[go: up one dir, main page]

JPH0990009A - Magnetic field generating device for esr device - Google Patents

Magnetic field generating device for esr device

Info

Publication number
JPH0990009A
JPH0990009A JP7269133A JP26913395A JPH0990009A JP H0990009 A JPH0990009 A JP H0990009A JP 7269133 A JP7269133 A JP 7269133A JP 26913395 A JP26913395 A JP 26913395A JP H0990009 A JPH0990009 A JP H0990009A
Authority
JP
Japan
Prior art keywords
magnetic field
magnets
cylindrical
magnet
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7269133A
Other languages
Japanese (ja)
Inventor
Naoko Sugawara
菜穂子 菅原
Kazuto Kunihiro
一登 国広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP7269133A priority Critical patent/JPH0990009A/en
Publication of JPH0990009A publication Critical patent/JPH0990009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic field generating device which can generate a high magnetic field by means of a permanent-magnet magnetic circuit while maintaining high magnetic field uniformity, can change the intensity of the magnetic field over a wide range, and can easily change the direction of the generated magnetic field. SOLUTION: Cylindrical magnets 1 and 10 are respectively formed by assembling large numbers of triangular prism-like magnets 4 and 13 in sexadecimal prism-like states and a yoke-less cylindrical magnetic circuit is constituted in a nesting state by coaxially incorporating the small-diameter cylindrical magnet 10 in the large-diameter cylindrical magnet 1 so that magnetic fields can be generated in the same direction. When the two magnets 1 and 10 are overlapped upon another in the same direction, a magnetic field which is the double of the magnetic field generated by a single magnet can be obtained and, when the magnets 1 and 10 are rotated by the same angle in the overlapping state, the direction of the magnetic filed can be changed without changing the intensity. Therefore, magnetic fields of various intensities can be generated in various directions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、広範囲にわたっ
て磁界強度方向を変化させることを必要とするESR装
置(電子スピン共鳴装置)の磁界発生源に適用できる永
久磁石磁気回路に係り、三角柱状の磁石を組み合せて筒
状にした内外径の異なる筒状磁石を同軸配置し、両者の
相対的な回転角度を変化させることにより、磁界空間の
大きさを変化させることなく発生磁界方向、強度を変化
させることが可能なESR装置用磁界発生装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a permanent magnet magnetic circuit applicable to a magnetic field generation source of an ESR device (electron spin resonance device) that requires changing the direction of magnetic field strength over a wide range, and a magnet having a triangular prism shape. By combining cylindrical magnets with different inner and outer diameters that are combined into a cylindrical shape and changing the relative rotation angle between them, the direction and strength of the generated magnetic field can be changed without changing the size of the magnetic field space. The present invention relates to a magnetic field generator for an ESR device that is capable of performing.

【0002】[0002]

【従来の技術】ESR装置は、化学分析用として研究、
開発の分野で多用されている。また、ESR装置は、前
記被測定物の自然放射線損傷による不対電子を検出する
ことができ、遺物や地質鉱物、化石類の年代を正確に測
定することができるため、最近、考古学や地球科学の分
野でも活用されている。
2. Description of the Related Art ESR equipment has been studied for chemical analysis.
It is often used in the field of development. In addition, since the ESR device can detect unpaired electrons due to natural radiation damage of the object to be measured and can accurately date the relics, geological minerals, and fossils, recently, archeology and earth It is also used in the field of science.

【0003】かかる用途に用いるESR装置の主要部分
を構成する磁界発生装置は、被測定物を配置する空隙内
に、高精度に均一な磁界を発生させる必要がある。従
来、ESR装置に使用される磁界発生装置は、電磁石を
使用するのが通常である。所要空隙内の磁界の発生及び
その磁界の連続変化は、電磁石への印加電流を連続的に
変化させることで容易に実施可能であるが、装置全体が
大型かつ高価であり、さらにランニングコストを要する
という欠点を有している。
The magnetic field generating device which constitutes the main part of the ESR device used for such an application needs to generate a uniform magnetic field with high precision in the void in which the object to be measured is placed. Conventionally, the magnetic field generator used in the ESR device usually uses an electromagnet. Generation of the magnetic field in the required air gap and continuous change of the magnetic field can be easily implemented by continuously changing the current applied to the electromagnet, but the entire device is large and expensive, and further running costs are required. It has the drawback of

【0004】[0004]

【発明が解決しようとする課題】また、磁界発生源とし
て永久磁石のみを使用し、互いの対向距離(空隙長)を
変化させることで、磁界強度を変化させる構成が提案さ
れている。しかし、対向距離を変化させる際に、互いの
永久磁石の軸心が移動する等の要因により、磁界の均一
度が悪くなる欠点を有していた。
Further, there has been proposed a structure in which only a permanent magnet is used as a magnetic field generation source and the opposing distance (gap length) between them is changed to change the magnetic field strength. However, when the facing distance is changed, there is a disadvantage that the uniformity of the magnetic field is deteriorated due to factors such as the axes of the permanent magnets being moved.

