, the transmission path for transmitting the transmission optical signal, and the reception path for transmitting the reception optical signal are arranged at a branching portion, and the transmission optical signal is transmitted. The liquid crystal plate is configured to reflect almost half of the reception optical signal toward the light receiving means.
【0019】請求項3の構成により、液晶板は所定の偏
光面を持つ光は透過させるが、前記所定の偏光面と直交
する偏光面を持つ光はほぼ全反射する特性を有している
ため、送信用経路と受信用経路との分岐部に配置される
液晶板は、送信用光信号を透過させる一方、受信用光信
号のうちのほぼ半分を受光手段に向かって反射するの
で、受信用光信号の光強度は約半分に低減するが、送信
用光信号の光強度は殆ど低減しない。According to the structure of claim 3, the liquid crystal plate has a property of transmitting light having a predetermined polarization plane, but substantially totally reflecting light having a polarization plane orthogonal to the predetermined polarization plane. , The liquid crystal plate disposed at the branch between the transmission path and the reception path transmits the optical signal for transmission and reflects almost half of the optical signal for reception toward the light receiving means. The light intensity of the optical signal is reduced to about half, but the light intensity of the transmission optical signal is hardly reduced.
【0020】請求項4の発明は、請求項3の構成に、前
記液晶板が前記送信用光信号を透過させる一方前記受信
用光信号のうちのほぼ半分を前記受光手段に向かって反
射させるような偏光面を持つような電圧を前記液晶板に
対して印加する電圧電源をさらに備えているという構成
を付加するものである。According to a fourth aspect of the present invention, in the structure according to the third aspect, the liquid crystal plate transmits the transmitting optical signal and reflects almost half of the receiving optical signal toward the light receiving means. The configuration further includes a voltage power supply for applying a voltage having a different polarization plane to the liquid crystal plate.
【0021】請求項4の構成により、液晶板が送信用光
信号を透過させる一方受信用光信号のうちのほぼ半分を
受光手段に向かって反射させる偏光面を持つような電圧
を電圧電源によって液晶板に印加することができるた
め、液晶板を送信用経路及び受信用経路に対して適当な
傾斜角を持つように配置した後、液晶板に印加する電圧
を制御することにより、液晶板が送信用光信号を透過さ
せる一方受信用光信号のうちのほぼ半分を受光手段に向
かって反射させるような偏光面を持つようにさせること
ができる。According to the structure of claim 4, the liquid crystal plate transmits a light signal for transmission while a voltage having a polarization plane for reflecting almost half of the light signal for reception toward the light receiving means is generated by the voltage power supply. Since the liquid crystal plate can be applied to the plate, the liquid crystal plate is arranged so that it has an appropriate inclination angle with respect to the transmitting path and the receiving path, and then the voltage applied to the liquid crystal plate is controlled to cause the liquid crystal plate to transmit. It is possible to have a polarization plane that allows the credit optical signal to pass while reflecting almost half of the receiving optical signal toward the light receiving means.
【0022】請求項5の発明が講じた解決手段は、加入
者側に設けられ、送信用光信号を出力する発光手段と受
信用光信号が入力される受光手段とを有する加入者側送
受信装置と、前記加入者側送受信装置に対して前記受信
用光信号を出力すると共に前記加入者側送受信装置が出
力する前記送信用光信号を受信する送受信基地局と、前
記加入者側送受信装置と前記送受信基地局との間に設け
られ、前記送信用光信号及び受信用光信号を伝送する光
ファイバとを備えた光送受信システムを前提とし、前記
加入者側送受信装置は、前記送信用光信号が伝送される
送信用経路と前記受信用光信号が伝送される受信用経路
との分岐部に設けられ、印加される電圧により屈折率が
前記送信用光信号及び受信用光信号のうちの一方を反射
させる第1の屈折率と前記送信用光信号及び受信用光信
号のうちの他方を透過させる第2の屈折率とに可変であ
る屈折率可変手段と、前記加入者側送受信装置に設けら
れ、前記屈折率可変手段が前記第1の屈折率を持つよう
な第1の電圧及び前記屈折率可変手段が前記第2の屈折
率を持つような第2の電圧を前記屈折率可変手段に可変
的に印加する印加電圧可変電源とを有している構成をす
るものである。According to the fifth aspect of the present invention, the solution means is provided on the subscriber side, and has a light emitting means for outputting a transmission optical signal and a light receiving means for receiving a reception optical signal. A transmission / reception base station that outputs the reception optical signal to the subscriber side transmission / reception device and receives the transmission optical signal output by the subscriber side transmission / reception device; the subscriber side transmission / reception device; Provided between a transmission / reception base station and an optical transmission / reception system including an optical fiber for transmitting the transmission optical signal and the reception optical signal, the subscriber-side transmission / reception device is configured such that the transmission optical signal is It is provided at a branch portion between a transmission path to be transmitted and a reception path to which the reception optical signal is transmitted, and has a refractive index of one of the transmission optical signal and the reception optical signal depending on an applied voltage. First refraction to reflect And a second index of refraction that allows the other of the optical signal for transmission and the other optical signal for reception to pass therethrough, and the index variable means provided in the subscriber-side transceiver device. Variable applied voltage for variably applying to the refractive index variable means a first voltage having the first refractive index and a second voltage having the second refractive index variable means. And a power supply.
【0023】請求項5の構成によると、請求項1の構成
と同様、印加電圧可変電源により屈折率可変手段に印加
する電圧を変化させることによって光信号の経路を選択
できるので、屈折率可変手段に入射する光信号を光強度
を低減することなく適切な方向に伝送できる。According to the structure of claim 5, like the structure of claim 1, since the path of the optical signal can be selected by changing the voltage applied to the refractive index variable means by the applied voltage variable power source, the refractive index variable means. It is possible to transmit the optical signal incident on the optical disc in an appropriate direction without reducing the light intensity.
