[go: up one dir, main page]

JPH0990998A - Acoustic signal conversion decoding method - Google Patents

Acoustic signal conversion decoding method

Info

Publication number
JPH0990998A
JPH0990998A JP7247436A JP24743695A JPH0990998A JP H0990998 A JPH0990998 A JP H0990998A JP 7247436 A JP7247436 A JP 7247436A JP 24743695 A JP24743695 A JP 24743695A JP H0990998 A JPH0990998 A JP H0990998A
Authority
JP
Japan
Prior art keywords
power spectrum
square root
spectrum envelope
frequency
linear prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7247436A
Other languages
Japanese (ja)
Other versions
JP3186020B2 (en
Inventor
Takehiro Moriya
健弘 守谷
Naoki Iwagami
直樹 岩上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP24743695A priority Critical patent/JP3186020B2/en
Publication of JPH0990998A publication Critical patent/JPH0990998A/en
Application granted granted Critical
Publication of JP3186020B2 publication Critical patent/JP3186020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the number of operation steps by reducing calculation and division of a power spectrum envelope in a decoder. SOLUTION: This method reproduces a signal by decoding a quantized sign after normalizing it by a square root power spectrum envelope, reproducing an inputted linear prediction parameter by a means 56, performing an operation to obtain a power spectrum concerning predetermined sparse frequency points from this linear prediction parameter, and a square root power spectrum envelope value is obtained by means 101. About an unoperated frequency point in the part where this change is comparatively large, the square root power spectrum envelope value can be determined by a means 103 by using the reproduction value of means 56, and about an unoperated frequency point in the part where this change is small, the square root power spectrum envelope value is obtained by interpolating them from their fore and aft values.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は音声や音楽などの
音響信号を周波数領域に変換して高能率符号化された符
号を音響信号に復号化する音響信号変換復号化方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an acoustic signal conversion / decoding method for converting an acoustic signal such as voice or music into a frequency domain and decoding a highly efficient code into an acoustic signal.

【0002】[0002]

【従来の技術】従来の音響信号変換符号化法及びその復
号化法を図3を参照して説明する。符号器31において
入力端子33からディジタル化した音響入力信号系列が
フレーム分割手段34に入力されて、N入力サンプルご
とに過去2×Nサンプルの入力系列を抽出し、長さ2×
Nサンプルの入力フレームに生成され、窓掛手段35で
その入力フレームに時間窓がかけられる。その窓形状は
ハニング窓を用いるのが一般的である。その窓かけされ
た入力信号系列はMDCT手段36で変形離散コサイン
変換されて、Nサンプルの周波数領域信号に変換され
る。
2. Description of the Related Art A conventional audio signal conversion coding method and its decoding method will be described with reference to FIG. The audio input signal sequence digitized from the input terminal 33 in the encoder 31 is input to the frame dividing means 34, and the input sequence of the past 2 × N samples is extracted for each N input samples, and the length is 2 ×.
It is generated in the input frame of N samples, and the windowing means 35 applies a time window to the input frame. A Hanning window is generally used as the window shape. The windowed input signal sequence is subjected to modified discrete cosine transform by the MDCT means 36 and transformed into a frequency domain signal of N samples.

【0003】また前記窓かけされた入力信号系列は線形
予測分析手段37で線形予測分析され、P次の予測係数
が求められる。この線形予測分析は自己相関を求めた後
に行われる。その予測係数は量子化手段38で量子化さ
れる。この量子化の方法としては、予測係数をLSPパ
ラメータに変換して量子化するLSP量子化の方法、予
測係数をkパラメータに変換してから量子化する方法な
どを用いることができる。この量子化された予測係数を
示すインデックス39が送出される。
Further, the windowed input signal sequence is subjected to linear prediction analysis by the linear prediction analysis means 37 to obtain a P-th order prediction coefficient. This linear prediction analysis is performed after obtaining the autocorrelation. The prediction coefficient is quantized by the quantizing means 38. As this quantization method, an LSP quantization method of converting a prediction coefficient into an LSP parameter for quantization, a method of converting a prediction coefficient into a k parameter and then performing quantization, or the like can be used. An index 39 indicating this quantized prediction coefficient is transmitted.

【0004】また前記量子化予測係数は周波数概形計算
手段41によりパワースペクトルを計算して周波数特性
概形信号が求められる。具体的には、量子化手段38の
量子化出力を逆量子化し、例えば図4に示すようにその
P+1個の逆量子化予測係数(αパラメータ)の後に2
×N−P−1個の0をつなげて作った長さ2×Nのサン
プル系列をFFT分析し(高速フーリエ変換:離散フー
リエ変換)、更にそのN次のパワースペクトルを計算す
る。0番目から始まってi番目の周波数特性概形の逆数
の各点は、i=N−1以外ではi+1番目とi番目の各
パワースペクトルの平方根を平均して、つまり補間して
得る。N−1番目の周波数特性概形の逆数は、N−1番
目のパワースペクトルの平方根をとって得る。
Further, the quantized prediction coefficient is obtained by calculating a power spectrum by a frequency outline calculation means 41 to obtain a frequency characteristic outline signal. Specifically, the quantized output of the quantizing means 38 is dequantized, and, for example, as shown in FIG. 4, the P + 1 dequantized prediction coefficients (α parameter) are followed by 2
An NFT power spectrum is calculated by FFT analysis (fast Fourier transform: discrete Fourier transform) of a sample sequence of length 2 × N formed by connecting × N−P−1 0s. Each point of the reciprocal of the i-th frequency characteristic outline starting from the 0-th is obtained by averaging, ie, interpolating, the square roots of the i + 1-th and i-th power spectra except i = N−1. The inverse of the N-1th frequency characteristic outline is obtained by taking the square root of the N-1th power spectrum.

