JPH0993944A - 3-phase high power factor converter - Google Patents
3-phase high power factor converterInfo
- Publication number
- JPH0993944A JPH0993944A JP24329295A JP24329295A JPH0993944A JP H0993944 A JPH0993944 A JP H0993944A JP 24329295 A JP24329295 A JP 24329295A JP 24329295 A JP24329295 A JP 24329295A JP H0993944 A JPH0993944 A JP H0993944A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- switching element
- high power
- power factor
- switching elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Rectifiers (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は三相高力率コンバー
タに関するもので、さらに詳しく言えば、その各相の交
流入力電流を各相の交流入力電圧と同位相の正弦波状に
整形することができ、その歪率、等価逆相電流率を小さ
くすることができる三相高力率コンバータに関するもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase high power factor converter, and more specifically, it can shape an AC input current of each phase into a sine wave having the same phase as the AC input voltage of each phase. The present invention relates to a three-phase high power factor converter capable of reducing the distortion factor and the equivalent anti-phase current factor.
【0002】[0002]
【従来の技術】従来の三相高力率コンバータは、(社)
電気学会半導体電力変換研究会が平成5年10月29日
に発行した資料中の「新しい単相入力電流正弦波整流回
路の解析」と題する論文の図8に記載されたものがあ
る。2. Description of the Related Art A conventional three-phase high power factor converter is available from
There is one described in FIG. 8 of a paper entitled "Analysis of New Single-Phase Input Current Sinusoidal Rectifier Circuit" in a material issued by the Institute of Electrical Engineers, Semiconductor Power Conversion Study Group on October 29, 1993.
【0003】上記した従来の三相高力率コンバータは図
5に記載されたようなものである。The conventional three-phase high power factor converter described above is as shown in FIG.
【0004】すなわち、図5に記載された三相高力率コ
ンバータは、三相交流電源1からの三相交流電力を全波
整流する、ダイオード3a,3b,3c,3d,3e,
3fからなる三相全波整流回路3と、この三相全波整流
回路3の各交流端子と前記三相交流電源1の各相端子
R,S,Tとの間に挿入されたチョークコイル4a,4
b,4cと、前記三相全波整流回路3の直流端子間に接
続された2個のスイッチング素子6a,6bの直列接続
回路および出力コンデンサ5と、前記三相交流電源1の
各相端子R,S,Tにそれぞれの一端が接続され、前記
スイッチング素子6a,6bの中間直列接続点Nにそれ
ぞれの他端が共通に接続されたコンデンサ2a,2b,
2cと、前記スイッチング素子6a,6bのそれぞれに
逆並列に接続されたダイオード7a,7bとを有し、前
記出力コンデンサ5の端子を負荷RL が接続される直流
出力端子t1,t2に接続するとともに、図示していな
い制御回路によって前記スイッチング素子6a,6bを
三相交流電源1の周波数より高い周波数でオン、オフさ
せて各相の交流入力電流を各相の交流入力電圧と同位相
の正弦波状に整形するものである。That is, the three-phase high power factor converter shown in FIG. 5 performs full-wave rectification of the three-phase AC power from the three-phase AC power supply 1 with the diodes 3a, 3b, 3c, 3d, 3e,
A three-phase full-wave rectifier circuit 3 composed of 3f, and a choke coil 4a inserted between each AC terminal of the three-phase full-wave rectifier circuit 3 and each phase terminal R, S, T of the three-phase AC power supply 1. , 4
b, 4c, a series connection circuit of two switching elements 6a, 6b connected between the DC terminals of the three-phase full-wave rectification circuit 3, and an output capacitor 5, and each phase terminal R of the three-phase AC power supply 1. , S, T, one end of each of which is connected to the intermediate series connection point N of the switching elements 6a, 6b, and the other end of which is commonly connected to the capacitors 2a, 2b,
2c and diodes 7a and 7b connected in antiparallel to the switching elements 6a and 6b, respectively, and the terminal of the output capacitor 5 is connected to the DC output terminals t1 and t2 to which the load R L is connected. At the same time, the switching elements 6a and 6b are turned on and off at a frequency higher than the frequency of the three-phase AC power source 1 by a control circuit (not shown) so that the AC input current of each phase is in the same phase as the AC input voltage of each phase. It is shaped like a wave.