【0005】一方、通常ESR装置に要求される磁界
は、0.01%以下の高精度な均一度が必要とされてい
るが、従来、永久磁石を磁界発生源としたESR装置で
はかかる均一度を満足するものはなかった。そこで、出
願人は、永久磁石を磁界発生源としたESR装置で0.
01%以下の高精度な均一度を保持したまま磁界強度を
連続的に変化できる構成として、磁気回路内に磁界発生
源の永久磁石と、可動ヨークからなる磁気抵抗可変部と
を並列配置した構成のESR装置を提案した(実開平1
−104574号)。
On the other hand, the magnetic field normally required for an ESR device is required to have a highly accurate homogeneity of 0.01% or less. Conventionally, the ESR device using a permanent magnet as a magnetic field source has such homogeneity. There was nothing to satisfy. Therefore, the applicant has used an ESR device that uses a permanent magnet as a magnetic field generation source.
A configuration in which a permanent magnet of a magnetic field generation source and a magnetic resistance variable section including a movable yoke are arranged in parallel in a magnetic circuit as a configuration capable of continuously changing the magnetic field strength while maintaining highly accurate uniformity of 01% or less. Proposed the ESR device of
-104574).

【0006】しかし、これらの方法では、均一度につい
ては満足する値が得られるものの、被測定物を配置する
空隙内に発生させる磁界強度には限界があり、可変範囲
が数10mT程度しか得られなく、さらに、磁気回路を
動かさなければ発生磁界の方向が変えられない、といっ
た点が適用範囲を限定する原因となっていた。
However, with these methods, although a satisfactory value can be obtained for uniformity, there is a limit to the magnetic field strength generated in the void in which the object to be measured is placed, and a variable range of only several tens of mT can be obtained. Moreover, the fact that the direction of the generated magnetic field cannot be changed without moving the magnetic circuit has been a cause of limiting the applicable range.

【0007】この発明は、広範囲にわたって磁界強度方
向を変化させることを必要とするESR装置用の磁界発
生装置を、永久磁石磁気回路により実現することを目的
とし、装置を大型化することなく高磁界強度を得ること
ができ、磁界強度の可変範囲が広くかつ容易に発生磁界
の方向を変更できる構成からなるESR装置用磁界発生
装置の提供を目的としている。
An object of the present invention is to realize a magnetic field generator for an ESR device which needs to change the magnetic field strength direction over a wide range by a permanent magnet magnetic circuit, and to achieve a high magnetic field without increasing the size of the device. It is an object of the present invention to provide a magnetic field generator for an ESR device which can obtain strength, has a wide variable range of magnetic field strength, and can easily change the direction of a generated magnetic field.

【0008】[0008]

【課題を解決するための手段】発明者らは、所定空隙内
に高磁界を発生させることができ、磁界強度の可変範囲
が広くかつ容易に発生磁界の方向を変更できる構成の磁
気回路を目的に種々検討した結果、ヨークレスの筒型の
磁気回路で同じ方向に磁界を発生し、内径が違うもの2
つを入れ子の状態で組み合せることにより、2つの筒状
磁石を全く同じ方向に重ね合わせると、単独での発生磁
界の2倍の発生磁界が得られ、2つの筒状磁石を重ね合
わせた状態で、同じ角度で回転させた場合、強度が変わ
らずに磁界方向を変化させることができ、これらの操作
を組み合せることにより、様々な角度に様々な強度の磁
界を発生させることができることを知見した。
DISCLOSURE OF THE INVENTION The inventors have aimed at a magnetic circuit having a structure capable of generating a high magnetic field in a predetermined air gap, having a wide variable range of magnetic field strength, and easily changing the direction of the generated magnetic field. As a result of various investigations, a magnetic field is generated in the same direction in a yokeless cylindrical magnetic circuit, and the inner diameter is different.
When two tubular magnets are superposed in exactly the same direction by combining the two in a nested state, a magnetic field twice as large as the magnetic field generated by itself is obtained, and the two tubular magnets are superposed. Therefore, we found that when rotated at the same angle, the magnetic field direction can be changed without changing the strength, and by combining these operations, magnetic fields of various strengths can be generated at various angles. did.

【0009】また、この発明者らは、前記筒状磁石の両
端部にシム磁石を配置することによって、筒内の広範囲
にわたって均一な磁界強度が得られること、さらに、該
筒状磁石を非磁性材からなる筒状構造材も内蔵又は外装
支持させることにより、筒状磁石及び装置全体の組立て
が容易となり、安価にESR装置用磁界発生装置を提供
できることを知見し、この発明を完成した。
Further, the inventors of the present invention can arrange a shim magnet at both ends of the cylindrical magnet to obtain a uniform magnetic field strength over a wide range in the cylinder, and further to make the cylindrical magnet non-magnetic. The present invention has been completed by discovering that a tubular structure material made of a material is also built-in or supported externally to facilitate assembly of the tubular magnet and the entire device, and to provide a magnetic field generator for an ESR device at low cost.