【0024】請求項6の発明が講じた解決手段は、加入
者側に設けられ、送信用光信号を出力する発光手段と受
信用光信号が入力される受光手段とを有する加入者側送
受信装置と、前記加入者側送受信装置に対して前記受信
用光信号を出力すると共に前記加入者側送受信装置が出
力する前記送信用光信号を受信する送受信基地局と、前
記加入者側送受信装置と前記送受信基地局との間に設け
られ、前記送信用光信号及び受信用光信号を伝送する光
ファイバとを備えた光送受信システムを前提とし、前記
加入者側送受信装置は、前記送信用光信号が伝送される
送信用経路と前記受信用光信号が伝送される受信用経路
との分岐部に設けられ、前記送信用光信号を前記光ファ
イバに向かって透過させる一方、前記受信用光信号のう
ちのほぼ半分を前記受光手段に向かって反射させる液晶
板を有している構成とするものである。According to the sixth aspect of the present invention, a means for solving the problem is provided on the subscriber side, and has a light emitting means for outputting an optical signal for transmission and a light receiving means for receiving an optical signal for reception on the subscriber side. A transmission / reception base station that outputs the reception optical signal to the subscriber side transmission / reception device and receives the transmission optical signal output by the subscriber side transmission / reception device; the subscriber side transmission / reception device; Provided between a transmission / reception base station and an optical transmission / reception system including an optical fiber for transmitting the transmission optical signal and the reception optical signal, the subscriber-side transmission / reception device is configured such that the transmission optical signal is It is provided at a branch portion between a transmission path to be transmitted and a reception path to which the reception optical signal is transmitted, and transmits the transmission optical signal toward the optical fiber, while receiving the reception optical signal. Almost half of It is an arrangement which has a liquid crystal plate for reflecting towards the light receiving means.
【0025】請求項6の構成によると、請求項3の構成
と同様、送信用経路と受信用経路との分岐部に配置され
る液晶板は、送信用光信号を透過させる一方、受信用光
信号のうちのほぼ半分を受光手段に向かって反射させる
ので、受信用光信号の光強度は約半分に低減するが、送
信用光信号の光強度は殆ど低減しない。According to the structure of claim 6, similarly to the structure of claim 3, the liquid crystal plate arranged at the branch portion between the transmission path and the reception path transmits the transmission optical signal while receiving the reception light. Since almost half of the signal is reflected toward the light receiving means, the light intensity of the reception light signal is reduced to about half, but the light intensity of the transmission light signal is hardly reduced.
【0026】[0026]
【発明の実施の形態】以下、本発明の一実施形態に係る
光送受信装置について説明する。DETAILED DESCRIPTION OF THE INVENTION An optical transmitter / receiver according to an embodiment of the present invention will be described below.
【0027】[第1の実施形態]図1は本発明の第1実
施形態に係る光送受信装置の概略構成を示している。[First Embodiment] FIG. 1 shows a schematic configuration of an optical transmitter / receiver according to a first embodiment of the present invention.
【0028】図1において、11は波長1.3μmの光
を出射するレーザ光源、12はレーザ光源11から出射
された送信用光信号を平行光にする第1のコリメートレ
ンズ、13は印加される電圧によって光信号を透過させ
たり、全反射したりする液晶板であって、液晶板13は
光の送信経路及び受信経路の分岐部に、光の送信経路及
び受信経路に対して所定の角度を持って傾斜するように
配置されている。また、図1において、14は液晶板1
3に異なる電圧を印加することができる印加電圧可変電
源、15は平行光を集光する第2のコリメートレンズ、
16は波長1.3μmの光信号を単一モードで伝搬する
光ファイバ、17は送信用光信号を受信すると共に受信
用光信号を出力する送受信基地局、18は送受信基地局
17から出力され液晶板13により全反射された平行光
を集光する第3のコリメートレンズ、19は受信用光信
号を受光する受光素子であって、前記のレーザ光源1
1、液晶板13及び受光素子19によって光送受信装置
が構成されている。In FIG. 1, 11 is a laser light source that emits light having a wavelength of 1.3 μm, 12 is a first collimating lens that converts the optical signal for transmission emitted from the laser light source 11 into parallel light, and 13 is applied. A liquid crystal plate that transmits or totally reflects an optical signal by a voltage, and the liquid crystal plate 13 forms a predetermined angle with respect to the light transmission path and the light reception path at a branch portion of the light transmission path and the light reception path. It is arranged so that it can be tilted. Further, in FIG. 1, 14 is a liquid crystal plate 1.
A variable applied voltage power source capable of applying different voltages to 3, a second collimating lens 15 for collecting parallel light,
Reference numeral 16 is an optical fiber that propagates an optical signal having a wavelength of 1.3 μm in a single mode, 17 is a transmission / reception base station that receives a transmission optical signal and outputs a reception optical signal, and 18 is a liquid crystal output from the transmission / reception base station 17 A third collimator lens that collects the parallel light totally reflected by the plate 13, and 19 is a light receiving element that receives a reception optical signal, and is the laser light source 1 described above.
1, the liquid crystal plate 13 and the light receiving element 19 constitute an optical transceiver.
【0029】以下、前記第1の実施形態に係る光送受信
装置の動作について説明する。The operation of the optical transceiver according to the first embodiment will be described below.
【0030】まず、レーザ光源11から出射された送信
用光信号を光ファイバ16に対して伝送するときには、
印加電圧可変電源14は、液晶板13が送信用光信号を
透過させる屈折率n1 を持つような第1の電圧を液晶板
13に印加する。これにより、送信用光信号は非常に少
ない損失でもって液晶板13を透過して光ファイバ16
に集光される。First, when transmitting the transmission optical signal emitted from the laser light source 11 to the optical fiber 16,
The applied voltage variable power supply 14 applies a first voltage to the liquid crystal plate 13 so that the liquid crystal plate 13 has a refractive index n 1 that allows the transmission optical signal to pass therethrough. As a result, the optical signal for transmission is transmitted through the liquid crystal plate 13 with very little loss, and the optical fiber 16 is transmitted.