【0005】図3の説明に戻って、正規化手段42にお
いて、MDCT手段36からの周波数領域信号の各サン
プルが、前記周波数概形の逆数の各サンプルとかけあわ
せて正規化され、平坦化された残差信号とされる。パワ
ー正規化・ゲイン量子化手段43でこの残差信号はその
振幅の平均値、またはパワーの平均値の平方根である正
規化ゲインで割算されて正規化され、正規化残差信号と
され、更にその正規化ゲインが量子化され、その量子化
された正規化ゲインを示すインデックス44が出力され
る。
Returning to the explanation of FIG. 3, in the normalizing means 42, each sample of the frequency domain signal from the MDCT means 36 is multiplied by each sample of the reciprocal of the frequency outline to be normalized and flattened. Is the residual signal. In the power normalization / gain quantization means 43, this residual signal is divided by the average value of its amplitude or the normalization gain which is the square root of the average value of the power to be normalized, and the normalized residual signal is obtained. Further, the normalized gain is quantized, and the index 44 indicating the quantized normalized gain is output.

【0006】また周波数概形計算手段41からの周波数
特性概形の逆数の信号は必要に応じて重み計算手段45
で聴感制御が施されて重み付け信号とされる。正規化残
差量子化手段46で、手段43からの正規化残差信号を
手段45からの重み付け信号により適応重みづけベクト
ル量子化する。量子化手段46で量子化されたベクトル
値を示すインデックス47が出力される。以上のように
符号器31から、予測係数量子化インデックス39と、
ゲイン量子化インデックス44と残差量子化インデック
ス47とが出力される。
The signal of the reciprocal of the frequency characteristic outline from the frequency outline calculating unit 41 is weighted by the weight calculating unit 45 as necessary.
The audibility control is applied to produce a weighted signal. The normalized residual quantizing means 46 adaptively weights the normalized residual signal from the means 43 using the weighting signal from the means 45. An index 47 indicating the vector value quantized by the quantizer 46 is output. As described above, from the encoder 31, the prediction coefficient quantization index 39,
The gain quantization index 44 and the residual quantization index 47 are output.

【0007】これらインデックス39,44,47を入
力された復号器32は図3に示すように次のように復号
する。即ち予測係数量子化インデックス39は再生手段
56で対応する量子化予測係数が逆量子化されて再生さ
れ、その逆量子化予測係数は周波数概形計算手段57で
周波数概形計算手段41と同じ方法で周波数特性概形の
逆数、つまりパワースペクトル包絡の平方根の逆数が計
算され、一方再生手段58で入力されたインデックス4
7から量子化正規化残差信号が再生される。再生手段5
9で入力されたインデックス44から正規化ゲインが再
生される。パワー逆正規化手段61において再生された
量子化正規化残差信号に再生された正規化ゲインが掛け
合わされてパワー逆正規化され量子化残差信号が得られ
る。その量子化残差信号は逆正規化手段62で周波数概
形計算手段57から周波数概形の逆数、つまりパワース
ペクトル包絡の平方根の逆数により各対応サンプルごと
に割算されて逆平坦化される。その逆平坦化された残差
信号は逆MDCT手段63でN次の逆変形離散コサイン
変換されて、時間領域信号とされ、この時間領域信号に
対し、窓掛け手段64で時間窓がかけられる。ここでは
窓形状としてハニング窓が用いられている。この窓掛け
された信号はフレーム重ね合せ手段65で長さ2×Nサ
ンプルのフレームの前半Nサンプルと前フレームの後半
Nサンプルとが加え合わされて出力端子66に出力され
る。
The decoder 32 to which these indexes 39, 44 and 47 are input decodes as follows as shown in FIG. That is, the predictive coefficient quantization index 39 is reproduced by dequantizing the corresponding quantized predictive coefficient by the reproducing means 56, and the dequantized predictive coefficient is reproduced by the frequency outline calculating means 57 in the same manner as the frequency outline calculating means 41. Is calculated the reciprocal of the frequency characteristic outline, that is, the reciprocal of the square root of the power spectrum envelope, while the index 4 input by the reproducing means 58 is calculated.
From 7, the quantized normalized residual signal is regenerated. Reproduction means 5
The normalized gain is reproduced from the index 44 input in 9. The quantized and normalized residual signal regenerated by the power denormalization means 61 is multiplied by the regenerated normalization gain and power denormalized to obtain a quantized residual signal. The quantized residual signal is divided by the inverse normalization means 62 from the frequency outline calculation means 57 for each corresponding sample by the inverse of the frequency outline, that is, the inverse of the square root of the power spectrum envelope, and inverse flattened. The inverse-flattened residual signal is subjected to Nth-order inverse modified discrete cosine transform in the inverse MDCT means 63 to be a time domain signal, and the windowing means 64 applies a time window to the time domain signal. Here, a Hanning window is used as the window shape. The windowed signal is added to the first half N samples of the frame having a length of 2.times.N samples and the second half N samples of the previous frame by the frame superimposing means 65 and output to the output terminal 66.