【0010】すなわち、この発明は、筒状磁石は断面が
三角形の柱状の磁石を組合せて内外周面が多角形からな
り、かつ両端部にシム磁石を配置してその筒内に磁界を
発生する構成で、内外径の異なる一対の前記筒状磁石を
一方が他方を筒内に所要の隙間を介して内蔵するように
同軸配置し、かつ内外の前記筒状磁石を個別に回転可能
に支持したESR装置用磁界発生装置である。
That is, according to the present invention, the cylindrical magnet is a combination of columnar magnets having a triangular cross section, the inner and outer peripheral surfaces are polygonal, and shim magnets are arranged at both ends to generate a magnetic field in the cylinder. In the configuration, a pair of the tubular magnets having different inner and outer diameters are coaxially arranged so that one of the tubular magnets is housed in the other with a predetermined gap, and the inner and outer tubular magnets are individually rotatably supported. It is a magnetic field generator for an ESR device.

【0011】また、この発明は、上記の構成において、
外側の筒状磁石が大径の筒状構造材に内蔵又は外装支持
され、内側の筒状磁石が小径の筒状構造材に内蔵又は外
装支持され、大径と小径の筒状構造材を回転させること
により、内外の前記筒状磁石を個別に回転可能に支持し
たESR装置用磁界発生装置を併せて提案する。
Further, according to the present invention, in the above structure,
The outer cylindrical magnet is built in or externally supported by the large-diameter cylindrical structural material, and the inner cylindrical magnet is built in or externally supported by the small-diameter cylindrical structural material to rotate the large-diameter and small-diameter cylindrical structural materials. By doing so, a magnetic field generator for an ESR device in which the inner and outer cylindrical magnets are individually rotatably supported is also proposed.

【0012】[0012]

【発明の実施の形態】図1はこの発明による磁界発生装
置の構成例を示すもので、円筒軸方向から見た正面説明
図であり、図2は図1の縦断側面図である。図1及び図
2に示すごとく、この発明による磁界発生装置は、ヨー
クレスの円筒型磁気回路で、同じ発生磁界を有し内径が
異なるものを入れ子の状態で組み合せた構成、すなわ
ち、外側の筒状磁石1内に内側の筒状磁石10を同軸に
内蔵した構成からなる。外側の筒状磁石1は三角柱状磁
石4を多数組み合せて16角筒状に組み立てたもので、
筒状磁石1はその外周面を非磁性の16角筒状構造材2
の内周面に接着してある。また、内側の筒状磁石10も
同様に三角柱状磁石4を多数組み合せて16角筒状に組
み立てたもので、その外周面を非磁性の16角筒状構造
材11の内周面に接着してある。
FIG. 1 shows an example of the structure of a magnetic field generator according to the present invention, and is a front explanatory view seen from the axial direction of a cylinder, and FIG. 2 is a vertical side view of FIG. As shown in FIG. 1 and FIG. 2, the magnetic field generator according to the present invention is a yokeless cylindrical magnetic circuit in which those having the same generated magnetic field but different inner diameters are combined in a nested state, that is, an outer cylindrical shape. The inner cylindrical magnet 10 is coaxially built in the magnet 1. The outer cylindrical magnet 1 is formed by combining a large number of triangular columnar magnets 4 into a hexagonal cylindrical shape.
The cylindrical magnet 1 has a non-magnetic hexagonal cylindrical structural material 2 on its outer peripheral surface.
It is bonded to the inner surface of the. Similarly, the inner cylindrical magnet 10 is also formed by combining a large number of triangular pole-shaped magnets 4 into a hexagonal cylindrical shape, and its outer peripheral surface is bonded to the inner peripheral surface of the non-magnetic hexagonal cylindrical structural material 11. There is.

【0013】上記の筒状磁石1,10の両端には、それ
ぞれフランジ6,16が形成されており、該フランジ
6,16がそれぞれベアリング18を介してスタンド8
に支持され、筒状磁石1,10が個別に回転可能に構成
されている。又、内外の筒状磁石1,10の両端部に
は、その中央部に配置される三角柱状磁石4よりもその
径方向厚みを厚くしたシム磁石4a,13aが配置され
ている。尚、図3はこの発明による磁界発生装置におけ
る筒状磁石の構成例を示す半割斜視説明図であり、図中
9aは上述したシム磁石部である。
Flanges 6 and 16 are formed on both ends of the cylindrical magnets 1 and 10, respectively, and the flanges 6 and 16 are provided with a stand 8 via bearings 18, respectively.
And the cylindrical magnets 1 and 10 are individually rotatable. Further, at both ends of the inner and outer cylindrical magnets 1 and 10, shim magnets 4a and 13a having a radial thickness larger than that of the triangular columnar magnet 4 arranged at the central portion thereof are arranged. FIG. 3 is a half perspective view showing a configuration example of a cylindrical magnet in the magnetic field generator according to the present invention, and 9a in the drawing is the shim magnet portion described above.