Is focused on.
【0031】次に、光ファイバ16から出射された受信
用光信号を受光する際には、印加電圧可変電源14は、
液晶板13が受信用光信号を受光素子19に向かって全
反射させる屈折率n2 を持つような第2の電圧を液晶板
13に印加する。これにより、受信用光信号は非常に少
ない損失でもって受光素子19に到達する。Next, when the receiving optical signal emitted from the optical fiber 16 is received, the applied voltage variable power supply 14
A second voltage is applied to the liquid crystal plate 13 so that the liquid crystal plate 13 has a refractive index n 2 that totally reflects the reception optical signal toward the light receiving element 19. As a result, the optical signal for reception reaches the light receiving element 19 with very little loss.
【0032】液晶板13は、送信時及び受信時の両方に
おいて光軸に対する傾斜角が変化させられることなく、
印加される電圧の大きさによって実効屈折率が制御され
る。具体的には、液晶板13の両面に印加電圧可変電源
により印加される電圧により、液晶板13の中の分子の
配置が制御され、この分子の配置の変化により、液晶板
13の実効屈折率が制御される。The liquid crystal plate 13 does not change the tilt angle with respect to the optical axis during both transmission and reception,
The effective refractive index is controlled by the magnitude of the applied voltage. Specifically, the arrangement of molecules in the liquid crystal plate 13 is controlled by the voltage applied to the both surfaces of the liquid crystal plate 13 by the variable voltage source, and the effective refractive index of the liquid crystal plate 13 is changed by the change in the arrangement of the molecules. Is controlled.
【0033】図2は、液晶板13に印加される電圧と該
液晶板13の実効屈折率との関係を示している。図2に
おいて、縦軸は屈折率を示し、横軸に電圧を示してい
る。図2から明らかなように、液晶板13に印加される
電圧が0Vのときと20Vのときとでは液晶板13の実
効屈折率は0.3以上に変化する。FIG. 2 shows the relationship between the voltage applied to the liquid crystal plate 13 and the effective refractive index of the liquid crystal plate 13. In FIG. 2, the vertical axis represents the refractive index and the horizontal axis represents the voltage. As is apparent from FIG. 2, the effective refractive index of the liquid crystal plate 13 changes to 0.3 or more when the voltage applied to the liquid crystal plate 13 is 0V and 20V.
【0034】液晶板13の基板の傾斜角θ、液晶板13
の実効屈折率nθ及び空気の屈折率nt (=1)の間に
は、sinθ=nt /nθの関係がある。従って、液晶
板13の実効屈折率が1.5であれば、液晶板13の傾
斜角θは41.81°であり、傾斜角θが41.91°
以上であれば、液晶板13は光を全反射することができ
る。The tilt angle θ of the substrate of the liquid crystal plate 13, the liquid crystal plate 13
There is a relationship of sin θ = n t / n θ between the effective refractive index n θ and the refractive index n t (= 1) of air. Therefore, if the effective refractive index of the liquid crystal plate 13 is 1.5, the tilt angle θ of the liquid crystal plate 13 is 41.81 °, and the tilt angle θ is 41.91 °.
With the above, the liquid crystal plate 13 can totally reflect light.
【0035】尚、前記第1の実施形態においては、光を
屈折率を変化させる手段として液晶板13を用いたが、
これに代えて、有機材料、ガラス、固体又は液体等、印
加される電圧により屈折率が変化するものを適宜用いる
ことができる。In the first embodiment, the liquid crystal plate 13 is used as means for changing the refractive index of light.
Instead of this, an organic material, glass, solid, or liquid whose refractive index changes depending on the applied voltage can be appropriately used.
【0036】また、前記第1の実施形態においては、液
晶板13は送信用光信号を透過させる一方、受信用光信
号を全反射させるように配置されていたが、これに代え
て、送信用光信号を全反射させる一方、受信用光信号を
透過させるように配置されていてもよい。In the first embodiment, the liquid crystal plate 13 is arranged so as to transmit the optical signal for transmission and totally reflect the optical signal for reception. It may be arranged so that the optical signal is totally reflected while the receiving optical signal is transmitted.
【0037】[第2の実施形態]図3は本発明の第2実
施形態に係る光送受信装置の概略構成を示している。[Second Embodiment] FIG. 3 shows a schematic configuration of an optical transmitter / receiver according to a second embodiment of the present invention.
【0038】図3において、21は波長1.3μmの光
を出射するレーザ光源、22はレーザ光源21から出射
された送信用光信号を平行光にする第1のコリメートレ
ンズ、23は印加される電圧によって通過させる光の偏
光面方向を変化させる液晶板であって、液晶板13は光
の送信経路及び受信経路に対して所定の角度を持って傾
斜するように配置されている。また、図3において、2
4は液晶板23に異なる電圧を印加させることができる
印加電圧可変電源、25は平行光を集光する第2のコリ
メートレンズ、26は波長1.3μmの光信号を単一モ
ードで伝搬する光ファイバ、27は送信用光信号を受信
すると共に受信用光信号を出力する送受信基地局、28
は送受信基地局27から出力され液晶板23により反射
された平行光を集光する第3のコリメートレンズ、29
は受信用光信号を受光する受光素子である。In FIG. 3, reference numeral 21 is a laser light source for emitting light having a wavelength of 1.3 μm, 22 is a first collimating lens for making the transmission optical signal emitted from the laser light source 21 parallel light, and 23 is applied. The liquid crystal plate 13 is a liquid crystal plate that changes the polarization plane direction of light to be passed by a voltage, and the liquid crystal plate 13 is arranged so as to be inclined at a predetermined angle with respect to the light transmission path and the light reception path. In addition, in FIG.