【0008】復号化器32において、インデックス39
から逆量子化予測係数を得、これを図4に示したように
パワースペクトルを求め、その各サンプルごとの平方根
を求め、これとの逆数をそれぞれ求めているが、各サン
プルごとの平方根演算はかなりの処理量を必要とし、実
時間動作させるのに障害となる。このような点より、周
波数領域に変換された信号(係数)をパワースペクトル
の平方根で正規化した後量子化することにより、復号化
側の処理を簡単にすることを特願平7−3888号で提
案した。即ち、図5、図3と対応する部分に同一符号を
付けて示しているように、窓掛け手段35の出力信号系
列は、そのパワースペクトル包絡の平方根を表す包絡
(以下平方根パワースペクトル包絡と記す)を線形予測
分析でモデル化する手段71に分岐供給される。手段7
1は例えばまず相関関数手段72で入力信号の自己相関
関数を1フレーム中のN個の点まで求める。次にN点中
のこの自己相関関数をこの系列にN点のゼロを付加する
か、N点を対称化して代入して2N点の実フーリエ変換
をフーリエ変換手段73で行う。相関関数を自己相関法
で求めたのであれば、変換後の実部がパワースペクトル
であり、演算精度の誤差を除いてすべて正の値をとる。
このように入力信号の自己相関を求め、これをフーリエ
変換するとパワースペクトルが得られることは良く知ら
れていることである。
In the decoder 32, the index 39
The inverse quantized prediction coefficient is obtained from the obtained power spectrum, the power spectrum is obtained as shown in FIG. 4, the square root for each sample is obtained, and the reciprocal of this is obtained respectively. It requires a considerable amount of processing, which is an obstacle to real-time operation. From such a point, it is possible to simplify the processing on the decoding side by normalizing the signal (coefficient) converted into the frequency domain by the square root of the power spectrum and then quantizing the signal (Japanese Patent Application No. 7-3888). Proposed in. That is, as shown by attaching the same reference numerals to the parts corresponding to those in FIGS. 5 and 3, the output signal sequence of the windowing means 35 is an envelope representing the square root of the power spectrum envelope (hereinafter referred to as the square root power spectrum envelope). ) Is branched and supplied to a means 71 for modeling by using a linear prediction analysis. Means 7
1, the correlation function means 72 first obtains the autocorrelation function of the input signal up to N points in one frame. Next, this autocorrelation function at N points is added to this series by zeros at N points, or N points are made symmetric and substituted, and the real Fourier transform at 2N points is performed by the Fourier transform means 73. If the correlation function is obtained by the autocorrelation method, the real part after conversion is the power spectrum, and all take positive values except for errors in calculation accuracy.
It is well known that the power spectrum can be obtained by obtaining the autocorrelation of the input signal and performing Fourier transform on the autocorrelation.

【0009】このパワースペクトルの各点の平方根を平
方根手段74で求める。このとき虚部はすべてゼロとし
た後(対称化して代入した場合はもともと虚部はすべて
ゼロ)、逆フーリエ変換を逆フーリエ変換手段75で行
い、平方根パワースペクトルに対応する自己相関関数を
得る。最後にこの自己相関関数に基づいて線形予測分析
を線形予測分析手段76で行い予測パラメータを求め、
つまりパワースペクトル包絡の平方根を表す線形予測分
析でモデル化したものを得る。これを予測係数量子化手
段38で量子化してインデックス39を得る。このイン
デックス39は入力信号系列の線形予測分析により得た
ものではなく、入力信号系列の周波数特性、つまりパワ
ースペクトル包絡の平方根と対応する信号系列を線形予
測分析したものを量子化したものである。
The square root means 74 finds the square root of each point of this power spectrum. At this time, the imaginary part is set to all zeros (the imaginary part is originally all zeros when it is symmetric and substituted), and then the inverse Fourier transform is performed by the inverse Fourier transform means 75 to obtain the autocorrelation function corresponding to the square root power spectrum. Finally, linear prediction analysis is performed by the linear prediction analysis means 76 based on this autocorrelation function to obtain prediction parameters,
That is, the modeled by the linear prediction analysis expressing the square root of the power spectrum envelope is obtained. This is quantized by the prediction coefficient quantization means 38 to obtain the index 39. The index 39 is not obtained by linear prediction analysis of the input signal sequence, but is a quantized result of linear prediction analysis of the frequency characteristic of the input signal sequence, that is, the signal root corresponding to the square root of the power spectrum envelope.

【0010】この量子化手段38の量子化出力を逆量子
化手段77で逆量子化し、その逆量子化線形予測係数
を、フーリエ変換、絶対値手段78でフーリエ変換し、
その各サンプルの複素数の絶対値を取って平方根パワー
スペクトル包絡の逆数を得、これをMDCT手段36よ
りの周波数領域信号に各サンプルごとに乗算器42で乗
算して正規化する。その他の処理は図3の場合と同一で
ある。
The quantized output of the quantizing means 38 is inversely quantized by the inverse quantizing means 77, and the inversely quantized linear prediction coefficient is Fourier transformed by the Fourier transform and absolute value means 78,
The absolute value of the complex number of each sample is taken to obtain the reciprocal of the square root power spectrum envelope, and this is multiplied by the frequency domain signal from the MDCT means 36 by the multiplier 42 for each sample and normalized. The other processes are the same as in the case of FIG.

【0011】このような符号化に対し、復号化は図6に
示すように行えばよい。図6において、図3と対応する
部分に同一符号を付けてあり、この場合も再生手段56
でインデックス39が逆量子化されて線形予測係数が求
められるが、この線形予測係数は図3の説明から明らか
なように、平方根パワースペクトルを線形予測分析した
ものであるから、これをフーリエ変換手段82によりフ
ーリエ変換し、その絶対値を得ることにより平方根パワ
ースペクトル包絡の逆数が得られ、この平方根パワース
ペクトル包絡の逆数の逆数を逆数器82でとり、平方根
パワースペクトル包絡を得、これを乗算器61よりの再
生された残差信号に乗算器84において乗算して周波数
領域信号が再生される。その他は図3の場合と同様であ
る。
In contrast to such encoding, decoding may be performed as shown in FIG. In FIG. 6, the parts corresponding to those in FIG.
, The index 39 is dequantized to obtain a linear prediction coefficient. This linear prediction coefficient is obtained by performing a linear prediction analysis of the square root power spectrum, as is clear from the description of FIG. The inverse of the square root power spectrum envelope is obtained by performing Fourier transform with 82 and obtaining the absolute value thereof. The reciprocal of the inverse of the square root power spectrum envelope is taken by the reciprocal calculator 82 to obtain the square root power spectrum envelope, and this is multiplied. The reproduced residual signal from 61 is multiplied by a multiplier 84 to reproduce a frequency domain signal. Others are the same as in the case of FIG.

【0012】このように復号化器ではパワースペクトル
包絡を求める必要がなく、平方根演算を必要とせず、そ
れだけ復号化器の処理が軽減される。
As described above, the decoder does not need to obtain the power spectrum envelope, does not need the square root operation, and the processing of the decoder is reduced accordingly.