【0014】図4はこの発明による磁界発生装置の構成
例を示すもので、円筒軸方向から見た説明図であり、図
5は内外の筒状磁石を図4の状態から相互に逆方向に1
5°ずつ回転させた場合を示し、図6は同様に60°回
転させた場合、図7は同様に90°回転させた場合を示
す。
FIG. 4 shows an example of the construction of the magnetic field generator according to the present invention, and is an explanatory view seen from the axial direction of the cylinder. FIG. 5 shows the inner and outer cylindrical magnets in the opposite directions from the state of FIG. 1
FIG. 6 shows the case of rotating by 5 ° each, FIG. 6 shows the case of rotating by 60 ° similarly, and FIG. 7 shows the case of rotating by 90 ° similarly.

【0015】図4に示す磁界発生装置は、基本的に図1
に示す磁界発生装置と同様であり、三角柱状磁石21を
多数組み合せた外側の筒状磁石20内に、三角柱状磁石
31を多数組み合せた内側の筒状磁石30を同軸に内蔵
した構成からなり、該筒状磁石20,30の両端部に
は、シム磁石22,32が配置されている。尚、図4〜
図7においては、三角柱状磁石21,31の磁化方向を
明確にするために筒状構造材の図示を省略している。
The magnetic field generator shown in FIG. 4 is basically the same as that shown in FIG.
Similar to the magnetic field generator shown in FIG. 1, and has a configuration in which an inner cylindrical magnet 30 in which a large number of triangular prism-shaped magnets 31 are combined is coaxially built in an outer cylindrical magnet 20 in which a large number of triangular-columnar magnets 21 are combined. Shim magnets 22 and 32 are arranged at both ends of the cylindrical magnets 20 and 30, respectively. Incidentally, FIG.
In FIG. 7, in order to clarify the magnetization directions of the triangular pole-shaped magnets 21 and 31, illustration of the tubular structural material is omitted.

【0016】内外の筒状磁石20,30の各三角柱状磁
石21,31は、それぞれ図に矢印で示す方向に磁化方
向を有し、各筒状磁石20,30は同方向に磁界を発生
する構成である。図4に示すように2つの筒状磁石2
0,30を全く同じ方向に重ね合わせると、図8に示す
ごとく、それぞれ単独での発生磁界の2倍の発生磁界が
得られる。
Each of the triangular pole-shaped magnets 21 and 31 of the inner and outer cylindrical magnets 20 and 30 has a magnetization direction in the direction indicated by an arrow in the figure, and the cylindrical magnets 20 and 30 generate a magnetic field in the same direction. It is a composition. Two cylindrical magnets 2 as shown in FIG.
When 0 and 30 are superposed in exactly the same direction, as shown in FIG. 8, a generated magnetic field which is twice as large as the magnetic field generated individually is obtained.

【0017】図5〜図7に示すように、内外の筒状磁石
20,30を図4の状態から相互に逆方向に15°〜9
0°回転、すなわち、対称に動かすことにより、磁界の
sin成分は互いに打消し合いcos成分だけが残るの
で、図9に示すように磁界の方向は変わらずに磁界強度
をcosカーブ変化させることができる。また、内外の
筒状磁石20,30を重ね合わせた状態で、同じ角度で
回転させた場合、強度が変わらずに磁界方向を変化させ
ることができる。さらに、上記の手法を組み合せること
により、様々な角度に様々な強度の磁界を発生させるこ
とができる。
As shown in FIGS. 5 to 7, the inner and outer cylindrical magnets 20 and 30 are moved in the opposite directions from the state of FIG. 4 by 15 ° to 9 °.
By rotating 0 °, that is, moving symmetrically, the sin components of the magnetic field cancel each other out and only the cos component remains, so that the magnetic field strength can be changed by the cos curve without changing the direction of the magnetic field as shown in FIG. it can. Further, when the inner and outer cylindrical magnets 20 and 30 are overlapped and rotated at the same angle, the magnetic field direction can be changed without changing the strength. Furthermore, by combining the above methods, it is possible to generate magnetic fields of various strengths at various angles.

【0018】この発明において、三角柱状磁石を多数組
み合せて多角筒状に組み立てた筒状磁石は、磁石のみで
形成する他、ステンレス鋼などの非磁性の構造材を用い
て補強することができる。構造材を用いることにより、
筒状磁石の強度を補強でき、かつ筒状磁石あるいは装置
全体の組立てが容易になり、装置を安価に提供すること
が可能になる。構造材は、実施例の筒状で磁石体全体を
覆うもの構成の他、格子状や部分的に使用する等、磁石
体の寸法や形状などに応じて適宜選定することができ
る。
In the present invention, the cylindrical magnet assembled by combining a large number of triangular pole-shaped magnets into a polygonal cylindrical shape can be formed of only the magnet and can be reinforced by using a non-magnetic structural material such as stainless steel. By using a structural material,
The strength of the tubular magnet can be reinforced, and the tubular magnet or the entire device can be easily assembled, and the device can be provided at low cost. The structural material can be appropriately selected depending on the size and shape of the magnet body, such as a cylindrical shape that covers the entire magnet body in the embodiment, a lattice shape or a partial use.