Reference numeral 4 denotes an applied voltage variable power source capable of applying different voltages to the liquid crystal plate 23, 25 a second collimating lens for condensing parallel light, and 26 light for propagating an optical signal having a wavelength of 1.3 μm in a single mode. A fiber, 27 is a transmission / reception base station for receiving a transmission optical signal and outputting a reception optical signal, 28
Is a third collimating lens for collecting parallel light output from the transmitting / receiving base station 27 and reflected by the liquid crystal plate 23, 29
Is a light receiving element that receives the optical signal for reception.
【0039】以下、前記第2の実施形態に係る光送受信
装置の動作について説明するが、その前提として、光フ
ァイバ26及び液晶板23の特性について説明する。The operation of the optical transmitter / receiver according to the second embodiment will be described below. As a premise, the characteristics of the optical fiber 26 and the liquid crystal plate 23 will be described.
【0040】光信号は光ファイバ26中を伝搬されると
きには、偏光面は制御されないため、光ファイバ26か
ら出射される光信号はランダムな方向の偏光面を持って
いる。従って、光ファイバ26から出射された光は直線
偏光ではあるものの、その偏向面は定まっていない。一
方、液晶板23は所定の偏光面である第1の偏光面を持
つ光を透過させるが、第1の偏光面と直交する偏光面で
ある第2の偏光面を持つ光はほぼ全反射する。When the optical signal propagates through the optical fiber 26, the plane of polarization is not controlled, so the optical signal emitted from the optical fiber 26 has a plane of polarization in random directions. Therefore, although the light emitted from the optical fiber 26 is linearly polarized light, its polarization plane is not fixed. On the other hand, the liquid crystal plate 23 transmits light having a first polarization plane which is a predetermined polarization plane, but almost totally reflects light having a second polarization plane which is a polarization plane orthogonal to the first polarization plane. .
【0041】まず、印加電圧可変電源24は、液晶板2
3がレーザ光源21から出射される光を透過させる偏光
面方向を持つような電圧を液晶板23に印加しておく。
このようにすると、レーザ光源21から出射された送信
用光信号は非常に少ない損失でもって液晶板23を透過
して光ファイバ26に集光される。First, the applied voltage variable power source 24 is the liquid crystal plate 2
A voltage is applied to the liquid crystal plate 23 so that 3 has a polarization plane direction that allows the light emitted from the laser light source 21 to pass therethrough.
In this way, the transmission optical signal emitted from the laser light source 21 is transmitted through the liquid crystal plate 23 and condensed on the optical fiber 26 with very little loss.
【0042】一方、光ファイバ26から出射された受信
用光信号は、前述したようにランダムな方向の偏光面を
持って光ファイバ26から出射されるので、受信用光信
号のほぼ半分は液晶板23を透過するが他のほぼ半分は
液晶板23により反射されて受光素子29に到達する。On the other hand, the receiving optical signal emitted from the optical fiber 26 is emitted from the optical fiber 26 with the polarization planes in random directions as described above, so that almost half of the receiving optical signal is the liquid crystal plate. The other half of the light is transmitted by the liquid crystal 23 and is reflected by the liquid crystal plate 23 to reach the light receiving element 29.
【0043】第2の実施形態によると、第1の実施形態
に比べて受信用光信号については約半分の光が損失する
が、印加電圧可変電源24によるスイッチング動作をさ
せる必要がない。According to the second embodiment, about half the light is lost in the receiving optical signal as compared with the first embodiment, but it is not necessary to perform the switching operation by the applied voltage variable power supply 24.
【0044】[第3の実施形態]図4は本発明の第3実
施形態に係る双方向波長分割多重光伝送を行なう光送受
信システムの概略構成を示している。尚、この双方向波
長分割多重光伝送システムにおいては、双方向の光伝送
を行なう光送受信装置と送受信基地局との間に設けられ
る分岐器、光増幅器及びその他の伝送路の構成部品は省
略している。[Third Embodiment] FIG. 4 shows a schematic configuration of an optical transmission / reception system for performing bidirectional wavelength division multiplexing optical transmission according to a third embodiment of the present invention. In this bidirectional wavelength division multiplexing optical transmission system, a branching device, an optical amplifier, and other components of the transmission line provided between the optical transmission / reception device for performing bidirectional optical transmission and the transmission / reception base station are omitted. ing.
【0045】図4において、31は波長1.3μmの光
を出射するレーザ光源、32はレーザ光源31から出射
された送信用光信号を平行光にする第1のコリメートレ
ンズ、33は印加される電圧によって光信号を透過させ
たり、全反射したりする液晶板、34は液晶板33に異
なる電圧を印加させることができる印加電圧可変電源で
あって、レーザ光源31、液晶板33及び印加電圧可変
電源34については第1の実施形態のものと同様の機能
を有している。図4において、35は平行光を集光する
第2のコリメートレンズ、36は波長1.3μmの光信
号を単一モードで伝搬する光ファイバ、37はカプラ
ー、38はデジタル信号発生装置、39はデジタル信号
受信装置であって、カプラー37、デジタル信号発生装
置38及びデジタル信号受信装置39によって送受信基
地局が構成されている。また、図4において、40はデ
ジタル信号発生装置38から出力され液晶板33により
全反射された平行光を集光する第3のコリメートレン
ズ、41は受信用光信号を受光する受光素子、42は受
光素子41が受けた受信用光信号に基づき信号を出力す
る受信側信号発生装置、43は受信側信号発生装置42
からの信号を受けるとレーザ光源31及び印加電圧可変
電源34に制御信号を出力する送信側信号発生装置であ
る。In FIG. 4, 31 is a laser light source that emits light having a wavelength of 1.3 μm, 32 is a first collimating lens that converts the transmission optical signal emitted from the laser light source 31 into parallel light, and 33 is applied. A liquid crystal plate that transmits or totally reflects an optical signal according to a voltage, and 34 is an applied voltage variable power supply that can apply different voltages to the liquid crystal plate 33. The laser light source 31, the liquid crystal plate 33, and the applied voltage variable The power supply 34 has the same function as that of the first embodiment. In FIG. 4, 35 is a second collimating lens that collects parallel light, 36 is an optical fiber that propagates an optical signal with a wavelength of 1.3 μm in a single mode, 37 is a coupler, 38 is a digital signal generator, and 39 is In the digital signal receiving apparatus, a coupler 37, a digital signal generating apparatus 38, and a digital signal receiving apparatus 39 constitute a transmitting / receiving base station. Further, in FIG. 4, reference numeral 40 denotes a third collimating lens for collecting parallel light output from the digital signal generator 38 and totally reflected by the liquid crystal plate 33, reference numeral 41 denotes a light receiving element for receiving a reception optical signal, and 42 denotes A receiving side signal generating device that outputs a signal based on the receiving optical signal received by the light receiving element 41, and 43 is a receiving side signal generating device 42.