【0005】次に、上記した従来の三相高力率コンバー
タの動作を、図6のスイッチング素子6a,6bの動作
モード図に基づいて説明する。Next, the operation of the conventional three-phase high power factor converter described above will be described based on the operation mode diagram of the switching elements 6a and 6b in FIG.
【0006】(モード1)スイッチング素子6aがオ
ン、スイッチング素子6bがオフしている場合で、三相
交流電源の各相の相電圧、すなわち、R相のスイッチン
グ素子6a,6bの中間直列接続点Nすなわちコンデン
サ2a,2b,2cの共通接続点(中性点)に対する電
位が正、S相の中性点に対する電位が負、T相の中性点
に対する電位が負の場合、コンデンサ2aと三相交流電
源1との接続点→チョークコイル4a→ダイオード3a
→スイッチング素子6a→中性点なる経路に電流が流
れる。この経路の電流はチョークコイル4aにエネル
ギーを蓄積するための電流であるからR相の相電圧に比
例する。(Mode 1) When the switching element 6a is on and the switching element 6b is off, the phase voltage of each phase of the three-phase AC power supply, that is, the intermediate series connection point of the R phase switching elements 6a and 6b. If the potential of N, that is, the common connection point (neutral point) of the capacitors 2a, 2b, and 2c is positive, the potential of the S-phase neutral point is negative, and the potential of the T-phase neutral point is negative, the capacitors 2a and 3 Connection point with phase AC power supply 1 → choke coil 4a → diode 3a
→ Switching element 6a → Current flows in the path of neutral point. The current in this path is a current for accumulating energy in the choke coil 4a and is therefore proportional to the phase voltage of the R phase.
【0007】(モード2)スイッチング素子6aがオ
フ、スイッチング素子6bがオフしている場合で、R
相、S相、T相の相電圧がモード1と同じ場合、チョー
クコイル4a→ダイオード3a→出力コンデンサ5→ダ
イオード7b→コンデンサ2a→チョークコイル4aな
る経路と、チョークコイル4a→ダイオード3a→出
力コンデンサ5→ダイオード3d(ダイオード3f)→
チョークコイル4b(チョークコイル4c)→コンデン
サ2bと三相交流電源1との接続点(コンデンサ2cと
三相交流電源1との接続点)なる経路()とに電流
が流れる。この経路および経路()の電流はチョ
ークコイル4aに蓄積されたエネルギーの放出によるも
のであるからいずれもR相、S相、T相の相電圧には比
例しない。(Mode 2) When the switching element 6a is off and the switching element 6b is off, R
When the phase voltages of the S, S, and T phases are the same as in mode 1, the path is choke coil 4a → diode 3a → output capacitor 5 → diode 7b → capacitor 2a → choke coil 4a, and choke coil 4a → diode 3a → output capacitor. 5 → diode 3d (diode 3f) →
An electric current flows through a path () which is a connection point between the choke coil 4b (choke coil 4c) and the capacitor 2b and the three-phase AC power supply 1 (a connection point between the capacitor 2c and the three-phase AC power supply 1). The currents in this path and the path () are due to the release of the energy accumulated in the choke coil 4a, and therefore are not proportional to the phase voltages of the R phase, S phase, and T phase.
【0008】(モード3)スイッチング素子6aがオ
フ、スイッチング素子6bがオンしている場合で、R
相、S相、T相の相電圧がモード1と同じ場合、中性点
→スイッチング素子6b→ダイオード3d(ダイオード
3f)→チョークコイル4b(チョークコイル4c)→
コンデンサ2bと三相交流電源1との接続点(コンデン
サ2cと三相交流電源1との接続点)なる経路()
に電流が流れる。この経路,の電流はチョークコイ
ル4b,4cにエネルギーを蓄積するための電流である
からS相、T相の相電圧に比例する。(Mode 3) When the switching element 6a is off and the switching element 6b is on, R
When the phase voltage of the S-phase, S-phase, and T-phase is the same as in mode 1, the neutral point → switching element 6b → diode 3d (diode 3f) → choke coil 4b (choke coil 4c) →
A path () that is a connection point between the capacitor 2b and the three-phase AC power supply 1 (connection point between the capacitor 2c and the three-phase AC power supply 1)
Current flows through. The current in this path, which is a current for storing energy in the choke coils 4b and 4c, is proportional to the phase voltage of the S phase and T phase.