【0013】[0013]

【発明が解決しようとする課題】この発明は復号化器で
のパワースペクトル包絡の計算や割算を少なくし、演算
量を削減することができる音響信号変換復号化方法を提
供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide an acoustic signal conversion decoding method capable of reducing the amount of calculation by reducing the calculation and division of the power spectrum envelope in the decoder.

【0014】[0014]

【課題を解決するための手段】請求項1の発明によれ
ば、入力符号中の第1インデックスを逆量子化して残差
信号を得、上記入力符号中の第2インデックスよりパワ
ースペクトル包絡の平方根を得、これにより上記残差信
号を逆正規化して周波数領域信号を得、この周波数領域
信号を時間領域の信号に変換して音響信号を得る音響信
号変換復号化方法において、第2インデックスを第1段
階で逆量子化して線形予測パラメータを得、第2段階
で、その線形予測パラメータ中の予め定めたまばらな周
波数位置でパワースペクトル包絡の平方根値を得、第3
段階でそのパワースペクトル包絡の平方根値から、第2
段階で得られなかった周波数位置でのパワースペクトル
包絡の平方根値を補間により求める。
According to the invention of claim 1, a residual signal is obtained by dequantizing the first index in the input code, and the square root of the power spectrum envelope is obtained from the second index in the input code. In the acoustic signal conversion decoding method for obtaining the acoustic signal by denormalizing the residual signal to obtain the frequency domain signal by this, and converting the frequency domain signal into the time domain signal, the second index is In the first step, dequantization is performed to obtain a linear prediction parameter, in the second step, the square root value of the power spectrum envelope is obtained at predetermined sparse frequency positions in the linear prediction parameter.
From the square root value of the power spectrum envelope at
The square root value of the power spectrum envelope at the frequency position not obtained in the step is obtained by interpolation.

【0015】請求項2の発明では、上記第2段階で得ら
れなかった周波数位置の一部のパワースペクトル包絡の
平方根値を第4段階で線形予測パラメータから直接的に
求める。請求項3の発明では第3段階での補間は周波数
が高い領域について行い、第4段階での直接的に求める
ことは周波数が低い領域について行う。
According to the second aspect of the present invention, the square root value of the power spectrum envelope of a part of the frequency positions which is not obtained in the second step is directly obtained from the linear prediction parameter in the fourth step. In the invention of claim 3, the interpolation in the third step is performed in the high frequency region, and the direct calculation in the fourth step is performed in the low frequency region.

【0016】請求項4の発明では第2段階で求めたパワ
ースペクトル包絡の平方根の変化率の大小を第5段階で
判定し、変化率小と判定された周波数位置では第3段階
での補間を行い、変化率大と判定された周波数位置では
第4段階で直接的に求めることを行う。請求項5の発明
では、第2段階は、線形予測パラメータからパワースペ
クトル包絡を求める演算を行った結果パワースペクトル
包絡の平方根を得る。
In the invention of claim 4, the magnitude of the change rate of the square root of the power spectrum envelope obtained in the second step is judged in the fifth step, and the interpolation in the third step is performed at the frequency position judged to have the small change rate. Then, at the frequency position where the change rate is determined to be large, it is directly obtained in the fourth step. In the invention of claim 5, in the second step, the square root of the power spectrum envelope is obtained as a result of the calculation for obtaining the power spectrum envelope from the linear prediction parameter.

【0017】請求項6の発明では第2段階は、線形予測
パラメータから、パワースペクトル包絡を求める演算を
行い、その演算結果の平方根を求めてパワースペクトル
包絡の平方根を得る。
In the second aspect of the invention, in the second step, an operation for obtaining the power spectrum envelope is performed from the linear prediction parameter, and the square root of the operation result is obtained to obtain the square root of the power spectrum envelope.

【0018】[0018]

【発明の実施の形態】図1にこの発明の実施例を図6と
対応する部分に同一符号を付けて示す。つまりこの例
は、図5を参照して説明したように符号化側で、周波数
領域信号が、入力信号のパワースペクトル包絡の平方根
(平方根パワースペクトル包絡)で正規化された後に量
子化された符号を復号化するのにこの発明を適用した場
合である。予測パラメータ再生手段56で予測インデッ
クス39が逆量子化されて線形予測パラメータが得られ
るが、この実施例では予め決められた周波数位置での
み、線形予測パラメータからパワースペクトル演算手段
101でパワースペクトル包絡を求める演算を行い、そ
の結果として平方根パワースペクトル包絡を得る。手段
101は例えばスペクトル包絡の逆数を求める手段10
2により平方根スペクトル包絡の逆数を求め、この平方
根スペクトル包絡の逆数について、逆数手段103で逆
数をとる。手段102としては例えば予め決めた周波数
位置が等間隔の場合は、線形予測パラメータとして得ら
れている線形予測係数αのあとにゼロをつめて、全体と
して例えばN/4個(2Nは1フレーム中のサンプル
数)とし、これをフーリエ変換することによりN/8個
の周波数点について各パワーの逆数を得ることができ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of the present invention in which parts corresponding to those in FIG. That is, in this example, as described with reference to FIG. 5, on the encoding side, the frequency domain signal is normalized by the square root of the power spectrum envelope of the input signal (square root power spectrum envelope) and then quantized code. This is a case where the present invention is applied to decrypt The prediction parameter reproducing means 56 dequantizes the prediction index 39 to obtain a linear prediction parameter. In this embodiment, the power spectrum calculation means 101 calculates the power spectrum envelope from the linear prediction parameter only at a predetermined frequency position. The calculation is performed, and as a result, the square root power spectrum envelope is obtained. The means 101 is, for example, means 10 for obtaining the reciprocal of the spectral envelope.
The reciprocal of the square root spectrum envelope is obtained by 2, and the reciprocal of the square root spectrum envelope is calculated by the reciprocal means 103. As the means 102, for example, when the predetermined frequency positions are at equal intervals, zeros are put after the linear prediction coefficient α obtained as a linear prediction parameter, and for example, N / 4 pieces (2N is in one frame) as a whole. Then, the inverse number of each power can be obtained for N / 8 frequency points by Fourier transforming this.