It is a transmission side signal generator that outputs a control signal to the laser light source 31 and the applied voltage variable power supply 34 when receiving a signal from the.
【0046】以下、第3の実施形態に係る光送受信シス
テムの動作について説明する。The operation of the optical transmission / reception system according to the third embodiment will be described below.
【0047】まず、受信時には、送受信基地局のデジタ
ル信号発生装置38から出力された送信用光信号は、光
ファイバ36により受信側に伝達された後、液晶板33
により反射されて受光素子41に到達する。First, at the time of reception, the transmission optical signal output from the digital signal generator 38 of the transmission / reception base station is transmitted to the reception side by the optical fiber 36, and then the liquid crystal plate 33.
Is reflected by and reaches the light receiving element 41.
【0048】一方、送信側信号発生装置43に例えば送
受信基地局へのサービスリクエスト信号が入力される
と、該送信側信号発生装置43はレーザ光源31に送信
用光信号を出力させると共に印加電圧可変電源34に制
御信号を出力して液晶板33が送信用光信号を透過する
ように制御する。このようにすると、送信用光信号は光
ファイバ36を伝送された後、送受信基地局のデジタル
信号受信装置39に到達する。On the other hand, when, for example, a service request signal to the transmitting / receiving base station is input to the transmitting side signal generating device 43, the transmitting side signal generating device 43 causes the laser light source 31 to output the transmitting optical signal and the applied voltage can be varied. A control signal is output to the power supply 34 to control the liquid crystal plate 33 so that the transmission optical signal is transmitted. In this way, the transmitting optical signal reaches the digital signal receiving device 39 of the transmitting / receiving base station after being transmitted through the optical fiber 36.
【0049】従来の双方向光送受信システムにおいて
は、主としてtime domainmultiple
access等が採用され、或る所定の時間帯は送受
信基地局から出力された受信用光信号を伝送し、他の所
定の時間帯は家庭等に設置された光送受信装置からの送
信用光信号を伝送するように、時間帯によっていずれの
方向の光信号を送信するかを制御していた。このため、
受信用光信号が伝送される時間帯には送信用光信号を送
信できず、また、送信用光信号が伝送される時間帯には
受信用光信号を送信できないという問題があった。In the conventional bidirectional optical transmission / reception system, the time domain main multiplex is mainly used.
access, etc. are adopted, the optical signal for reception output from the transmission / reception base station is transmitted during a certain predetermined time zone, and the optical signal for transmission from the optical transmission / reception device installed at home during another predetermined time zone. In order to transmit the optical signal, it is controlled in which direction the optical signal is transmitted depending on the time zone. For this reason,
There is a problem that the transmission optical signal cannot be transmitted in the time period in which the reception optical signal is transmitted, and the reception optical signal cannot be transmitted in the time period in which the transmission optical signal is transmitted.
【0050】ところが、第3の実施形態に係る光送受信
システムにおいては、送受信基地局から送られてくる受
信用光信号の後に自動的に送信終了の信号を付け加える
ようにすると、家庭等に設置された光送受信装置は、受
光素子41が送信終了の信号を受けると、受信側信号発
生装置42は送信側信号発生装置43に例えば送受信基
地局へのサービスリクエスト信号を出力する。このよう
にすると、液晶板33及び印加電圧可変電源34が動作
して、サービスリクエスト信号が送受信基地局に向かっ
て出力される。一方、サービスリクエスト信号が無い場
合には、受信側信号発生装置42は待機信号を送信側信
号発生装置43に出力する。このようにすると、液晶板
33及び印加電圧可変電源34は待機状態となる。However, in the optical transmission / reception system according to the third embodiment, when the transmission end signal is automatically added after the reception optical signal transmitted from the transmission / reception base station, the optical transmission / reception system is installed in a home or the like. In the optical transmitter / receiver, when the light receiving element 41 receives the signal indicating the end of transmission, the receiver side signal generator 42 outputs a service request signal to the transmitter / receiver base station to the transmitter side signal generator 43, for example. By doing so, the liquid crystal plate 33 and the applied voltage variable power supply 34 operate, and the service request signal is output to the transmitting / receiving base station. On the other hand, when there is no service request signal, the reception side signal generation device 42 outputs a standby signal to the transmission side signal generation device 43. By doing so, the liquid crystal plate 33 and the applied voltage variable power supply 34 are in a standby state.
【0051】このように、受光素子41が受けた受信用
光信号に基づいて受信側信号発生装置42が出力する信
号により、液晶板33及び印加電圧可変電源34の送信
状態又は待機状態を制御できるので、信号待機時間が大
幅に短縮され、より効率的な双方向光通信を実現するこ
とができる。In this way, the transmission state or the standby state of the liquid crystal plate 33 and the applied voltage variable power source 34 can be controlled by the signal output from the reception side signal generator 42 based on the reception optical signal received by the light receiving element 41. Therefore, the signal waiting time is significantly shortened, and more efficient bidirectional optical communication can be realized.