【0009】(モード4)スイッチング素子6aがオ
フ、スイッチング素子6bがオフしている場合で、R
相、S相、T相の相電圧がモード1と同じ場合、チョー
クコイル4b(チョークコイル4c)→ダイオード3c
(ダイオード3e)→出力コンデンサ5→ダイオード7
b→コンデンサ2b(コンデンサ2c)→チョークコイ
ル4b(チョークコイル4c)なる経路()に電流
が流れる。この経路()の電流はチョークコイル4
b、4cに蓄積されたエネルギーの放出によるものであ
るからS相、T相の相電圧には比例しない。(Mode 4) When the switching element 6a is off and the switching element 6b is off, R
When the phase voltage of the S-phase, S-phase, and T-phase is the same as in mode 1, choke coil 4b (choke coil 4c) → diode 3c
(Diode 3e) → Output capacitor 5 → Diode 7
An electric current flows through a path () which is formed of b → capacitor 2b (capacitor 2c) → choke coil 4b (choke coil 4c). The current in this path () is the choke coil 4
It is not proportional to the phase voltage of the S phase and T phase because it is due to the release of energy accumulated in b and 4c.
【0010】上記した各モードの説明は、三相交流電源
1の各相の相電圧の極性が異なる場合であっても同様で
あるので説明は省略する。The above description of each mode is the same even when the polarities of the phase voltages of the respective phases of the three-phase AC power supply 1 are different, and therefore the description thereof is omitted.
【0011】また、上記した各モードにおいて、スイッ
チング素子6a,6bのオン、オフは図示していない制
御回路によって三相交流電源1の周波数より高い数十k
Hzで行っている。In each of the above modes, the switching elements 6a and 6b are turned on and off by a control circuit (not shown), which is higher than the frequency of the three-phase AC power source 1 by several tens of k.
It is done in Hz.
【0012】上記した従来の三相高力率コンバータにつ
いて、三相交流入力電圧を180V,200V,220
V,240V,264Vとし、直流出力電圧を390
V、直流出力電力を6479WとしてR相の交流入力電
流の高調波分析を行ったところ、表1のような結果が得
られた。Regarding the conventional three-phase high power factor converter described above, the three-phase AC input voltage is 180V, 200V, 220.
V, 240V, 264V, DC output voltage 390
When a harmonic analysis of the AC input current of the R phase was performed with V and DC output power of 6479 W, the results shown in Table 1 were obtained.
【0013】[0013]
【表1】 [Table 1]
【0014】表1から、R相の交流入力電流の高調波成
分のうち、第5高調波と第7高調波の成分が大きく、そ
れによって歪率と等価逆相電流率が大きくなっているこ
とがわかる。また、R相以外のS相、T相についても同
様であった。From Table 1, it can be seen that among the harmonic components of the R-phase AC input current, the fifth harmonic component and the seventh harmonic component are large, and as a result, the distortion factor and the equivalent anti-phase current factor are large. I understand. The same applies to the S and T phases other than the R phase.
【0015】このことは、スイッチング素子6a,6b
がオンの場合は各相の相電圧に比例した電流、すなわち
チョークコイル4a,4b,4cにエネルギーを蓄積す
るための電流が流れるが、スイッチング素子6a,6b
がオフの場合は各相の相電圧に比例しない電流、すなわ
ちチョークコイル4a,4b,4cに蓄積されたエネル
ギーを放出するための電流が流れることによるものであ
る。This means that the switching elements 6a and 6b are
When is on, a current proportional to the phase voltage of each phase, that is, a current for storing energy flows in the choke coils 4a, 4b, 4c, but the switching elements 6a, 6b.
When is off, a current that is not proportional to the phase voltage of each phase, that is, a current for discharging the energy accumulated in the choke coils 4a, 4b, and 4c flows.
【0016】[0016]
【発明が解決しようとする課題】上記した如く、従来の
三相高力率コンバータは、その交流入力電流の歪率と等
価逆相電流率が大きいという問題があった。As described above, the conventional three-phase high power factor converter has a problem that the distortion factor of the AC input current and the equivalent anti-phase current factor are large.