【0019】なお等間隔の周波数位置でない場合は線形
予測係数αを用いてGeltzelの変換法を用いて、
パワースペクトル包絡値を求めればよい。パワースペク
トル演算手段101としては次のような演算を行っても
よい。すなわち、全極型のスペクトルモデルを式(1)
で表すことができる。ここでαiはi次の線形予測係数
で、σは予測誤差の平均振幅である。
When the frequency positions are not evenly spaced, the Geltzel conversion method is used using the linear prediction coefficient α,
The power spectrum envelope value may be obtained. The power spectrum calculation means 101 may perform the following calculation. That is, the all-pole type spectrum model is expressed by the formula (1).
Can be represented by Here, α i is the i-th order linear prediction coefficient, and σ is the average amplitude of the prediction error.

【0020】[0020]

【数1】 [Equation 1]

【0021】周波数ωでのパワースペクトルは|H
(ω)|2 である。また線形予測パラメータがLSPパ
ラメータの場合は、θi をi次(i=1,・・・,p)
のLSPパラメータとするとパワースペクトルは式
(2)により求めることができる。
The power spectrum at frequency ω is | H
(Ω) | 2 . When the linear prediction parameter is an LSP parameter, θ i is i-th order (i = 1, ..., P)
Assuming that the LSP parameter is, the power spectrum can be obtained by the equation (2).

【0022】[0022]

【数2】 [Equation 2]

【0023】このようにこの実施例ではパワースペクト
ルを求める演算により平方根パワースペクトル包絡が得
られるが、これはまばらな周波数値の包絡値しか得られ
ていない。そこでパワースペクトル演算手段101で得
られなかった周波数位置に対する平方根パワースペクト
ルをその前後の平方根パワースペクトルにより補間手段
102で補間して得る。この実施例では平方根パワース
ペクトル包絡の変化が少ない所を補間し、変化が多い所
は、スペクトル包絡計算手段103により予測パラメー
タ再生手段56で得られた線形予測パラメータを用いて
直線的に求める。線形予測パラメータでスペクトル包絡
を表現すると、緩やかな変化の包絡特性が得られる。し
かし、極の次数の半分の個数のピークが生じ、そのピー
ク付近では補間のみの近似では近似誤差が大きくなって
しまう。そこで既に計算ずみのスペクトル包絡値の変化
から、緩やかな変化の領域は補間し、急激な変化のある
領域は改めて正確に計算し直す。これにより少ない演算
量ながら近似誤差を小さく保つことができる。この処理
の実例を図2に示す。同図Aはすべての周波数点での包
絡値を計算する従来の方法である。Bは偶数個めの周波
数位置のみで包絡値(×点)を計算し、Cは補間値(白
丸)と直接包絡値(黒丸)を計算する場合とを示す。こ
こで先の計算値a1 ,a2 ,a3 のように比較的急に変
化した部分の未計算個所は線形予測パラメータを用いて
実際に計算して値b2 を求めるが、計算値a2 ,a3
4 ,a5 のように比較的変化がゆるやかな場合は未計
算個所をその前後の計算値を用いて補間して補間値
1 ,c2 ,c3 を求める。なおパワースペクトル演算
手段101でのまだらな計算は、少くとも5点おき、あ
るいは10点乃至20点おき程度に行うのが実際的であ
る。
As described above, in this embodiment, the square root power spectrum envelope is obtained by the operation for obtaining the power spectrum, but only the envelope value of sparse frequency values is obtained. Therefore, the interpolating means 102 interpolates the square root power spectrum for the frequency position not obtained by the power spectrum calculating means 101 by the square root power spectra before and after the frequency root. In this embodiment, a place where the change in the square root power spectrum envelope is small is interpolated, and a place where there is a large change is linearly obtained by the spectrum envelope calculation means 103 using the linear prediction parameter obtained by the prediction parameter reproducing means 56. Representing the spectral envelope with a linear prediction parameter gives a slowly changing envelope characteristic. However, the number of peaks that is half the order of the poles occurs, and the approximation error becomes large near the peaks by approximation using only interpolation. Therefore, from the already calculated change of the spectral envelope value, the region of gradual change is interpolated, and the region of abrupt change is recalculated accurately. As a result, the approximation error can be kept small with a small amount of calculation. An actual example of this processing is shown in FIG. FIG. A is a conventional method for calculating the envelope value at all frequency points. B shows the case where the envelope value (x point) is calculated only at the even-numbered frequency positions, and C shows the case where the interpolation value (white circle) and the direct envelope value (black circle) are calculated. Here, the uncalculated portions of the portions that have relatively abrupt changes such as the calculated values a 1 , a 2 and a 3 are actually calculated using the linear prediction parameter to obtain the value b 2 , but the calculated value a 2 , a 3 ,
a 4, if relatively unchanged as a 5 is gentle is interpolated using the calculated values before and after the uncalculated location obtaining an interpolated value c 1, c 2, c 3 . It should be noted that it is practical that the mottled calculation in the power spectrum calculation means 101 is performed at least every 5 points, or every 10 to 20 points.