【0019】また、非磁性の構造材は、例えば、実施例
の場合、外側の筒状磁石が大径の筒状構造材に内蔵支持
され、内側の筒状磁石が小径の筒状構造材の外周面に嵌
着支持されているが、逆に外側の筒状磁石の内周面に筒
状構造材を配置し、内側の筒状磁石の外側に筒状構造材
を配置することもでき、筒状構造材の内外周面のいずれ
に磁石を配置した構成も採用できる。
As for the non-magnetic structural material, for example, in the case of the embodiment, the outer cylindrical magnet is built in and supported by the large-diameter cylindrical structural material, and the inner cylindrical magnet is the small-diameter cylindrical structural material. Although it is fitted and supported on the outer peripheral surface, conversely, the cylindrical structural material can be arranged on the inner peripheral surface of the outer cylindrical magnet and the cylindrical structural material can be arranged on the outer side of the inner cylindrical magnet, A configuration in which magnets are arranged on either the inner or outer peripheral surface of the tubular structural material can also be adopted.

【0020】この発明において、三角柱状磁石で筒状磁
石を形成するのは、四角柱や丸柱状磁石を用いる場合に
比べて、より少ない磁石重量で同等の磁界強度を得るこ
とができ、磁気回路として効率がすぐれているためであ
る。永久磁石は、フェライト磁石、アルニコ系磁石、希
土類コバルト系磁石など公知のいずれの磁石も使用でき
るが、特に、30MGOe以上の極めて高いエネルギー
積を示すFe−B−R系永久磁石を使用することによ
り、筒内中心部で0.5T以上の高磁界を得ることがで
きるとともに装置全体を著しく小型化することもでき
る。
In the present invention, forming the cylindrical magnet with the triangular pole-shaped magnet makes it possible to obtain an equivalent magnetic field strength with a smaller magnet weight as compared with the case where a square pole-shaped magnet or a round pillar-shaped magnet is used. This is because the efficiency is excellent. As the permanent magnet, any known magnet such as a ferrite magnet, an alnico magnet, and a rare earth cobalt magnet can be used. Particularly, by using an Fe-BR permanent magnet showing an extremely high energy product of 30 MGOe or more, A high magnetic field of 0.5 T or more can be obtained at the center of the cylinder, and the size of the entire device can be significantly reduced.

【0021】さらに、この発明において筒状磁石には、
図3の半割状態の斜視図に示すごとく、三角柱状磁石に
て形成した筒状磁石9の両端の開口部から所要の長さx
部分を他の磁石より厚みyだけ厚い三角柱状磁石を用い
て筒状となしたシム磁石9a,9aとすることにより、
筒状磁石9内部に発生する磁界の均一度を向上させるこ
とができる。シム磁石9aの長さx並びに他の磁石より
厚い厚みyの寸法は、筒状磁石9の全体長さや使用する
磁石、要求される磁界均一度などに応じて適宜選定され
る。シム磁石には、同一磁石材質を用いて磁石寸法を変
更する他、厚み寸法を変更することなく、磁石材質をよ
り強力な材質に代えて磁力補強を図り、磁界均一度の向
上を達成することができる。
Further, in the present invention, the cylindrical magnet includes
As shown in the perspective view of the half-divided state of FIG. 3, the required length x from the openings at both ends of the tubular magnet 9 formed of the triangular pole magnet.
By forming the shim magnets 9a, 9a in the shape of a cylinder using a triangular columnar magnet whose portion is thicker by y than other magnets,
The uniformity of the magnetic field generated inside the cylindrical magnet 9 can be improved. The length x of the shim magnet 9a and the thickness y thicker than the other magnets are appropriately selected according to the overall length of the tubular magnet 9, the magnet used, the required magnetic field uniformity, and the like. For the shim magnet, the same magnet material should be used to change the magnet size, and instead of changing the thickness dimension, the magnet material should be replaced with a stronger one to reinforce the magnetic force and to improve the magnetic field uniformity. You can

【0022】[0022]

【実施例】図1に示す内外の筒状磁石1,10はそれぞ
れ三角柱状磁石4,13を組み合せて形成してあるが、
図2に示すように連結ピン5,14にて軸方向に接続し
た筒状構造材2,11に各磁石4,13を支持させて形
成してある。すなわち、大径の筒状構造材2は、軸方向
に7つに分割された16角柱状構造部材3を連結ピン5
にて軸方向に接続して一体化し、一方端にフランジ6を
ボルト7止めしてあり、筒状構造材2の内周面に軸方向
に分割された多数の所定形状の三角柱状磁石4を着設し
て筒状磁石1を組立ててある。また、軸方向に分割され
た筒状磁石1のうち、両端部には径方向厚みを厚くした
三角柱状磁石を用いて筒状となしたシム磁石4aが配置
される。
EXAMPLE The inner and outer cylindrical magnets 1 and 10 shown in FIG. 1 are formed by combining triangular columnar magnets 4 and 13, respectively.
As shown in FIG. 2, the magnets 4 and 13 are supported by the cylindrical structural members 2 and 11 connected in the axial direction by the connecting pins 5 and 14, respectively. That is, in the large-diameter cylindrical structural member 2, the hexagonal columnar structural member 3 divided into seven in the axial direction is connected to the connecting pin 5.
Is connected and integrated in an axial direction with a flange 6 fixed to one end by a bolt 7, and a large number of axially divided triangular prism-shaped magnets 4 are formed on the inner peripheral surface of the tubular structural member 2. The tubular magnet 1 is assembled by assembling. In addition, shim magnets 4a, which are formed into a cylindrical shape by using triangular columnar magnets having a large radial thickness, are arranged at both ends of the cylindrical magnet 1 divided in the axial direction.