【0017】[0017]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、三相交流電源からの三相交流電力を全波
整流する三相全波整流回路と、この三相全波整流回路の
各交流端子と三相交流電源の各相端子との間に挿入され
たチョークコイルと、前記三相全波整流回路の直流端子
間に接続された複数のスイッチング素子の直列接続回路
と、前記三相交流電源の各相端子にそれぞれの一端が接
続され、前記スイッチング素子の中間直列接続点にそれ
ぞれの他端が共通に接続されたコンデンサと、前記複数
のスイッチング素子を三相交流電源の周波数より高い周
波数でオン、オフさせる制御回路とを有する三相高力率
コンバータにおいて、複数のスイッチング素子が4個の
スイッチング素子の直列接続回路からなり、かつ中間直
列接続点で接続された2個のスイッチング素子のそれぞ
れに逆並列にダイオードを接続し、中間直列接続点以外
の2つの直列接続点を直流出力端子に接続し、この直流
出力端子間に出力コンデンサを接続したことを特徴とす
るものである。In order to solve the above problems, the present invention provides a three-phase full-wave rectifier circuit for full-wave rectifying the three-phase AC power from a three-phase AC power supply, and the three-phase full-wave rectifier circuit. A choke coil inserted between each AC terminal and each phase terminal of the three-phase AC power supply, a series connection circuit of a plurality of switching elements connected between the DC terminals of the three-phase full-wave rectifier circuit, A capacitor having one end connected to each phase terminal of the three-phase AC power supply and the other end commonly connected to the intermediate series connection point of the switching elements, and the plurality of switching elements having a frequency of the three-phase AC power supply. In a three-phase high power factor converter having a control circuit for turning on and off at a higher frequency, a plurality of switching elements is composed of a series connection circuit of four switching elements and is connected at an intermediate series connection point. A diode is connected in antiparallel to each of the two switching elements, two series connection points other than the intermediate series connection point are connected to a DC output terminal, and an output capacitor is connected between the DC output terminals. To do.
【0018】また、本発明は、前記三相高力率コンバー
タにおいて、複数のスイッチング素子が2個のスイッチ
ング素子の直列接続回路からなり、各スイッチング素子
の、三相全波整流回路の直流端子との接続点と各直流出
力端子との間にそれぞれスイッチング素子を挿入し、か
つ各直流出力端子と前記スイッチング素子の中間直列接
続点との間にダイオードを接続し、前記直流出力端子間
に出力コンデンサを接続したことを特徴とするものであ
る。Further, in the three-phase high power factor converter according to the present invention, the plurality of switching elements comprises a series connection circuit of two switching elements, and each switching element has a DC terminal of a three-phase full-wave rectification circuit. A switching element between each DC output terminal and each DC output terminal, and a diode connected between each DC output terminal and the intermediate series connection point of the switching elements, and an output capacitor between the DC output terminals. It is characterized by connecting.
【0019】[0019]
【発明の実施の形態】以下、本発明の実施の形態を図1
〜図4に基づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to FIG.
~ It demonstrates based on FIG.
【0020】図1、図3は本発明の実施の形態に係る三
相高力率コンバータの回路図で、図5と同じ機能を有す
る部分には同じ符号を付して以下の説明は省略する。1 and 3 are circuit diagrams of a three-phase high power factor converter according to an embodiment of the present invention. Portions having the same functions as those in FIG. 5 are designated by the same reference numerals, and the following description will be omitted. .
【0021】また、図2は図1の三相高力率のコンバー
タの各スイッチング素子の動作波形図、図4は図3の三
相高力率コンバータの各スイッチング素子の動作モード
図で、図6と同じ動作についての以下の説明は省略す
る。FIG. 2 is an operation waveform diagram of each switching element of the three-phase high power factor converter of FIG. 1, and FIG. 4 is an operation mode diagram of each switching element of the three-phase high power factor converter of FIG. The following description of the same operation as 6 will be omitted.
【0022】図1に示した三相高力率コンバータの特徴
は、中間直列接続点Nで一端が互いに接続された2個の
スイッチング素子6a,6bのうち、スイッチング素子
6aの他端にスイッチング素子6cの一端を接続し、ス
イッチング素子6bの他端にスイッチング素子6dの一
端を接続してなり、前記スイッチング素子6c,6dの
他端を三相全波整流回路3の直流端子に接続したことで
ある。The characteristic of the three-phase high power factor converter shown in FIG. 1 is that, of the two switching elements 6a, 6b whose one ends are connected to each other at the intermediate series connection point N, the switching element is provided at the other end of the switching element 6a. 6c is connected to one end, the other end of the switching element 6b is connected to one end of the switching element 6d, and the other ends of the switching elements 6c and 6d are connected to the DC terminal of the three-phase full-wave rectification circuit 3. is there.
【0023】そして、前記スイッチング素子6a〜6d
は図2に示した動作モード図のように動作させる。Then, the switching elements 6a to 6d
Operate as in the operation mode diagram shown in FIG.