【0024】この実際に計算するか補間するかの選択に
は種々の基準を考えることができる。例えば全極型でス
ペクトル包絡をモデル化するとスペクトル包絡は山の部
分が谷の部分より鋭く、変化が大きい場合が多い。この
性質を利用すると、上に凸の領域を細かく計算し、下に
凸の領域では補間することで性能を損なうことなく、ス
ペクトル包絡の計算量を削減することができる。周波数
点Ωでのスペクトル包絡値|H(Ω)|2 がλ点ずれた
位置でのスペクトル包絡値と比較して式(3)で与えら
れるJが正であれば上に凸であると見なせる。
Various criteria can be considered for the selection of the actual calculation or the interpolation. For example, when the spectrum envelope is modeled by the all-pole type, the peak of the spectrum envelope is sharper than that of the valley, and the change is large in many cases. By using this property, the amount of calculation of the spectrum envelope can be reduced without deteriorating the performance by finely calculating the upward convex region and interpolating in the downward convex region. If the spectral envelope value | H (Ω) | 2 at the frequency point Ω is compared with the spectral envelope value at the position deviated by λ point, and if J given by equation (3) is positive, it can be regarded as convex. .

【0025】 J=2|H(Ω)|2 −|H(Ω−λ)|2 −|H(Ω+λ)|2 (3) さらにこのJと|H(ω)|2 を比較してω=Ω−λか
らω=Ω+λまでの|H(ω)|2 の算出について以下
のような規則で使い分けてもよい。 ・J>0.5|H(Ω)|2 なら実際に計算 ・0.5|H(Ω)|2 >J>0.1|H(Ω)|2
ら|H(Ω−λ)|2 と|H(Ω+λ)|2 の大きいほ
うの値の近くのみ実際に計算、他は補間 ・0.1|H(Ω)|2 >Jなら補間 また一般に低周波成分のエネルギーが大きくスペクトル
の変動も大きい場合が多いので、低周波領域では細かい
間隔で、高周波領域では粗い間隔で計算することも有効
である。例えば2kHz以下は各周波数ごとに実際に計
算するが、2kHz以上では適当にまばらな周波数点を
計算し、その間は補間する。この計算する周波数間隔は
周波数が高くなるに従って大としてもよい。
J = 2 | H (Ω) | 2 − | H (Ω−λ) | 2 − | H (Ω + λ) | 2 (3) Further, this J and | H (ω) | 2 are compared and ω The calculation of | H (ω) | 2 from = Ω−λ to ω = Ω + λ may be performed according to the following rules.・ If J> 0.5 | H (Ω) | 2 then actual calculation ・ 0.5 | H (Ω) | 2 >J> 0.1 | H (Ω) | 2 | H (Ω-λ) | 2 and | H (Ω + λ) | 2 is actually calculated only near the larger value. Others are interpolated. ・ If 0.1 | H (Ω) | 2 > J, interpolated. Generally, the energy of the low frequency component is large and Since the fluctuations are large in many cases, it is also effective to calculate with a fine interval in the low frequency region and with a coarse interval in the high frequency region. For example, if the frequency is 2 kHz or less, the frequency is actually calculated for each frequency, but if the frequency is 2 kHz or more, appropriately sparse frequency points are calculated, and interpolation is performed between them. The calculated frequency interval may increase as the frequency increases.

【0026】補間法としては2次式での補間あるいは簡
単な一次式の線形補間で十分である。このようにして得
られたパワースペクトル演算手段101よりの平方根ス
ペクトル包絡値、補間手段102よりの平方根スペクト
ル包絡値、スペクトル包絡計算手段103からの平方根
スペクトル包絡値を結合して乗算器82で、乗算器61
より周波数領域残差信号に乗算して逆正規化する。その
後の処理は図6と同様である。
A quadratic interpolation or a simple linear interpolation is sufficient as the interpolation method. The square root spectrum envelope value obtained from the power spectrum calculation means 101, the square root spectrum envelope value obtained from the interpolation means 102, and the square root spectrum envelope value obtained from the spectrum envelope calculation means 103 are combined and multiplied by the multiplier 82. Bowl 61
More frequency domain residual signal is multiplied and inversely normalized. Subsequent processing is the same as in FIG.

【0027】上述においては予め決められたまばらな周
波数位置の平方根パワースペクトル包絡値を求め、未演
算周波数点については、補間又は直接的に演算したが、
すべて補間により求めてもよい。更に上述では符号化側
で平方根パワースペクトル包絡で、周波数領域信号を正
規化した後、量子化したが、パワースペクトル包絡で周
波数領域信号を正規化した後、量子化した符号の復号
化、つまり図3に示した復号化にもこの発明を適用でき
る。この場合は、パワースペクトル演算手段101で再
生された線形予測パラメータから、まばらな周波数位置
でのパワースペクトル包絡値を求め、これらについて、
図4に示したように、平方根を求め、更に逆数を求める
演算を必要とするが、全ての周波数点についてそのよう
な演算をする場合より、演算量を削減することができ
る。また周波数領域から時間領域への変換は逆変形離散
的コサイン変換に限らず、逆離散的コサイン変換、逆離
散的フーリエ変換(逆高速フーリエ変換)など他の手法
によってもよい。
In the above description, the square root power spectrum envelope values at predetermined sparse frequency positions are obtained, and the uncalculated frequency points are interpolated or directly calculated.
All may be obtained by interpolation. Further, in the above, the square root power spectrum envelope on the encoding side normalizes the frequency domain signal and then quantizes it.However, after normalizing the frequency domain signal on the power spectrum envelope, the decoding of the quantized code, that is, FIG. The present invention can be applied to the decoding shown in FIG. In this case, the power spectrum envelope values at sparse frequency positions are obtained from the linear prediction parameters reproduced by the power spectrum calculation means 101, and for these,
As shown in FIG. 4, the calculation of the square root and the calculation of the reciprocal number are required, but the calculation amount can be reduced as compared with the case where such calculation is performed for all frequency points. Further, the transformation from the frequency domain to the time domain is not limited to the inverse modified discrete cosine transform, and other methods such as an inverse discrete cosine transform and an inverse discrete Fourier transform (inverse fast Fourier transform) may be used.