【0023】また、小径の筒状構造材11も同様に、軸
方向に6つに分割された16角柱状構造部材12を連結
ピン14にて軸方向に接続して一体化し、一方端に筒軸
材15を介してフランジ16をボルト17止めしてあ
り、筒状構造材11の外周面に軸方向に分割された多数
の所定形状の三角柱状磁石13を着設してある。さら
に、軸方向に分割された三角柱状磁石13のうち、両端
部には径方向厚みを厚くした三角柱状磁石を用いて筒状
となしたシム磁石13aが配置される。
Similarly, for the small-diameter tubular structural member 11, six hexagonal columnar structural members 12 which are axially divided into six are connected by a connecting pin 14 in the axial direction to be integrated, and a tubular member is provided at one end. A flange 16 is fixed to a bolt 17 via a shaft member 15, and a large number of triangular columnar magnets 13 having a predetermined shape divided in the axial direction are attached to the outer peripheral surface of the tubular structural member 11. Furthermore, among the axially divided triangular columnar magnets 13, shim magnets 13a which are formed in a tubular shape by using triangular columnar magnets having a large radial thickness are arranged at both ends.

【0024】大径の筒状構造材2のフランジ6内径部は
上記小径の筒状構造材11の筒材15に外嵌され、この
フランジ6と小径の筒状構造材11のフランジ16との
間に設けたスタンド8にベアリング板18を介して、大
径、小径の筒状構造材2,11が回転自在、すなわち、
内外の前記筒状磁石1,10を個別に回転可能に支持し
てある。また、小径の筒状構造材2,11のフランジ1
6は貫通するピン19にてスタンド8に固定することが
できる。なお、上記の三角柱状磁石4,13には、最大
エネルギー積(BH)maxが3.6MGOeのフェラ
イト磁石を用いた。
The inner diameter portion of the flange 6 of the large-diameter cylindrical structural member 2 is externally fitted to the cylindrical member 15 of the small-diameter cylindrical structural member 11, and the flange 6 and the flange 16 of the small-diameter cylindrical structural member 11 are joined together. The large-diameter and small-diameter cylindrical structural members 2 and 11 are rotatable via the bearing plate 18 on the stand 8 provided therebetween, that is,
The inner and outer cylindrical magnets 1 and 10 are individually rotatably supported. In addition, the flange 1 of the small-diameter tubular structural members 2 and 11
The pin 6 can be fixed to the stand 8 with a penetrating pin 19. A ferrite magnet having a maximum energy product (BH) max of 3.6 MGOe was used as the triangular columnar magnets 4 and 13.

【0025】上記構成の磁界発生装置において、内外の
筒状磁石1,10を所定の基準位置に合わせて、発生磁
界を全く同じ方向に重ね合わせると、筒内中心部で0.
2T(2000G)の発生磁界を得た。この時の磁界の
分布の計算値と実測値を図10と図11に示す。内外の
筒状磁石1,10を重ね合わせた状態で、同じ角度で回
転させた場合、強度が変わらずに磁界方向を変化させる
ことができるが、この時の磁界差を図12に示す。
In the magnetic field generator having the above-mentioned structure, when the inner and outer cylindrical magnets 1 and 10 are aligned with a predetermined reference position and the generated magnetic fields are superposed in exactly the same direction, 0.
A generated magnetic field of 2T (2000G) was obtained. Calculated and measured values of the magnetic field distribution at this time are shown in FIGS. 10 and 11. When the inner and outer cylindrical magnets 1 and 10 are superposed and rotated at the same angle, the magnetic field direction can be changed without changing the strength. The magnetic field difference at this time is shown in FIG.

【0026】[0026]

【発明の効果】この発明によるESR装置用磁界発生装
置は、三角柱状の磁石を組み合せ、かつ両端部にシム磁
石筒状にした内外径の異なる筒状磁石を同軸配置した構
成からなり、電源の必要がなく、ESR装置に必要とさ
れる0.01%以下の均一度を保持しながら高磁界が得
られ、磁気回路本体を移動させることなく、磁界空間の
大きさを変化させることなく、両筒状磁石の相対的な回
転角度を変化させることにより発生磁界方向、強度を変
化させることが可能となる。
The magnetic field generator for an ESR device according to the present invention has a structure in which magnets in the shape of triangular prisms are combined and cylindrical magnets of different inner and outer diameters, which are shim magnets, are coaxially arranged at both ends. It is not necessary to obtain a high magnetic field while maintaining the uniformity of 0.01% or less, which is required for an ESR device, without moving the magnetic circuit body and without changing the size of the magnetic field space. By changing the relative rotation angle of the cylindrical magnet, it is possible to change the direction and strength of the generated magnetic field.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明による磁界発生装置の構成例を示すも
ので、円筒軸方向から見た正面説明図である。
FIG. 1 is a front explanatory view showing an example of the configuration of a magnetic field generator according to the present invention as viewed from the axial direction of a cylinder.