【0052】[0052]
【発明の効果】請求項1の発明に係る光送受信装置によ
ると、印加電圧可変電源により屈折率可変手段に印加す
る電圧を変化させることによって光信号の経路を選択で
きるため、屈折率可変手段に入射する光信号を光強度を
低減することなく適切な方向に伝送できるので、家庭側
から送受信基地局に向かって出力する送信用光信号の光
強度の低減が避けられ、光送受信装置の低損失化、小型
化及び低価格化を図ることができる。According to the optical transmitter / receiver of the first aspect of the present invention, since the optical signal path can be selected by changing the voltage applied to the refractive index varying means by the applied voltage varying power source, the refractive index varying means can be used. Since the incoming optical signal can be transmitted in an appropriate direction without reducing the optical intensity, reduction of the optical intensity of the optical signal for transmission output from the home side to the transmitting / receiving base station can be avoided, resulting in low loss of the optical transceiver. It is possible to achieve size reduction, size reduction, and price reduction.
【0053】請求項2の発明に係る光送受信装置による
と、屈折率可変手段を液晶板に限定するため、印加電圧
可変電源により液晶板に印加する電圧を変化させること
によって光信号の経路を確実に選択することができる。According to the optical transmitter / receiver of the second aspect of the present invention, since the refractive index changing means is limited to the liquid crystal plate, the voltage applied to the liquid crystal plate is changed by the applied voltage variable power source to ensure the path of the optical signal. Can be selected.
【0054】請求項3の発明に係る光送受信装置による
と、送信用経路と受信用経路との分岐部に配置される液
晶板は、送信用光信号を透過させる一方、受信用光信号
のうちのほぼ半分を受光手段に向かって反射させるた
め、受信用光信号の光強度は約半分に低減するが、送信
用光信号の光強度は殆ど低減しないので、家庭側から送
受信基地局に向かって出力する送信用光信号の光強度の
低減が避けられ、光送受信装置の低損失化、小型化及び
低価格化を図ることができる。According to the optical transmitter-receiver of the third aspect of the present invention, the liquid crystal plate arranged at the branch portion between the transmission path and the reception path allows the transmission optical signal to pass therethrough, while Since almost half of the light intensity is reflected toward the light receiving means, the light intensity of the reception optical signal is reduced to about half, but the light intensity of the transmission optical signal is hardly reduced. It is possible to avoid reduction of the light intensity of the output optical signal for transmission, and it is possible to reduce the loss, size, and cost of the optical transceiver.
【0055】請求項4の発明に係る光送受信装置による
と、液晶板を送信用経路及び受信用経路に対して適当な
傾斜角を持つように配置した後、液晶板に印加する電圧
を制御することにより、液晶板が送信用光信号を透過さ
せる一方受信用光信号のうちのほぼ半分を受光手段に向
かって反射させるような偏光面を持つようにさせること
ができるため、液晶板が配置される傾斜角に誤差があっ
ても、液晶板に送信用光信号を確実に透過させることが
できると共に受信用光信号のうちのほぼ半分を受光手段
に向かって確実に反射させることができる。According to the optical transmitter / receiver device of the fourth aspect, the liquid crystal plate is arranged so as to have an appropriate inclination angle with respect to the transmitting path and the receiving path, and then the voltage applied to the liquid crystal plate is controlled. This allows the liquid crystal plate to have a plane of polarization that allows transmission of the transmission optical signal and reflection of almost half of the reception optical signal toward the light receiving means. Even if there is an error in the tilt angle, the transmission optical signal can be reliably transmitted through the liquid crystal plate, and almost half of the reception optical signal can be reliably reflected toward the light receiving means.
【0056】請求項5の発明に係る光送受信システムに
よると、請求項1の発明と同様に、屈折率可変手段に入
射する光信号を光強度を低減することなく適切な方向に
伝送できるため、家庭側から送受信基地局に向かって出
力する送信用光信号の光強度の低減が避けられるので、
光送受信装置の低損失化、小型化及び低価格化を図るこ
とができる。According to the optical transmission / reception system of the fifth aspect of the invention, as in the first aspect of the invention, the optical signal incident on the refractive index varying means can be transmitted in an appropriate direction without reducing the light intensity. Since it is possible to avoid reduction of the light intensity of the transmission optical signal output from the home side to the transmitting / receiving base station,
It is possible to reduce the loss, size, and cost of the optical transceiver.
【0057】請求項6の発明に係る光送受信システムに
よると、請求項3の発明と同様に、受信用光信号の光強
度は約半分に低減するが、送信用光信号の光強度は殆ど
低減しないため、家庭側から送受信基地局に向かって出
力する送信用光信号の光強度の低減が避けられるので、
光送受信装置の低損失化、小型化及び低価格化を図るこ
とができる。According to the optical transmission / reception system of the sixth aspect of the present invention, the optical intensity of the optical signal for reception is reduced to about half, but the optical intensity of the optical signal for transmission is almost reduced as in the invention of the third aspect. Since it is not possible to reduce the optical intensity of the optical signal for transmission output from the home side to the transmitting / receiving base station,
It is possible to reduce the loss, size, and cost of the optical transceiver.
【0058】以上のように、請求項1〜6の発明による
と、光送受信装置の低損失化、小型化及び低価格化を図
ることができるため、中継伝送系、加入者系、構内伝送
系等のさまざまな光ファイバ通信システムの構築に向け
て大きく貢献することができ、産業上の利用価値は極め
て大きい。As described above, according to the inventions of claims 1 to 6, since it is possible to reduce the loss, size and cost of the optical transmitter / receiver, a relay transmission system, a subscriber system and a local transmission system are provided. It can greatly contribute to the construction of various optical fiber communication systems such as, and has an extremely large industrial utility value.
【図1】本発明の第1の実施形態に係る光送受信装置の
概略構成図である。FIG. 1 is a schematic configuration diagram of an optical transmission / reception device according to a first embodiment of the present invention.
【図2】前記第1の実施形態に係る光送受信装置の液晶
板に印加される電圧と該液晶板の実効屈折率との関係を
示す特性図である。FIG. 2 is a characteristic diagram showing a relationship between a voltage applied to a liquid crystal plate and an effective refractive index of the liquid crystal plate of the optical transceiver according to the first embodiment.