【0028】[0028]

【発明の効果】以上述べたようにこの発明によれば、逆
量子化した線形予測パラメータから全周波数点について
パワースペクトル包絡の平方根を求めるのではなく、そ
の一部を省略し、その省略した周波数点については補間
により求めるため、それだけ式(1)や式(2)の演算
回数が少なく、これら式(1),(2)は割算を含むた
め、全体として演算量が可成り減少する。また例えばフ
ーリエ変換し、その逆数をとってパワースペクトル包絡
値を求める場合においては、そのフーリエ変換の減算量
が減少し、かつ、その後逆数をとる回数が減少するた
め、演算量が可成り減少する。
As described above, according to the present invention, the square root of the power spectrum envelope is not obtained for all frequency points from the inversely quantized linear prediction parameter, but a part thereof is omitted and the omitted frequency is omitted. Since the points are obtained by interpolation, the number of calculations of the equations (1) and (2) is small, and since the equations (1) and (2) include division, the calculation amount is considerably reduced as a whole. In addition, for example, when Fourier transform is performed and the reciprocal thereof is obtained to obtain the power spectrum envelope value, the amount of subtraction of the Fourier transform is reduced, and the number of times the reciprocal is taken thereafter is also reduced, so the amount of calculation is considerably reduced. .

【0029】従ってこの発明により、音声や楽音の変換
符号化における量子化歪を殆ど増加させることなく、例
えば10点乃至20点ごとのまばらな周波数点について
演算することにより、周波数成分ごとにスペクトル包絡
値の演算や除算の回数を1/5から1/10程度に大幅
に削減することができるので、復号器の演算処理を削減
することができる。特に信号処理プロセッサでは一般に
除算が乗算の20−30倍の演算ステップを要するた
め、演算量削減効果が大きい。また実施例のように平方
根パワースペクトル包絡で正規化した後量子化した符号
に対する復号化によれば平方根演算もなくなり、演算ス
テップ数の削減は著しい。
Therefore, according to the present invention, the spectral envelope for each frequency component is calculated by operating on sparse frequency points of, for example, 10 to 20 points with almost no increase in quantization distortion in conversion coding of speech or musical sound. Since the number of value calculations and divisions can be significantly reduced from about 1/5 to about 1/10, the calculation processing of the decoder can be reduced. In particular, in a signal processor, the division generally requires 20 to 30 times as many calculation steps as the multiplication, so that the calculation amount is greatly reduced. Further, according to the decoding for the code quantized after being normalized by the square root power spectrum envelope as in the embodiment, the square root calculation is also eliminated, and the number of calculation steps is remarkably reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を適用した復号器の例を示す
ブロック図。
FIG. 1 is a block diagram showing an example of a decoder to which an embodiment of the present invention is applied.

【図2】Aは従来方法における全ての周波数点を再生線
形予測パラメータから求めた平方根パワースペクトル概
形を示す図、Bはこの発明において、まばらな周波数点
として偶数点のみにつき再生線形予測パラメータから求
めたパワースペクトル概形を示す図、Cはこの発明によ
りBの求めたパワースペクトル概形に対し、未演算周波
数点を補間し、また、実際に計算した平方根パワースペ
クトル包絡概形例を示す図である。
FIG. 2A is a diagram showing a square root power spectrum outline in which all frequency points in the conventional method are obtained from the reproduction linear prediction parameters, and B is a reproduction linear prediction parameter for only even points as sparse frequency points in the present invention. The figure which shows the calculated power spectrum outline, C is the figure which shows the square root power spectrum envelope outline example which interpolated the uncalculated frequency point with respect to the power spectrum outline calculated | required by B by this invention, and was actually calculated. Is.

【図3】従来の変換符号化、復号化法を適用した符号化
器が復号化器を示すブロック図。
FIG. 3 is a block diagram showing a decoder as an encoder to which a conventional transform coding / decoding method is applied.

【図4】線形予測係数からフーリエ変換によりパワース
ペクトル包絡値を求める様子を示す図。
FIG. 4 is a diagram showing how a power spectrum envelope value is obtained from a linear prediction coefficient by Fourier transform.

【図5】提案されている平方根パワースペクトル包絡に
より正規化した後量子化する符号化器の例を示すブロッ
ク図。
FIG. 5 is a block diagram showing an example of an encoder that normalizes and then quantizes a proposed square root power spectrum envelope.