【図2】図1の縦断側面図である。2 is a vertical side view of FIG.

【図3】筒状磁石の構成例を示す半割斜視説明図であ
る。
FIG. 3 is a half-divided perspective view showing a configuration example of a tubular magnet.

【図4】この発明による磁界発生装置の他の構成例を示
すもので、円筒軸方向から見た正面説明図である。
FIG. 4 is a front explanatory view showing another configuration example of the magnetic field generator according to the present invention as viewed from the axial direction of the cylinder.

【図5】内外の筒状磁石を図4の状態から相互に逆方向
に15°ずつ回転させた場合を示す正面説明図である。
5 is a front explanatory view showing a case where the inner and outer cylindrical magnets are rotated by 15 ° in mutually opposite directions from the state of FIG. 4. FIG.

【図6】内外の筒状磁石を図4の状態から相互に逆方向
に30°ずつ回転させた場合を示す正面説明図である。
FIG. 6 is a front explanatory view showing a case where the inner and outer cylindrical magnets are rotated by 30 ° in mutually opposite directions from the state of FIG. 4;

【図7】内外の筒状磁石を図4の状態から相互に逆方向
に90°ずつ回転させた場合を示す正面説明図である。
FIG. 7 is a front explanatory view showing a case where the inner and outer cylindrical magnets are rotated by 90 ° in mutually opposite directions from the state of FIG. 4;

【図8】この発明による磁界発生装置において、内外の
筒状磁石の、発生磁界を同じ方向に重ね合わせた際の発
生磁界の合成を示す説明図である。
FIG. 8 is an explanatory diagram showing composition of generated magnetic fields when the generated magnetic fields of the inner and outer cylindrical magnets are superposed in the same direction in the magnetic field generator according to the present invention.

【図9】回転角度と磁界の関係を示すグラフである。FIG. 9 is a graph showing a relationship between a rotation angle and a magnetic field.

【図10】この発明による磁界発生装置の中心位置から
の磁界分布の計算値を示すグラフである。
FIG. 10 is a graph showing calculated values of the magnetic field distribution from the center position of the magnetic field generator according to the present invention.

【図11】この発明による磁界発生装置の中心位置から
の磁界分布の実測値を示すグラフである。
FIG. 11 is a graph showing measured values of the magnetic field distribution from the center position of the magnetic field generator according to the present invention.

【図12】この発明による磁界発生装置の内外の筒状磁
石の回転角度と発生磁界の差との関係を示すグラフであ
る。
FIG. 12 is a graph showing the relationship between the rotation angle of the cylindrical magnet inside and outside the magnetic field generator according to the present invention and the difference between the generated magnetic fields.

【符号の説明】[Explanation of symbols]

1,9,10,20,30 筒状磁石 2,11 筒状構造材 3,12 16角柱状構造部材 4,13,21,31 三角柱状磁石 4a,9a,13a,22,32 シム磁石 5,14 連結ピン 6,16 フランジ 7,17 ボルト 8 スタンド 15 筒軸材 18 ベアリング板 19 ピン 1,9,10,20,30 Cylindrical magnet 2,11 Cylindrical structural material 3,12 16 Square columnar structural member 4,13,21,31 Triangular columnar magnet 4a, 9a, 13a, 22, 32 Shim magnet 5, 14 Connection Pin 6,16 Flange 7,17 Bolt 8 Stand 15 Cylindrical Shaft Material 18 Bearing Plate 19 Pin

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 筒状磁石は断面が三角形の柱状の磁石を
組合せて内外周面が多角形からなり、かつ両端部にシム
磁石を配置してその筒内に磁界を発生する構成で、内外
径の異なる一対の前記筒状磁石を一方が他方を筒内に所
要の隙間を介して内蔵するように同軸配置し、かつ内外
の前記筒状磁石を個別に回転可能に支持したESR装置
用磁界発生装置。
1. A cylindrical magnet has a structure in which columnar magnets having a triangular cross section are combined to form a polygonal inner and outer peripheral surface, and shim magnets are arranged at both ends to generate a magnetic field in the cylinder. A magnetic field for an ESR device in which a pair of cylindrical magnets having different diameters are coaxially arranged so that one of the cylindrical magnets is housed in the other through a required gap, and the cylindrical magnets inside and outside are individually rotatably supported. Generator.
【請求項2】 請求項1において、外側の筒状磁石が大
径の筒状構造材に内蔵又は外装支持され、内側の筒状磁
石が小径の筒状構造材に内蔵又は外装支持され、大径と
小径の筒状構造材を回転させることにより、内外の前記
筒状磁石を個別に回転可能に支持したESR装置用磁界
発生装置。
2. The outer cylindrical magnet according to claim 1, which is built in or externally supported by the large-diameter cylindrical structural member, and the inner cylindrical magnet is built in or externally supported by the small-diameter cylindrical structural member. A magnetic field generator for an ESR device in which the inner and outer cylindrical magnets are individually rotatably supported by rotating a cylindrical structural member having a small diameter and a small diameter.
JP7269133A 1995-09-21 1995-09-21 Magnetic field generating device for esr device Pending JPH0990009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7269133A JPH0990009A (en) 1995-09-21 1995-09-21 Magnetic field generating device for esr device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7269133A JPH0990009A (en) 1995-09-21 1995-09-21 Magnetic field generating device for esr device