【図3】本発明の第2の実施形態に係る光送受信装置の
概略構成図である。FIG. 3 is a schematic configuration diagram of an optical transmission / reception device according to a second embodiment of the present invention.
【図4】本発明の第3の実施形態に係る光送受信システ
ムの概略構成図である。FIG. 4 is a schematic configuration diagram of an optical transmission / reception system according to a third embodiment of the present invention.
【図5】本発明の前提となる光送受信装置の概略構成図
である。FIG. 5 is a schematic configuration diagram of an optical transmission / reception device which is a premise of the present invention.
11 レーザ光源 12 第1のコリメートレンズ 13 液晶板 14 印加電圧可変電源 15 第2のコリメートレンズ 16 光ファイバ 17 送受信基地局 18 第3のコリメートレンズ 19 受光素子 21 レーザ光源 22 第1のコリメートレンズ 23 液晶板 24 印加電圧可変電源 25 第2のコリメートレンズ 26 光ファイバ 27 送受信基地局 28 第3のコリメートレンズ 29 受光素子 31 レーザ光源 32 第1のコリメートレンズ 33 液晶板 34 印加電圧可変電源 35 第2のコリメートレンズ 36 光ファイバ 37 カプラー 38 デジタル信号発生装置 39 デジタル信号受信装置 40 第3のコリメートレンズ 41 受光素子 42 受信側信号発生装置 43 送信側信号発生装置 11 Laser Light Source 12 First Collimating Lens 13 Liquid Crystal Plate 14 Applied Voltage Variable Power Supply 15 Second Collimating Lens 16 Optical Fiber 17 Transmitting / Receiving Base Station 18 Third Collimating Lens 19 Photoreceptor 21 Laser Light Source 22 First Collimating Lens 23 Liquid Crystal Plate 24 Applied Voltage Variable Power Supply 25 Second Collimating Lens 26 Optical Fiber 27 Transmitting / Receiving Base Station 28 Third Collimating Lens 29 Photoreceptor Element 31 Laser Light Source 32 First Collimating Lens 33 Liquid Crystal Plate 34 Applied Voltage Variable Power Supply 35 Second Collimator Lens 36 Optical fiber 37 Coupler 38 Digital signal generator 39 Digital signal receiver 40 Third collimating lens 41 Light receiving element 42 Receiver side signal generator 43 Transmitter side signal generator
Claims (6)
受光手段と、 前記送信用光信号が伝送される送信用経路と前記受信用
光信号が伝送される受信用経路との分岐部に配置され、
印加される電圧により屈折率が光信号を反射させる第1
の屈折率と光信号を透過させる第2の屈折率とに可変で
ある屈折率可変手段と、 前記屈折率可変手段が前記第1の屈折率を持つような第
1の電圧及び前記屈折率可変手段が前記第2の屈折率を
持つような第2の電圧を前記屈折率可変手段に可変的に
印加する印加電圧可変電源とを備えていることを特徴と
する光送受信装置。1. A light emitting means for outputting an optical signal for transmission, a light receiving means for receiving an optical signal for reception output from a transmission / reception base station, a transmission path for transmitting the optical signal for transmission, and the reception. It is placed at the branch with the receiving path where the optical signal is transmitted,
A refractive index that reflects an optical signal according to an applied voltage
Refractive index variable means that is variable between the second refractive index and the second refractive index that transmits an optical signal, and the first voltage and the refractive index variable means that the refractive index variable means has the first refractive index. An optical transmission / reception device, characterized in that the means includes a variable applied voltage power source that variably applies a second voltage having the second refractive index to the refractive index variable means.
を特徴とする請求項1に記載の光送受信装置。2. The optical transceiver according to claim 1, wherein the refractive index varying means is a liquid crystal plate.
する発光手段と、 送受信基地局から出力された受信用光信号が入力される
受光手段と、 前記送信用光信号が伝送される送信用経路と前記受信用
光信号が伝送される受信用経路との分岐部に配置され、
前記送信用光信号を透過させる一方、前記受信用光信号
のうちのほぼ半分を前記受光手段に向かって反射させる
液晶板とを備えていることを特徴とする光送受信装置。3. A light emitting means for outputting a transmission optical signal having a predetermined polarization plane, a light receiving means for receiving a reception optical signal output from a transmission / reception base station, and the transmission optical signal for transmission. Arranged at a branch portion between a transmission path and a reception path through which the reception optical signal is transmitted,
An optical transmission / reception device, comprising: a liquid crystal plate that transmits the transmission optical signal while reflecting approximately half of the reception optical signal toward the light receiving means.
せる一方前記受信用光信号のうちのほぼ半分を前記受光
手段に向かって反射させるような偏光面を持つような電
圧を前記液晶板に対して印加する電圧電源をさらに備え
ていることを特徴とする請求項3に記載の光送受信装
置。4. The liquid crystal plate is provided with a voltage having a polarization plane such that the liquid crystal plate transmits the transmitting optical signal and reflects almost half of the receiving optical signal toward the light receiving means. The optical transceiver according to claim 3, further comprising a voltage power supply applied to the optical transceiver.