【図6】図5の符号化器に対する復号化器の例を示すブ
ロック図。
6 is a block diagram showing an example of a decoder for the encoder of FIG.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 入力符号中の第1インデックスを逆量子
化して残差信号を得、上記入力符号中の第2インデック
スよりパワースペクトル包絡の平方根を得て上記残差信
号を逆正規化して周波数領域信号を得、この周波数領域
信号を時間領域の信号に変換して音響信号を得る音響信
号変換復号化方法において、 上記第2インデックスより線形予測係数を逆量子化して
線形予測パラメータを得る第1段階と、 上記線形予測パラメータ中の予め定めたまばらな周波数
位置でパワースペクトル包絡の平方根値を得る第2段階
と、 その第2段階で得られたパワースペクトル包絡の平方根
値から、上記第2段階で得られなかった周波数位置での
パワースペクトル包絡の平方根値を補間により求める第
3段階と、 を有することを特徴とする音響信号変換復号化方法。
1. A residual signal is obtained by dequantizing a first index in an input code, a square root of a power spectrum envelope is obtained from a second index in the input code, and the residual signal is denormalized to obtain a frequency. An acoustic signal conversion / decoding method for obtaining a domain signal and transforming the frequency domain signal into a time domain signal to obtain an acoustic signal, wherein the linear prediction coefficient is dequantized from the second index to obtain a linear prediction parameter. A second step of obtaining a square root value of a power spectrum envelope at predetermined sparse frequency positions in the linear prediction parameter, and a square root value of the power spectrum envelope obtained in the second step. And a third step of interpolating the square root value of the power spectrum envelope at the frequency position that was not obtained in step 3, and Method of.
【請求項2】 上記第2段階で得られなかった周波数位
置の一部のパワースペクトル包絡の平方根値を、上記線
形予測パラメータから直接的に求める第4段階を含むこ
とを特徴とする請求項1記載の音響信号変換復号化方
法。
2. The method according to claim 1, further comprising a fourth step of directly obtaining a square root value of a power spectrum envelope of a part of frequency positions not obtained in the second step from the linear prediction parameter. The acoustic signal conversion decoding method described.
【請求項3】 上記第3段階での補間は周波数が高い領
域について行い、上記第4段階での直接的に求めること
は周波数が低い領域について行うことを特徴とする請求
項2記載の音響信号変換復号化方法。
3. The acoustic signal according to claim 2, wherein the interpolation in the third stage is performed for a high frequency region, and the direct calculation in the fourth stage is performed for a low frequency region. Conversion decoding method.
【請求項4】 上記第2段階で求めたパワースペクトル
包絡の平方根の変化率の大小を判定する第5段階を有
し、第5段階で変化率小と判定された周波数位置では上
記第3段階での補間を行い、変化率大と判定された周波
数位置では上記第4段階での直接的に求めることを特徴
とする請求項2記載の音響信号変換復号化方法。
4. The method further comprises a fifth step of judging the magnitude of a change rate of the square root of the power spectrum envelope obtained in the second step, and the third step at the frequency position determined to have a small change rate in the fifth step. 3. The acoustic signal conversion decoding method according to claim 2, wherein the interpolation is performed and the frequency position determined to have a large change rate is directly obtained in the fourth step.
【請求項5】 上記第2段階は、上記線形予測パラメー
タからパワースペクトル包絡を求める演算を行った結果
パワースペクトル包絡の平方根が得られることを特徴と
する請求項1乃至4記載の音響信号変換復号化方法。
5. The acoustic signal conversion decoding according to claim 1, wherein in the second step, a square root of a power spectrum envelope is obtained as a result of performing an operation for obtaining a power spectrum envelope from the linear prediction parameter. Method.
【請求項6】 上記第2段階は、上記線形予測パラメー
タから、パワースペクトル包絡を求める演算を行い、そ
の演算結果の平方根を求めてパワースペクトル包絡の平
方根を得ることを特徴とする請求項1乃至4記載の音響
信号変換復号化方法。
6. The method according to claim 1, wherein in the second step, an operation for obtaining a power spectrum envelope is performed from the linear prediction parameter, and a square root of the operation result is obtained to obtain a square root of the power spectrum envelope. 4. The acoustic signal conversion decoding method described in 4.
JP24743695A 1995-09-26 1995-09-26 Audio signal conversion decoding method Expired - Lifetime JP3186020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24743695A JP3186020B2 (en) 1995-09-26 1995-09-26 Audio signal conversion decoding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24743695A JP3186020B2 (en) 1995-09-26 1995-09-26 Audio signal conversion decoding method

Publications (2)

Publication Number Publication Date
JPH0990998A true JPH0990998A (en) 1997-04-04
JP3186020B2 JP3186020B2 (en) 2001-07-11

Family

ID=17163418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24743695A Expired - Lifetime JP3186020B2 (en) 1995-09-26 1995-09-26 Audio signal conversion decoding method

Country Status (1)

Country Link
JP (1) JP3186020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519552A (en) * 1997-10-02 2001-10-23 シーメンス アクチエンゲゼルシヤフト Method and apparatus for generating a bit rate scalable audio data stream
CN109995448A (en) * 2019-02-28 2019-07-09 南京航空航天大学 Long-term spectral prediction method with missing values and sparse outliers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001519552A (en) * 1997-10-02 2001-10-23 シーメンス アクチエンゲゼルシヤフト Method and apparatus for generating a bit rate scalable audio data stream
CN109995448A (en) * 2019-02-28 2019-07-09 南京航空航天大学 Long-term spectral prediction method with missing values and sparse outliers

Also Published As

Publication number Publication date
JP3186020B2 (en) 2001-07-11

Similar Documents

Publication Publication Date Title
CN102334157B (en) Apparatus and method for obtaining a parameter describing a variation of a signal characteristic of a signal
EP0673014B1 (en) Acoustic signal transform coding method and decoding method
US6593872B2 (en) Signal processing apparatus and method, signal coding apparatus and method, and signal decoding apparatus and method
JPH10124092A (en) Method and device for encoding speech and method and device for encoding audible signal
EP1495465B1 (en) Method for modeling speech harmonic magnitudes
JP3186007B2 (en) Transform coding method, decoding method
JPH11510274A (en) Method and apparatus for generating and encoding line spectral square root
JPH09281996A (en) Voiced sound/unvoiced sound decision method and apparatus therefor and speech encoding method
JP3087814B2 (en) Acoustic signal conversion encoding device and decoding device
JP3590342B2 (en) Signal encoding method and apparatus, and recording medium recording signal encoding program
JPH07199997A (en) Audio signal processing method in audio signal processing system and method for reducing processing time in the processing
JP3186020B2 (en) Audio signal conversion decoding method
JP3353266B2 (en) Audio signal conversion coding method
KR20050007574A (en) Audio coding
JP3186013B2 (en) Acoustic signal conversion encoding method and decoding method thereof
JP4645869B2 (en) DIGITAL SIGNAL PROCESSING METHOD, LEARNING METHOD, DEVICE THEREOF, AND PROGRAM STORAGE MEDIUM
JPH09230898A (en) Acoustic signal transformation and encoding and decoding method
JP3138574B2 (en) Linear prediction coefficient interpolator
JP3163206B2 (en) Acoustic signal coding device
JP3384523B2 (en) Sound signal processing method
JPH11109995A (en) Acoustic signal encoder
JP3290443B2 (en) Code-excited linear prediction encoder and decoder
JP2002049398A (en) Digital signal processing method, learning method, and their apparatus, and program storage media therefor
JP3468335B2 (en) Envelope estimation method of frequency domain transform coefficient of acoustic signal
JP2000132195A (en) Signal encoding device and method therefor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term