【0024】(モード1)スイッチング素子6aがオ
ン、スイッチング素子6bがオフ、スイッチング素子6
cがオン、スイッチング素子6dがオンの場合で、前述
した従来の三相高力率コンバータのモード1の動作と同
じである。(Mode 1) Switching element 6a is on, switching element 6b is off, switching element 6
When c is on and the switching element 6d is on, this is the same as the operation in mode 1 of the conventional three-phase high power factor converter described above.
【0025】(モード2)スイッチング素子6aがオ
フ、スイッチング素子6bがオフ、スイッチング素子6
cがオン、スイッチング素子6dがオフの場合で、前述
した従来の三相高力率コンバータのモード2における経
路、の電流が流れないようにして相電圧に比例しな
い電流を経路の電流のみとしている。(Mode 2) Switching element 6a is off, switching element 6b is off, switching element 6
When c is on and the switching element 6d is off, the current of the path in the mode 2 of the conventional three-phase high power factor converter described above is prevented from flowing and only the current of the path is not proportional to the phase voltage. .
【0026】(モード3)スイッチング素子6aがオ
フ、スイッチング素子6bがオン、スイッチング素子6
cがオン、スイッチング6dがオンの場合で、前述した
従来の三相高力率コンバータのモード3の動作と同じで
ある。(Mode 3) Switching element 6a is off, switching element 6b is on, switching element 6
When c is on and switching 6d is on, the operation is the same as the operation in mode 3 of the conventional three-phase high power factor converter described above.
【0027】(モード4)スイッチング素子6aがオ
フ、スイッチング素子6bがオフ、スイッチング素子6
cがオフ、スイッチング素子6dがオンの場合で、前述
した従来の三相高力率コンバータのモード4における経
路,の電流が流れないようにして相電圧に比例しな
い電流をなくしている。(Mode 4) Switching element 6a is off, switching element 6b is off, switching element 6
When c is off and the switching element 6d is on, the current in the path in the mode 4 of the conventional three-phase high power factor converter described above is prevented from flowing and the current not proportional to the phase voltage is eliminated.
【0028】上記した各モードの説明では、相電圧に比
例しない電流が流れないのはモード2のみであるが、三
相交流電源1の各相の相電圧の極性に応じてモード2、
モード4の両方で相電圧に比例しない電流が流れたり、
モード4のみで相電圧に比例しない電流が流れることは
言うまでもない。In the above description of each mode, it is only in mode 2 that a current not proportional to the phase voltage does not flow, but in mode 2 depending on the polarity of the phase voltage of each phase of the three-phase AC power supply 1,
In both mode 4, a current that is not proportional to the phase voltage flows,
It goes without saying that a current that is not proportional to the phase voltage flows only in mode 4.
【0029】次に、図3に示した三相高力率コンバータ
の特徴は、中間直列接続点Nで一端が互いに接続され、
他端が三相全波整流回路3の直流端子に接続された2個
のスイッチング素子6a,6bのうち、スイッチング素
子6aの、三相全波整流回路3の直流端子との接続点と
直流出力端子t1との間にスイッチング素子6cを挿入
し、スイッチング素子6bの、三相全波整流回路3の直
流端子との接続点と直流出力端子t2との間にスイッチ
ング素子6dを挿入し、直流出力端子t1と中間直列接
続点Nとの間にダイオード7aを接続し、直流出力端子
t2と中間直列接続点Nとの間にダイオード7bを接続
したことである。Next, the feature of the three-phase high power factor converter shown in FIG. 3 is that one ends are connected to each other at an intermediate series connection point N,
Of the two switching elements 6a, 6b whose other end is connected to the DC terminal of the three-phase full-wave rectifier circuit 3, the connection point of the switching element 6a with the DC terminal of the three-phase full-wave rectifier circuit 3 and the DC output. The switching element 6c is inserted between the terminal t1 and the switching element 6d between the connection point of the switching element 6b with the DC terminal of the three-phase full-wave rectifier circuit 3 and the DC output terminal t2, and the DC output The diode 7a is connected between the terminal t1 and the intermediate series connection point N, and the diode 7b is connected between the DC output terminal t2 and the intermediate series connection point N.
【0030】そして、前記スイッチング素子6a〜6d
は図4に示した動作モード図のように動作させる。Then, the switching elements 6a to 6d
Operate as in the operation mode diagram shown in FIG.