力する発光手段と受信用光信号が入力される受光手段と
を有する加入者側送受信装置と、前記加入者側送受信装
置に対して前記受信用光信号を出力すると共に前記加入
者側送受信装置が出力する前記送信用光信号を受信する
送受信基地局と、前記加入者側送受信装置と前記送受信
基地局との間に設けられ、前記送信用光信号及び受信用
光信号を伝送する光ファイバとを備えた光送受信システ
ムにおいて、 前記加入者側送受信装置は、前記送信用光信号が伝送さ
れる送信用経路と前記受信用光信号が伝送される受信用
経路との分岐部に配置され、印加される電圧により屈折
率が光信号を反射させる第1の屈折率と光信号を透過さ
せる第2の屈折率とに可変である屈折率可変手段と、前
記屈折率可変手段が前記第1の屈折率を持つような第1
の電圧及び前記屈折率可変手段が前記第2の屈折率を持
つような第2の電圧を前記屈折率可変手段に可変的に印
加する印加電圧可変電源とを有していることを特徴とす
る光送受信システム。5. A subscriber side transmitting / receiving apparatus, which is provided on the subscriber side and has a light emitting means for outputting a transmitting optical signal and a light receiving means for receiving a receiving optical signal, and to the subscriber side transmitting / receiving apparatus. And a transmission / reception base station that outputs the reception optical signal and that receives the transmission optical signal output by the subscriber side transmission / reception device, and is provided between the subscriber side transmission / reception device and the transmission / reception base station, In an optical transmission / reception system including an optical fiber for transmitting the transmission optical signal and the reception optical signal, the subscriber-side transmission / reception device includes a transmission path through which the transmission optical signal is transmitted and the reception optical signal. Is arranged at a branch portion from a receiving path through which light is transmitted, and the refractive index is variable by a voltage applied to a first refractive index for reflecting an optical signal and a second refractive index for transmitting an optical signal. Rate changing means, The is rate varying means, such as having the first refractive index 1
And the applied voltage variable power source for variably applying to the refractive index varying means a second voltage such that the refractive index varying means has the second refractive index. Optical transceiver system.
力する発光手段と受信用光信号が入力される受光手段と
を有する加入者側送受信装置と、前記加入者側送受信装
置に対して前記受信用光信号を出力すると共に前記加入
者側送受信装置が出力する前記送信用光信号を受信する
送受信基地局と、前記加入者側送受信装置と前記送受信
基地局との間に設けられ、前記送信用光信号及び受信用
光信号を伝送する光ファイバとを備えた光送受信システ
ムにおいて、 前記加入者側送受信装置は、前記送信用光信号が伝送さ
れる送信用経路と前記受信用光信号が伝送される受信用
経路との分岐部に配置され、前記送信用光信号を前記光
ファイバに向かって透過させる一方、前記受信用光信号
のうちのほぼ半分を前記受光手段に向かって反射させる
液晶板を有していることを特徴とする光送受信システ
ム。6. A subscriber side transmitter / receiver provided on the subscriber side and having a light emitting means for outputting an optical signal for transmission and a light receiving means for receiving an optical signal for reception, and to the subscriber side transmitter / receiver. And a transmission / reception base station that outputs the reception optical signal and that receives the transmission optical signal output by the subscriber side transmission / reception device, and is provided between the subscriber side transmission / reception device and the transmission / reception base station, In an optical transmission / reception system including an optical fiber for transmitting the transmission optical signal and the reception optical signal, the subscriber-side transmission / reception device includes a transmission path through which the transmission optical signal is transmitted and the reception optical signal. Is arranged at a branching portion with respect to a reception path through which the optical signal is transmitted, and transmits the transmission optical signal toward the optical fiber, while reflecting almost half of the reception optical signal toward the light receiving means. liquid crystal Optical transmission and reception system, characterized in that it has a.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7255927A JPH0998135A (en) | 1995-10-03 | 1995-10-03 | Optical transmitter-receiver and optical transmission/ reception system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7255927A JPH0998135A (en) | 1995-10-03 | 1995-10-03 | Optical transmitter-receiver and optical transmission/ reception system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0998135A true JPH0998135A (en) | 1997-04-08 |
Family
ID=17285513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7255927A Withdrawn JPH0998135A (en) | 1995-10-03 | 1995-10-03 | Optical transmitter-receiver and optical transmission/ reception system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0998135A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6424440B1 (en) | 1997-10-28 | 2002-07-23 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
-
1995
- 1995-10-03 JP JP7255927A patent/JPH0998135A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6424440B1 (en) | 1997-10-28 | 2002-07-23 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
US6466344B2 (en) | 1997-10-28 | 2002-10-15 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
US7197246B2 (en) | 1997-10-28 | 2007-03-27 | Nec Corporation | Optical switch, optical amplifier and optical power controller as well as optical add-drop multiplexer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2125751C (en) | Polarization independent transmissive/reflective optical switch | |
JPS63502946A (en) | optical communication system | |
CN110024308A (en) | Two-way optical assembly, optical network unit, optical line terminal and passive optical network | |
CN102546030A (en) | Optical transceiver using single-wavelength communication | |
US6480647B1 (en) | Waveguide-type wavelength multiplexing optical transmitter/receiver module | |
US20060067610A1 (en) | Ultra-fast all-optical switch array | |
JP6122784B2 (en) | Optical fiber side input / output device and optical communication switching system | |
JP2003014992A (en) | Semiconductor laser module and light transmission system | |
JP3257510B2 (en) | Optical device | |
JP2787812B2 (en) | Reflective transmitting and receiving device for bidirectional optical waveguide communication system | |
US6172802B1 (en) | Bidirectional optical amplification system | |
JPH0998135A (en) | Optical transmitter-receiver and optical transmission/ reception system | |
CN114567437B (en) | Signal encryption transmission system based on Raman spectroscopy and embedded electronic circuit | |
US4913509A (en) | Fail-safe port for use with an optical fiber | |
US6947617B2 (en) | Polarized wave scrambler and optical signal transmission apparatus | |
US7194159B1 (en) | Asymmetric optical circulator | |
JP4592588B2 (en) | Optical transmission system | |
JPH05157944A (en) | Two-way optical device | |
JPH07106715A (en) | Optical fiber communication system and optical coupler | |
JPS63124633A (en) | Wide band optical communication system especially for subscriber domain | |
JP3054167B2 (en) | Bidirectional optical transmission system and optical receiver | |
JPH07250031A (en) | Bidirectional optical transmitting system | |
JPH06130257A (en) | Bidirectional light transmission/reception module | |
JPH07212317A (en) | Optical bi-directional communication system | |
JPH05188249A (en) | Optical signal transmission/reception module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20021203 |