Publications (1)

Publication Number Publication Date
JPH0990009A true JPH0990009A (en) 1997-04-04

Family

ID=17468161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7269133A Pending JPH0990009A (en) 1995-09-21 1995-09-21 Magnetic field generating device for esr device

Country Status (1)

Country Link
JP (1) JPH0990009A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078018A1 (en) * 2001-03-23 2002-10-03 Sumitomo Special Metals Co., Ltd. Magnetic field generator
WO2007037380A1 (en) 2005-09-30 2007-04-05 Hitachi Metals, Ltd. Magnetic field control method and magnetic field generation device
GB2489403A (en) * 2011-03-22 2012-10-03 Pepric Nv Isolating active electron spin signals in EPR by changing field direction
JP2014033582A (en) * 2012-08-06 2014-02-20 Fuji Electric Co Ltd Permanent magnet type rotary electric machine
JP2015049072A (en) * 2013-08-30 2015-03-16 日本電信電話株式会社 Electron spin resonance device
JP2016522412A (en) * 2013-06-03 2016-07-28 ナナリシス コーポレーション Magnet assembly
CN113296035A (en) * 2021-05-24 2021-08-24 德惠市北方汽车底盘零部件有限公司 Magnetic field detection assembly and ferromagnetic and magnetic material detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002078018A1 (en) * 2001-03-23 2002-10-03 Sumitomo Special Metals Co., Ltd. Magnetic field generator
JP2002289425A (en) * 2001-03-23 2002-10-04 Sumitomo Special Metals Co Ltd Magnetic field generator
US6768407B2 (en) 2001-03-23 2004-07-27 Sumitomo Special Metals Co., Ltd. Magnetic field generator
WO2007037380A1 (en) 2005-09-30 2007-04-05 Hitachi Metals, Ltd. Magnetic field control method and magnetic field generation device
US7986205B2 (en) 2005-09-30 2011-07-26 Hitachi Metals. Ltd Magnetic field control method and magnetic field generator
GB2489403A (en) * 2011-03-22 2012-10-03 Pepric Nv Isolating active electron spin signals in EPR by changing field direction
US9551773B2 (en) 2011-03-22 2017-01-24 Pepric Nv Isolating active electron spin signals in EPR
JP2014033582A (en) * 2012-08-06 2014-02-20 Fuji Electric Co Ltd Permanent magnet type rotary electric machine
JP2016522412A (en) * 2013-06-03 2016-07-28 ナナリシス コーポレーション Magnet assembly
JP2015049072A (en) * 2013-08-30 2015-03-16 日本電信電話株式会社 Electron spin resonance device
CN113296035A (en) * 2021-05-24 2021-08-24 德惠市北方汽车底盘零部件有限公司 Magnetic field detection assembly and ferromagnetic and magnetic material detector

Similar Documents

Publication Publication Date Title
US8860539B2 (en) Magnetised structure inducing a homogeneous field, in the centre thereof, with a pre-determined orientation
US8077002B2 (en) Open MRI magnetic field generator
US5298825A (en) Single phase electro-magnetic actuator with low obstruction
US8525627B2 (en) Permanent-magnet magnetic field generator
US6094119A (en) Permanent magnet apparatus for magnetizing multipole magnets
US9128167B2 (en) Cylindrical permanent magnet device generating a controlled magnetic field at a distance from the surface thereof
WO2002078018A1 (en) Magnetic field generator
US10867733B2 (en) Lightweight asymmetric magnet arrays with mixed-phase magnet rings
JP2018523127A (en) Statically balanced mechanism using a Halbach cylinder
US11193998B2 (en) Permanent magnet arrangement for generating a homogeneous field (“3D Halbach”)
Leupold et al. Novel high-field permanent-magnet flux sources
KR20170015235A (en) Dipole ring magnetic field generator
JPH0990009A (en) Magnetic field generating device for esr device
Leupold et al. Applications of yokeless flux confinement
US20130009735A1 (en) Permanent magnet options for magnetic detection and separation - ring magnets with a concentric shim
Cugat et al. Permanent magnet variable flux sources
JP2704352B2 (en) Magnetic field generator
US20120098630A1 (en) Cylindrical permanent magnet device with an induced magnetic field having a predetermined orientation, and production method
CN104729405A (en) Supporting device for monitoring components
US5218333A (en) Magnetic field generating device for use with ESR device
Coey et al. Permanent magnets
US11830671B2 (en) Methods for generating directional magnetic fields and magnetic apparatuses thereof
JPH0244482Y2 (en)
Wróblewski et al. Mandhala magnet for ultra low-field MRI
Biggs et al. Magnetization, Geometry, and Segmentation Analysis of Nested Halbach Cylinders for Optimizing the Interactive Torque

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301