【0031】(モード1)スイッチング素子6aがオ
ン、スイッチング素子6bがオフ、スイッチング素子6
cがオン、スイッチング素子6dがオンの場合で、前述
した従来の三相高力率コンバータのモード1の動作と同
じである。(Mode 1) Switching element 6a is on, switching element 6b is off, switching element 6
When c is on and the switching element 6d is on, this is the same as the operation in mode 1 of the conventional three-phase high power factor converter described above.
【0032】(モード2)スイッチング素子6aがオ
フ、スイッチング素子6bがオフ、スイッチング素子6
cがオン、スイッチング素子6dがオフの場合で、前述
した従来の三相高力率コンバータのモード2における経
路,の電流が流れないようにして相電圧に比例しな
い電流を経路の電流のみとしている。(Mode 2) Switching element 6a is off, switching element 6b is off, switching element 6
When c is on and the switching element 6d is off, the current of the path in the mode 2 of the conventional three-phase high power factor converter described above is prevented from flowing and only the current of the path is not proportional to the phase voltage. .
【0033】(モード3)スイッチング素子6aがオ
フ、スイッチング素子6bがオン、スイッチング素子6
cがオン、スイッチング素子6dがオンの場合で、前述
した従来の三相高力率コンバータのモード3の動作と同
じである。(Mode 3) Switching element 6a is off, switching element 6b is on, switching element 6
When c is on and the switching element 6d is on, this is the same as the operation in mode 3 of the conventional three-phase high power factor converter described above.
【0034】(モード4)スイッチング素子6aがオ
フ、スイッチング素子6bがオフ、スイッチング素子6
cがオフ、スイッチング素子6dがオンの場合で、前述
した従来の三相高力率コンバータのモード4における経
路,の電流が流れないようにして相電圧に比例しな
い電流をなくしている。(Mode 4) Switching element 6a is off, switching element 6b is off, switching element 6
When c is off and the switching element 6d is on, the current of the path in the mode 4 of the conventional three-phase high power factor converter described above is prevented from flowing and the current not proportional to the phase voltage is eliminated.
【0035】上記した各モードの説明では、相電圧に比
例しない電流が流れないのはモード2のみであるが、三
相交流電源1の各相の相電圧の極性に応じてモード2,
モード4の両方で相電圧に比例しない電流が流れたり、
モード4のみで相電圧に比例しない電流が流れることは
言うまでもない。In the above description of each mode, only the mode 2 does not flow a current that is not proportional to the phase voltage, but the mode 2, depending on the polarity of the phase voltage of each phase of the three-phase AC power supply 1.
In both mode 4, a current that is not proportional to the phase voltage flows,
It goes without saying that a current that is not proportional to the phase voltage flows only in mode 4.
【0036】上記した本発明の三相高力率コンバータの
うち、図1のものについて三相交流入力電圧を180
V,200V,220V,240V,264Vとし、直
流出力電圧を390V、直流出力電力を6479Wとし
てR相の交流入力電流の高調波分析を行ったところ、表
2のような結果が得られた。Of the three-phase high power factor converter of the present invention described above, the three-phase AC input voltage of the one shown in FIG.
When V, 200V, 220V, 240V, and 264V were set, the DC output voltage was 390V, and the DC output power was 6479W, the harmonic analysis of the R phase AC input current was performed, and the results shown in Table 2 were obtained.
【0037】[0037]
【表2】 [Table 2]
【0038】表2から、R相の交流入力電流の高調波成
分のうち、第5高調波と第7高調波の成分を抑制するこ
とができたことがわかり、それによって歪率と等価逆相
電流率を小さくできたことがわかる。また、R相以外の
S相、T相についても同様であった。It can be seen from Table 2 that the fifth harmonic component and the seventh harmonic component of the harmonic component of the AC input current of the R phase could be suppressed, and thereby the distortion factor and the equivalent reverse phase were obtained. It can be seen that the current rate could be reduced. The same applies to the S and T phases other than the R phase.
【0039】上記した、図1のものと図3のものとの相
違は、図1のものでは、モード1における経路の電流
がスイッチング素子6c,6aを流れ、モード3におけ
る経路,の電流がスイッチング素子6b,6dを流
れるのに対し、図3のものでは、モード1における経路
の電流がスイッチング素子6aを流れ、モード3にお
ける経路,の電流がスイッチング素子6bを流れる
ので、図3のものの方がスイッチング素子による損失を
小さくすることができる。The difference between the one shown in FIG. 1 and the one shown in FIG. 3 is that in FIG. 1, the current in the path in mode 1 flows through the switching elements 6c and 6a, and the current in the path in mode 3 switches. 3 flows in the elements 6b and 6d, the current in the path in mode 1 flows in the switching element 6a and the current in the path in mode 3 flows in the switching element 6b. The loss due to the switching element can be reduced.
【0040】なお、上記した図1のものも図3のものも
スイッチング素子6c,6dのオン、オフは電流が流れ
ていない状態で行っているから、零電流スイッチングと
なり、スイッチング素子6c,6dを挿入したことによ
るスイッチング損失の増加はない。It should be noted that the switching elements 6c and 6d in both FIG. 1 and FIG. 3 described above are turned on and off in the state where no current is flowing, so that zero current switching is performed and the switching elements 6c and 6d are turned on. There is no increase in switching loss due to insertion.
【0041】[0041]
【発明の効果】上記したとおりであるから、本発明の三
相高力率コンバータは、スイッチング素子を追加したこ
とによる損失を増大させることなく、三相の各相の交流
入力電流を各相の交流入力電圧と同位相の正弦波状に整
形することができ、しかもその歪率や等価逆相電流率も
小さくすることができる。As has been described above, the three-phase high power factor converter of the present invention allows the AC input current of each of the three phases to be supplied to each phase without increasing the loss due to the addition of the switching element. It can be shaped into a sine wave having the same phase as the AC input voltage, and its distortion factor and equivalent anti-phase current ratio can be reduced.
【図1】本発明の実施の形態に係る三相高力率コンバー
タの回路図である。FIG. 1 is a circuit diagram of a three-phase high power factor converter according to an embodiment of the present invention.
【図2】図1の実施の形態におけるスイッチング素子の
動作モード図である。2 is an operation mode diagram of a switching element in the embodiment of FIG.
【図3】本発明の他の実施の形態に係る三相高力率コン
バータの回路図である。FIG. 3 is a circuit diagram of a three-phase high power factor converter according to another embodiment of the present invention.
【図4】図3の実施の形態におけるスイッチング素子の
動作モード図である。4 is an operation mode diagram of a switching element in the embodiment of FIG.
【図5】従来の三相高力率コンバータの回路図である。FIG. 5 is a circuit diagram of a conventional three-phase high power factor converter.
【図6】従来の三相高力率コンバータにおけるスイッチ
ング素子の動作モード図である。FIG. 6 is an operation mode diagram of a switching element in a conventional three-phase high power factor converter.
1 三相交流電源 2a,2b,2c コンデンサ 3 三相全波整流回路 4a,4b,4c チョークコイル 5 出力コンデンサ 6a,6b,6c,6d スイッチング素子 7a,7b ダイオード 1 Three-phase AC power supply 2a, 2b, 2c Capacitor 3 Three-phase full-wave rectifier circuit 4a, 4b, 4c Choke coil 5 Output capacitor 6a, 6b, 6c, 6d Switching element 7a, 7b Diode
Claims (2)
整流する三相全波整流回路と、この三相全波整流回路の
各交流端子と三相交流電源の各相端子との間に挿入され
たチョークコイルと、前記三相全波整流回路の直流端子
間に接続された複数のスイッチング素子の直列接続回路
と、前記三相交流電源の各相端子にそれぞれの一端が接
続され、前記スイッチング素子の中間直列接続点にそれ
ぞれの他端が共通に接続されたコンデンサと、前記複数
のスイッチング素子を三相交流電源の周波数より高い周
波数でオン、オフさせる制御回路とを有する三相高力率
コンバータにおいて、複数のスイッチング素子が4個の
スイッチング素子の直列接続回路からなり、かつ中間直
列接続点で接続された2個のスイッチング素子のそれぞ
れに逆並列にダイオードを接続し、中間直列接続点以外
の2つの直列接続点を直流出力端子に接続し、この直流
出力端子間に出力コンデンサを接続したことを特徴とす
る三相高力率コンバータ。1. A three-phase full-wave rectification circuit for full-wave rectifying three-phase AC power from a three-phase AC power supply, and an AC terminal of the three-phase full-wave rectification circuit and each phase terminal of the three-phase AC power supply. A choke coil inserted between them, a series connection circuit of a plurality of switching elements connected between the DC terminals of the three-phase full-wave rectifier circuit, and one end of each of the phase terminals of the three-phase AC power supply are connected. A three-phase having a capacitor whose other end is commonly connected to an intermediate series connection point of the switching elements, and a control circuit for turning on / off the plurality of switching elements at a frequency higher than the frequency of the three-phase AC power supply In a high power factor converter, a plurality of switching elements are composed of a series connection circuit of four switching elements, and two switching elements connected at an intermediate series connection point are connected in antiparallel to each other. A three-phase high power factor converter characterized by connecting a battery, connecting two series connection points other than the intermediate series connection point to a DC output terminal, and connecting an output capacitor between the DC output terminals.
おいて、複数のスイッチング素子が2個のスイッチング
素子の直列接続回路からなり、各スイッチング素子の、
三相全波整流回路の直流端子との接続点と各直流出力端
子との間にそれぞれスイッチング素子を挿入し、かつ各
直流出力端子と前記スイッチング素子の中間直列接続点
との間にダイオードを接続し、前記直流出力端子間に出
力コンデンサを接続したことを特徴とする三相高力率コ
ンバータ。2. The three-phase high power factor converter according to claim 1, wherein the plurality of switching elements comprises a series connection circuit of two switching elements, and
Insert a switching element between each DC output terminal and the connection point with the DC terminal of the three-phase full-wave rectifier circuit, and connect a diode between each DC output terminal and the intermediate series connection point of the switching element. And a three-phase high power factor converter characterized in that an output capacitor is connected between the DC output terminals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24329295A JP3230644B2 (en) | 1995-09-21 | 1995-09-21 | Three-phase high power factor converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24329295A JP3230644B2 (en) | 1995-09-21 | 1995-09-21 | Three-phase high power factor converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0993944A true JPH0993944A (en) | 1997-04-04 |
JP3230644B2 JP3230644B2 (en) | 2001-11-19 |
Family
ID=17101678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24329295A Expired - Fee Related JP3230644B2 (en) | 1995-09-21 | 1995-09-21 | Three-phase high power factor converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3230644B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1313203A2 (en) * | 2001-10-20 | 2003-05-21 | Postech Foundation | Half-bridge converters |
-
1995
- 1995-09-21 JP JP24329295A patent/JP3230644B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1313203A2 (en) * | 2001-10-20 | 2003-05-21 | Postech Foundation | Half-bridge converters |
EP1313203A3 (en) * | 2001-10-20 | 2004-09-22 | Postech Foundation | Half-bridge converters |
Also Published As
Publication number | Publication date |
---|---|
JP3230644B2 (en) | 2001-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101331671B (en) | High-frequency modulation/demodulation multiphase rectifying device | |
de Seixas et al. | A 12 kW three-phase low THD rectifier with high-frequency isolation and regulated DC output | |
US20120120697A1 (en) | Three-phase isolated rectifer with power factor correction | |
Schrittwieser et al. | Modulation and control of a three-phase phase-modular isolated matrix-type PFC rectifier | |
US20070058401A1 (en) | Integrated converter having three-phase power factor correction | |
US6297971B1 (en) | Phase converter | |
US6731525B2 (en) | H-bridge electronic phase converter | |
Kim et al. | Output current balancing method for three-phase interleaved LLC resonant converter employing Y-connected rectifier | |
RU2346370C1 (en) | Electromagnetic compensator of power grid third harmonic | |
JP4513185B2 (en) | Three-phase half-voltage output type rectifier | |
JP3230644B2 (en) | Three-phase high power factor converter | |
JP3696855B2 (en) | Rectifier | |
JP3063413B2 (en) | Converter circuit | |
KR20100055233A (en) | Current-fed three phase half-bridge dc-dc converter for power conversion apparatus | |
JPH07194123A (en) | Power supply apparatus | |
JPH09182457A (en) | Inverter | |
JP3400096B2 (en) | Sine wave rectifier circuit | |
JPH01122329A (en) | Power converting device | |
JP2007236088A (en) | Three-phase rectifier | |
Gupta et al. | Novel topologies of power electronic transformers with reduced switch-count | |
RU2280311C1 (en) | Three-phase dual-channel conversion transformer-rectifier unit (alternatives) | |
JPH08126330A (en) | Ac-dc converter | |
JP2002078358A (en) | Power supply for vehicle | |
JPH06245541A (en) | Inverter control power supply method | |
Dahono | A family of low-voltage high-current rectifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070914 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080914 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090914 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 10 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |